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Kernel Density Based Linear Regression Estimate

Weixin Yao∗and Zhibiao Zhao†

Abstract

For linear regression models with non-normally distributed errors, the least

squares estimate (LSE) will lose some efficiency compared to the maximum

likelihood estimate (MLE). In this article, we propose a kernel density based

regression estimate (KDRE) that is adaptive to the unknown error distribution.

The key idea is to approximate the likelihood function by using a nonparamet-

ric kernel density estimate of the error density based on some initial parameter

estimate. The proposed estimate is shown to be asymptotically as efficient

as the oracle MLE which assumes the error density were known. In addition,

we propose an EM type algorithm to maximize the estimated likelihood func-

tion and show that the KDRE can be considered as an iterated weighted least

squares estimate, which provides us some insights on the adaptiveness of KDRE

to the unknown error distribution. Our Monte Carlo simulation studies show

that, while comparable to the traditional LSE for normal errors, the proposed

estimation procedure can have substantial efficiency gain for non-normal errors.

Moreover, the efficiency gain can be achieved even for a small sample size.

Key words: EM algorithm, Kernel density estimate, Least squares estimate,

Linear regression, Maximum likelihood estimate.
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1 Introduction

Linear regression models are widely used to investigate the relationship between sev-

eral variables. Suppose (x1, y1), . . . , (xn, yn) are sampled from the regression model

y = xTβ + ϵ, (1.1)

where x is a p-dimensional vector of covariates independent of the error ϵ with E(ϵ) =

0. The well-known least squares estimate (LSE) of β is

β̃ = argmin
β

n∑
i=1

(yi − xT
i β)

2. (1.2)

For normally distributed errors, β̃ is exactly the maximum likelihood estimate (MLE).

However, β̃ will lose some efficiency when the error is not normally distributed. There-

fore, it is desirable to have an estimate that can be adaptive to the unknown error

distribution.

The idea of adaptiveness is not new. Beran (1974) and Stone (1975) considered

adaptive estimation for location model. Bickel (1982), Schick (1993), Yuan and De

Gooijer (2007), and Yuan (2010) extended the adaptive idea to regression and some

other models. Linton and Xiao (2007) further applied the adaptive idea to non-

parametric regression estimate. Wang and Yao (2012) applied the adaptive idea to

dimension reduction. Empirical likelihood techniques (Owen, 1988, 2001) have also

been used for regression problems to adaptively construct the confidence intervals and

testing statistics without any parametric assumption for the error density. However,

empirical likelihood regression can’t provide the efficient point regression estimates

by adaptively using the unknown error density information.

In this article, we propose an adaptive kernel density based regression estimate

(KDRE). The basic idea is to estimate the error density by kernel density estimate

based on some initial parameter estimate and then estimate the regression parameters

by maximizing the estimated likelihood function. Our proposed estimation procedure

uses similar kernel error idea of Stone (1975) and Linton and Xiao (2007) to gain the

adaptiveness based on some initial consistent estimate. However, Linton and Xiao

(2007) mainly deals with nonparametric regression, the current paper deals with
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parametric regression. We prove that the proposed estimate is asymptotically as

efficient as the oracle MLE, which assumes the error density were known. Therefore,

our proposed estimate can adapt to different error distributions. In addition, we

propose a novel EM algorithm to maximize the estimated likelihood function and

show that the KDRE can be viewed as an iterated weighted least squares estimate,

which provides us some insights on why the KDRE can adapt to the unknown error

distribution. To examine the finite sample performance, we conduct a Monte Carlo

simulation study based on a wide range of error densities, including heavy-tail error,

multiple-modal error, and skewed error density. Our simulation study confirms our

theoretical finding. Our main claims are as follows.

1. The KDRE is comparable to the traditional LSE when the error is normal.

2. The KDRE is more efficient than the LSE when the error is not normal. The

efficiency gain can be substantial even for a small sample size.

The remainder of this paper is organized as follows. In section 2, we introduce

the new estimation procedure and prove its asymptotic oracle property. In addition,

an EM type algorithm is introduced to maximize the estimated likelihood function.

Numerical comparisons are conducted in Section 3. Summary and discussion are

given in Section 4. Technical proofs are gathered in the Appendix.

2 Kernel Density Based Regression Estimate

2.1 The new estimation method

Let f(t) be the marginal density of ϵ in (1.1). If f(t) is known, instead of using the

LSE, we can better estimate β in (1.1) by maximizing the log-likelihood

n∑
i=1

log f(yi − xT
i β). (2.1)

In practice, however, f(t) is often unknown and thus (2.1) is not directly applicable.

To attenuate this, denote by β̃ an initial estimate of β, such as the LSE in (1.2).

Based on the residuals ϵ̃i = yi − xT
i β̃, we can estimate f(t) by the kernel density
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estimate, denoted by f̃(t), as

f̃(t) =
1

n

n∑
j=1

Kh(t− ϵ̃j), (2.2)

where Kh(t) = h−1K(t/h), K(·) is a kernel density, and h is the tuning parameter.

In this article, we use the Gaussian kernel for K(·). Replacing f(·) in (2.1) with f̃(·),
we then propose the kernel density based regression parameter estimate (KDRE) as

β̂ = argmax
β

Q(β), (2.3)

where Q(β) is the estimated likelihood function

Q(β) =
n∑

i=1

log f̃(yi − xT
i β) =

n∑
i=1

log

{
1

n

∑
j ̸=i

Kh

(
yi − xT

i β − ϵ̃j
)}

. (2.4)

Here we use leave-one-out kernel density estimate for f(ϵi) to remove the estimation

bias; see also Yuan and Gooijer (2007) and Linton and Xiao (2007). The above

estimation procedure can be easily extended to the nonlinear regression by replacing

xT
i β in (2.4) with the assumed nonlinear function.

2.2 Asymptotic result

Let β0 be the true value of β. Then we have the following asymptotic oracle results

for our proposed estimate β̂.

Theorem 2.1. Assume that Assumptions C1–C5 in the Appendix hold. As n → ∞,

√
n(β̂ − β0)

d−→ N
(
0, V −1

)
, (2.5)

where ϵ = y − xTβ0,

V = Iβ0
M, M = lim

n→∞

1

n

n∑
i=1

xix
T
i = E(xxT ), Iβ0

= E

{
f ′(ϵ)2

f(ϵ)2

}
. (2.6)

Remark 1: By the above theorem, the proposed estimate β̂ in (2.4) has root n
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convergence rate and its asymptotic distribution does not depend on the kernel K(·)
or the bandwidth h, although the kernel density estimator with slower convergence

rate is involved. In addition, β̂ has the same asymptotic variance as that of the

infeasible oracle MLE, which assumes f(·) were known.

Remark 2: In (2.4), if we replace the objective function log f̃(·) by another ob-

jective function, say ρ(·) with E {ρ′(ϵ)} = 0 (the LSE corresponds to ρ(ϵ) = ϵ2), then

the resulting estimate has limiting variance

vρ =

[
E{ρ′(ϵ)2}
E{ρ′′(ϵ)}2

M

]−1

.

Based on the classical Cramér-Rao inequality that[
E{ρ′(ϵ)2}
E{ρ′′(ϵ)}2

]−1

≥ I−1

β0

,

we have vρ ≥ [Iβ0
M ]−1. Therefore, the objective functions we used in (2.4) is optimal

in the sense that the proposed estimate is asymptotically efficient.

Remark 3: Our proposed method can also be applied to nonlinear regression model

and similar oracle properties can also be established as in Theorem 2.1.

Remark 4: Yuan and De Gooijer (2007) proposed estimating β by maximizing

n∑
i=1

log

[
1

n

∑
j ̸=i

Kh

{
r(yi − xT

i β)− r(yj − xT
j β)

}]
, (2.7)

where r(·) is some monotone nonlinear function, such as r(z) = ez/(1+ ez). Here r(·)
is used to avoid the cancelation of the intercept term in β. Note that the asymptotic

variance in (2.5) is the same as that in Yuan and De Gooijer (2007) with r(t) = t,

which is efficient. One main advantage of their method is that it does not require an

initial estimate. However, the asymptotic variance of their estimator depends on the

choice of r(·) and generally does not reach the Cramér-Rao lower bound [Iβ0
M ]−1

for a nonlinear function of r(·).

Note that when r(t) = t in (2.7), although the intercept term, denoted by β0, will

be canceled, the slope parameter, denoted by β1, will remain estimable. Let β̄1 be
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its estimate. In (2.5), let

V −1 =

(
V 11 V 12

V 21 V22

)
,

where V 11 is a scalar. Based on the result of Yuan and De Gooijer (2007), we know

that β̄1 is still an efficient estimate and has the asymptotic distribution

√
n(β̄1 − β1)

d−→ N
(
0, V 22

)
.

Let x = (1,x∗T )T . Based on the slope estimate β̄1, we can simply estimate β0 by β̄0 =

Ȳ −x∗
i
T β̄1. Note that β̄0 can be considered as an LSE for model yi−x∗

i
T β̄1 = β0+ ϵi

after we fix β1 at β̄1. Denote by KDRE1 the resulting estimate (β̄0, β̄1). Based on

some standard calculations (the sketchy of the proof is given at the end of Appendix),

we can get the asymptotic distribution for β̄0:

√
n(β̄0 − β0)

d−→ N(0, σ2),

where

σ2 = var

[
ϵi −

f ′(ϵi)

f(ϵi)

{
E(x∗)TV21 + E(x∗)TV22x

∗
i

}]
.

Note that generally β̄0 does not reach the Cramér-Rao lower bound and the efficiency

loss depends on the true error density f(ϵ). However, one nice feature of such estimate

is that it doesn’t require an initial estimate. In addition, it does not require to choose

a nonlinear function r(·).

2.3 Computations: an EM algorithm

Note that the objective function (2.4) has a mixture form. In this section, we propose

an EM algorithm to maximize it. The proposed EM algorithm can be similarly used

to find β̄1 by maximizing (2.7) when r(t) = t. Let β(0) be an initial parameter

estimate, such as the LSE. We then update the parameter estimate according to the

algorithm below.

Algorithm 2.1. At (k + 1)th step, we calculate the following E and M steps:
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E-Step: Calculate the classification probabilities,

p
(k+1)
ij =

Kh(yi − xT
i β

(k) − ϵ̃j)∑
l ̸=iKh(yi − xT

i β
(k) − ϵ̃l)

∝ Kh(yi − xT
i β

(k) − ϵ̃j), j ̸= i, (2.8)

M-Step: Update β(k+1),

β(k+1) = argmax
β

n∑
i=1

∑
j ̸=i

{
p
(k+1)
ij logKh(yi − xT

i β − ϵ̃j)
}

= argmin
β

n∑
i=1

∑
j ̸=i

{
p
(k+1)
ij (yi − xT

i β − ϵ̃j)
2
}
, (2.9)

which has explicit solutions, since Kh(·) is a Gaussian kernel density.

From the M step (2.9), the KDRE can be considered as a weighted least squares

estimate, which minimizes the weighted squared difference between the new residual

yi − xT
i β and the initial residual ϵ̃j for all 1 ≤ i ̸= j ≤ n. Based on the weights in

(2.8), one knows that if jth observation is an isolated outlier (i.e., ϵ̃j is large), then

the weights p
(k+1)
ij will be small for i ̸= j and thus the effect of ϵ̃j on updating β(k+1)

will be also small.

By Theorem 2.2 below, the Algorithm 2.1 is truly an EM algorithm and has the

monotone property for the objective function (2.4).

Theorem 2.2. The objective function (2.4) is non-decreasing after each iteration of

Algorithm 2.1, i.e., Q(β(k+1)) ≥ Q(β(k)), until a fixed point is reached.

3 Simulation Studies

In this section, we use a simulation study to compare the proposed KDRE and KDRE1

with the traditional LSE for linear regression models with different types of error den-

sities. For the proposed estimate, we use the rule-of-thumb bandwidth h = 1.06n−1/5σ̂

for the kernel density estimate of f(ϵ), where σ̂ is the sample standard deviation of

the initial residual ϵ̃i = yi−xT
i β̃ and β̃ is the LSE. Better estimates might be obtained

if we use some more sophisticated bandwidth for kernel density estimate. See, for ex-

ample, Sheather and Jones (1991) and Raykar and Duraiswami (2006). In addition,
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we can also use cross validation method to selection the bandwidth, which focuses on

the performance of regression estimate directly instead of density estimate.

We generate independent and identically distributed data {(xi, yi), i = 1, . . . , n}
from the model

Y = 1 + 3X + ϵ ,

where X ∼ U(0, 1), the uniform distribution on [0, 1]. For the error density, we

consider the following six choices (all have standard deviation around 1):

Case 1: ϵ ∼ N(0, 1) , normal error.

Case 2: ϵ ∼ U(−2, 2) , the uniform distribution on [−2, 2], short-tail error.

Case 3: ϵ ∼ t3/
√
3, t-distribution with 3 degrees of freedom, heavy-tail error.

Case 4: ϵ ∼ 0.95N(0, 0.72) + 0.05N(0, 3.52), contaminated normal error. The 5%

data from N(0, 3.52) are most likely to be outliers.

Case 5: ϵ ∼ 0.5N(−1, 0.52) + 0.5N(1, 0.52), multi-modal error.

Case 6: ϵ ∼ 0.3N(−1.4, 1) + 0.7N(0.6, 0.42), skewed error.

Here, we also used the Case 6 to check how our method performed compared with

LSE when the error is not symmetric. We estimate the regression parameters using

KDRE, KDRE1, and the traditional LSE. Based on 1000 replicates, Tables 1–2 report

the mean squared errors (MSE) of the parameter estimates for intercept and slope,

respectively, for sample size n = 30, 100, 300, and 600. The rightmost two columns

contain the relative efficiency of KDRE and KDRE1 when compared to the LSE. For

example, RE(KDRE)=MSE(LSE)/MSE(KDRE). From the Case 2 to Case 6 in Tables

1–2, we can see that KDRE and KDRE1 are much more efficient than the LSE when

the error is not normal (for both symmetric and skewed error densities). Moreover,

the efficiency gain can be substantial even for a small sample size. In addition, when

the error is normal, KDRE is comparable to the LSE and works better than KDRE1

especially for small sample size. However, for Case 6–skewed error densities, KDRE1

works better than KDRE, although both of them have much better performance than

LSE. In addition, for large sample size, the performances of KDRE and KDRE1 are
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almost the same, even for intercept estimate, although KDRE has some theoretical

advantage over KDRE1. Note that KDRE1 is simpler without first estimating the

error data.

4 Summary

In this article, we proposed an adaptive linear regression estimate by maximizing

an estimated likelihood function, in which the error density is estimated by kernel

density estimate. The proposed estimate can adapt to unknown error density and

is asymptotically equivalent to the oracle MLE. Using the proposed EM algorithm,

the computation is quick and stable. Our extensive simulation studies show that the

proposed method outperforms the LSE in the presence of non-normal errors.

Although developed for linear regression models, the same idea can be easily ex-

tended to nonlinear regression cases. The asymptotic oracle property follows similarly.

In addition, our proposed EM algorithm can be also used to estimate the adaptive

nonparametric regression of Linton and Xiao (2007) and the semiparametric regres-

sion of Yuan and De Gooijer (2007). Future research directions include extensions

to other regression models such as varying coefficient partially linear models and

nonparametric additive models.

5 Appendix: Proofs

The following conditions are imposed to facilitate the proof.

C1. {ϵi} and {xi} are i.i.d. and mutually independent with E(ϵi) = 0,E(|ϵi|3) < ∞.

Additionally, the predictors xi have bounded support and .

C2. The density f(·) of ϵ is symmetric about 0 and has bounded continuous deriva-

tives up to order 4. Let ℓ(ϵ) = log f(ϵ). Assume E{ℓ′(ϵ)2+ |ℓ′′(ϵ)|+ |ℓ′′′(ϵ)|} < ∞.

C3. The kernel K(·) is symmetric, has bounded support, and are four times contin-

uously differentiable.

C4. As n → ∞, nh4 → ∞ and nh8 → 0.
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C5. For the initial estimate β̃ of β0, assume β̃ − β0 = Op(n
−1/2).

The condition C1 can guarantee that the least squares estimate is consistent and

has root n convergence rate. The condition C2 is used to guarantee the adaptiveness

of our proposed estimate. If limn→∞ n−1
∑n

i=1 xi = 0, then the symmetric condition

of f(ϵ) can be removed.

5.1 Proof of Theorem 2.1

We follow a similar strategy in Linton and Xiao (2007). Note that the maximizer β̂

in (2.3) is the solution of the score function

1

n

n∑
i=1

f̃ ′(yi − xT
i β)

f̃(yi − xT
i β)

xi, (5.1)

where f̃ ′(t) is the derivative of f̃(t) in (2.2). For technical reason, we will consider

another trimmed version of β̂ as the solution of

S̃(β) = 0, where S̃(β) =
1

n

n∑
i=1

f̃ ′(yi − xT
i β)

f̃(yi − xT
i β)

xiGb(f̃(ϵi)). (5.2)

Here

Gb(x) =


0, x < b;∫ x

b
gb(t)dt, b ≤ x ≤ 2b;

1, x > 2b.

where gb(t) is any density function with support on [b, 2b] such that Gb(t) is four times

continuously differentiable on [b, 2b]. In the following proof, we assume that b = hr,

where 0 < r < 1/2. In practice, when b is small, the difference between the original

estimate and the trimmed one is negligible.

By Taylor’s expansion, there exists β∗ such that ||β∗ − β0|| ≤ ||β̂ − β0|| and

S̃(β̂) = S̃(β0) +
∂S̃(β0)

∂β
(β̂ − β0) +

1

2
(β̂ − β0)

T ∂
2S̃(β∗)

∂β∂βT
(β̂ − β0).

The desired result then follows from Lemmas 5.2–5.4 below. �

10



Lemma 5.1. For f̃ in (2.2), we have the uniform consistency results

sup
t

|f̃(t)− f(t)| = Op

[
h2 +

{
log(n)

nh

}1/2
]
, (5.3)

sup
t

|f̃ ′(t)− f ′(t)| = Op

[
h2 +

{
log(n)

nh3

}1/2
]
. (5.4)

Proof. Denote by f (k) the kth derivative of f with the convention f (0) = f . Let

f̌ (k)(t) =
1

nhk+1

n∑
j=1

K(k)

(
t− ϵj
h

)
, k = 0, 1, 2, 3,

be the traditional kernel density derivative estimator of f (k)(·). By Silverman (1978),

sup
t

|f̌ (k)(t)− f (k)(t)| = Op

{
h2 +

{
log(n)

nh2k+1

}1/2
}
. (5.5)

Since xi has bounded support and β̃ − β0 = Op(n
−1/2), ϵ̃j − ϵj = xT

j (β0 − β̃) =

Op(n
−1/2), uniformly over j. By Taylor’s expansion, for some ϵ∗j between ϵj and ϵ̃j,

f̃(t)− f̌(t) =
1

nh2

∑
j

K ′
(
t− ϵj
h

)
(ϵj − ϵ̃j) +

1

2nh3

∑
j

K ′′
(
t− ϵj
h

)
(ϵj − ϵ̃j)

2

+
1

6nh4

∑
j

K ′′′
(
t− ϵ∗j
h

)
(ϵj − ϵ̃j)

3

=Op(1/
√
n) +Op(1/n)Op{1 +

√
log(n)/(nh5)}+Op(1/n

3/2)Op(1/h
4),

uniformly, entailing (5.3) via Condition C4 and (5.5). Similarly, (5.4) follows.

Lemma 5.2. Let V be defined as in (2.6). Then −∂S̃(β0)/∂β
p−→ V.

Proof. For notational convenience we write fi = f(ϵi), f
′
i = f ′(ϵi), f

′′
i = f ′′(ϵi), f̃i =

f̃(ϵi), f̃
′
i = f̃ ′(ϵi), f̃

′′
i = f̃ ′′(ϵi). Note that

∂S̃(β0)

∂β
= − 1

n

n∑
i=1

f̃ ′2
i

f̃ 2
i

Gb(f̃i)xix
T
i +

1

n

n∑
i=1

f̃ ′′
i

f̃i
Gb(f̃i)xix

T
i +

1

n

n∑
i=1

f̃ ′2
i

f̃i
gb(f̃i)xix

T
i

= A+B + C.
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It suffices to prove A
p−→ −V , B

p−→ 0, and C
p−→ 0.

First, we consider A. Let ∆i = f̃i− fi, ∆
′
i = f̃ ′

i − f ′
i , δn = h2+

√
log(n)/(nh), and

δ′n = h2+
√
log(n)/(nh3). By Lemma 5.1, maxi |∆i| = Op(δn) and maxi |∆′

i| = Op(δ
′
n).

By definition, supx Gb(x)/x
k ≤ 1/bk, k ≥ 0. So, by the boundedness of fi, f

′
i ,

f̃ ′2
i

f̃ 2
i

Gb(f̃i) =

{
f ′2
i

f2
i

+
∆′

i(f̃
′
i + f ′

i)

f̃2
i

+
∆if

′2
i (fi + f̃i)

f2
i f̃

2
i

}
Gb(f̃i)

=
f ′2
i

f2
i

Gb(f̃i) +
Op(δ

′
n)

b2
+

Op(δn)

b2
f ′2
i

f2
i

.

By Condition C2, f ′2
i /f

2
i is integrable, so we have

A = − 1

n

n∑
i=1

f ′2
i

f2
i

Gb(f̃i)xix
T
i +Op

(δ′n
b2

)
. (5.6)

By Condition C2 and the Dominated Convergence Theorem, as b → 0,

E

{
f ′2
i

f2
i

(1−Gb(fi))

}
≤ E

{
f ′2
i

f 2
i

I(f(ϵi) < 2b)

}
= o(1).

Note that max1≤i≤n |Gb(f̃i) − Gb(fi)| = op(1). Therefore, by decomposing Gb(f̃i) in

(5.6) into 1 + {Gb(fi)− 1}+ {Gb(f̃i)−Gb(fi)}, it is easily seen that A
p−→ −V .

Next, we consider B. There exists ξ between 0 and (f̃ − f)/f such that

f̃−1(ϵ) = f−1(ϵ)− (1 + ξ)−2f−2(ϵ)
{
f̃(ϵ)− f(ϵ)

}
. (5.7)

Using the latter identity, we have

B =
1

n

n∑
i=1

f ′′(ϵi)

f(ϵi)
Gb(f̃i)xix

T
i +

1

n

n∑
i=1

f̃ ′′(ϵi)− f ′′(ϵi)

f(ϵi)
Gb(f̃i)xix

T
i

− 1

n

n∑
i=1

{f̃(ϵi)− f(ϵi)}f̃ ′′(ϵi)

f(ϵi)2(1 + ξi)2
Gb(f̃i)xix

T
i

=B1 +B2 +B3. (5.8)
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Similar to the proof of A in (5.6), we can get B1 = op(1). Note that

B2 ≃
1

n2h4

n∑
i=1

1

f(ϵi)

n∑
j=1

K ′′′
(
ϵi − ϵj

h

)(
xT
j β̃ − xT

j β0

)
Gb(fi)xix

T
i .

Elementary calculations show that

E

{
K(k)

(
t− ϵ

h

)}
= hk+1

∫
K(z)f (k)(t+ zh)dz, k = 1, 2, 3.

Let

k1(ϵi, ϵj) =
1

h4

1

f(ϵi)
K ′′′

(
ϵi − ϵj

h

)
Gb(fi).

It can be easily shown that, for distinct i, j, k, l,

E {k1(ϵi, ϵj)} = O(b−1),E
{
k2
1(ϵi, ϵj)

}
= O(b−2h−7),E {k1(ϵi, ϵj)k1(ϵi, ϵl)} = O(b−2)

Thus, calculating the first two moments based on the result of U-statistics, we have

B2 = Op(1/
√
n)×Op(b

−1)×Op(1/
√
n2b2h7 + 1/

√
nb2) = op(1).

That B3 = op(1) follows from

max
1≤i≤n

∣∣∣∣∣{f̃(ϵi)− f(ϵi)}
f(ϵi)2(1 + ξi)2

Gb(f̃i)

∣∣∣∣∣ = Op

[
h2 +

{
1

nh
log(1/h)

}1/2
]
b−2 = op(1).

Finally, we consider C. Note that

C =
1

n

n∑
i=1

f ′(ϵi)
2

f(ϵi)
gb(f̃i)xix

T
i +

1

n

n∑
i=1

f̃ ′(ϵi)
2 − f ′(ϵi)

2

f(ϵi)
gb(f̃i)xix

T
i

− 1

n

n∑
i=1

f̃(ϵi)− f(ϵi)

f(ϵi)2(1 + ξi)2
gb(f̃i)xix

T
i

=C1 + C2 + C3.

Based on the uniform convergency results in Lemma 5.1 and gb(·) = O(b−1), we can

13



easily get C2 = op(1) and C3 = op(1). By the Dominated Convergence Theorem,

E

{
f ′(ϵi)

2

f(ϵi)
gb(fi)

}
≤ max

x
{gb(x)x}E

{
f ′(ϵi)

2

f2(ϵi)
I(b ≤ f(ϵi) ≤ 2b)

}
→ 0,

which, along with the argument in the proof of A in (5.6), gives C1 = op(1).

Lemma 5.3. Let V be defined as in (2.6). Then
√
nS̃(β0)

d−→ N(0, V ).

Proof. By (5.7),

√
nS̃(β0) =

1√
n

n∑
i=1

f ′(ϵi)

f(ϵi)
xiGb(f̃(ϵi)) +

1√
n

n∑
i=1

f̃ ′(ϵi)− f ′(ϵi)

f(ϵi)
xiGb(f̃(ϵi))

− 1√
n

n∑
i=1

f ′(ϵi)f̃
′(ϵi)

{
f̃(ϵ)− f(ϵ)

}
(1 + ξ)2f(ϵi)3

xiGb(f̃(ϵi))

=J1 + J2 + J3.

By the technique in Lemma 5.2 and Lemma S2 of Linton and Xiao (2007),

J1 =
1√
n

n∑
i=1

f ′(ϵi)

f(ϵi)
xi + op(1)

d−→ N(0, V ). (5.9)

It remains to prove J2
p−→ 0 and J3

p−→ 0. Decompose J2 as

J2 =
1√
n

n∑
i=1

f̃ ′(ϵi)− f̌ ′(ϵi)

f(ϵi)
xiGb(f̃(ϵi)) +

1√
n

n∑
i=1

f̌ ′(ϵi)− f ′(ϵi)

f(ϵi)
xiGb(f̃(ϵi))

= J21 + J22.

Note that

(J21)a ≃
1

n
√
nh3

n∑
i=1

n∑
j=1

1

f(ϵi)
K ′′
(
ϵi − ϵj

h

)
xT
j (β̃ − β0)XiaGb(f(ϵi))

=Op(1/
√
n)

1

n
√
nh3

n∑
i=1

n∑
j=1

1

f(ϵi)
K ′′
(
ϵi − ϵj

h

)
xT
j XiaGb(f(ϵi)).

Similar to the proof of B2 in (5.8), by calculating the first two moments of (J21)a

14



using the results of U-statistics, we have

E{(J21)a} = O(h2b−1) and var{(J21)a} = O(1/
√
nb4).

Therefore, (J21)a = op(1). Note that

J22 ≃
1√
n

n∑
i=1

f̌ ′(ϵi)− f ′(ϵi)

f(ϵi)
xiGb(f(ϵi))

=
1√
n

n∑
i=1

(nh2)−1
∑n

j=1

{
K ′ ( ϵi−ϵj

h

)
− EiK

′ ( ϵi−ϵj
h

)}
f(ϵi)

xiGb(f(ϵi))

+
1√
n

n∑
i=1

(nh2)−1
∑n

j=1 EiK
′ ( ϵi−ϵj

h

)
− f ′(ϵi)

f(ϵi)
xiGb(f(ϵi))

=J22A + J22B,

where Ei is the conditional expectation given ϵi. Similar to the proof of B2 in (5.8)

and the proof techniques in the Lemma S2 of Linton and Xiao (2007), we can prove

E(J22A) = 0 and var{J22A} = o(1).

Therefore J22A = op(1). Similarly, we can prove J22B = op(1) and J3 = op(1).

Lemma 5.4. ∂2S̃(β∗)/∂β∂βT = op(
√
n).

Proof. It follows from the same argument in Lemmas 5.2–5.3 and we omit the details.

5.2 Proof of Theorem 2.2

Let Z
(k+1)
i be a random variable such that

P
{
Z

(k+1)
i = Kh

(
yi − xT

i β
(k+1) − ϵ̃j

)
/Kh

(
yi − xT

i β
(k) − ϵ̃j

)}
= p

(k+1)
ij , j ̸= i.

15



By Jensen’s inequality, we have

Q(β(k+1))−Q(β(k)) =
n∑

i=1

log


∑

j ̸=i Kh

(
yi − xT

i β
(k+1) − ϵ̃j

)
∑

j ̸=i Kh

(
yi − xT

i β
(k) − ϵ̃j

)


=
n∑

i=1

log
∑
j ̸=i

p
(k+1)
ij

Kh

(
yi − xT

i β
(k+1) − ϵ̃j

)
Kh

(
yi − xT

i β
(k) − ϵ̃j

)


=
n∑

i=1

log E(Z
(k+1)
i ) ≥

n∑
i=1

E
{
log(Z

(k+1)
i )

}
.

By the M-step of Algorithm 2.1, the desired result follows from

n∑
i=1

E
{
log(Z

(k+1)
i )

}
=

n∑
i=1

∑
j ̸=i

p
(k+1)
ij log

Kh

(
yi − xT

i β
(k+1) − ϵ̃j

)
Kh

(
yi − xT

i β
(k) − ϵ̃j

)
 ≥ 0.

Sketch of the proof of asymptotic distribution of β̄0: Let x = (1,x∗T )T .

Note that

β̄0 = ȳ − x̄∗T β̄1 = β0 + x̄∗Tβ1 + ϵ̄− x̄∗T β̄1

= β0 + x̄∗T (β1 − β̄1) + ϵ̄

Therefore,
√
n(β̄0 − β0) = x̄∗T

√
n(β1 − β̄1) +

√
nϵ̄

In addition, we know

√
n(β1 − β̄1) = − 1√

n

n∑
i=1

f ′(ϵi)

f(ϵi)
(V21 + V22x

∗
i ) + op(1).
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Therefore,

√
n(β̄0 − β0) =

1√
n

n∑
i=1

{
ϵi −

f ′(ϵi)

f(ϵi)
(x̄∗TV21 + x̄∗TV22x

∗
i )

}
d−→ N(0, σ2),

where

σ2 = var

[
ϵi −

f ′(ϵi)

f(ϵi)

{
E(x∗)TV21 + E(x∗)TV22x

∗
i

}]
.
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Table 1: Simulation Results for the Intercept Estimates.

Mean(MSE)
Error Distribution n

LSE KDRE KDRE1
RE(KDRE) RE(KDRE1)

30 0.146 0.156 0.175 0.939 0.834

N(0, 1) 100 0.041 0.043 0.047 0.940 0.859

(Standard normal) 300 0.014 0.015 0.016 0.960 0.893

600 0.007 0.007 0.007 1.010 0.997

30 0.183 0.144 0.154 1.266 1.190

U(−2, 2) 100 0.060 0.033 0.036 1.807 1.689

(Short-tail distribution) 300 0.017 0.008 0.009 2.180 1.901

600 0.008 0.004 0.005 2.130 1.890

30 0.159 0.104 0.109 1.529 1.465

t3/
√
3 100 0.036 0.026 0.026 1.390 1.394

(Heavy-tail distribution) 300 0.112 0.009 0.009 1.315 1.329

600 0.007 0.005 0.005 1.540 1.592

30 0.150 0.102 0.106 1.470 1.417

0.95N(0, 0.72) + 0.05N(0, 3.52) 100 0.040 0.028 0.028 1.411 1.411

(Contaminated normal) 300 0.015 0.009 0.009 1.564 1.597

600 0.008 0.005 0.005 1.513 1.438

30 0.180 0.122 0.111 1.477 1.598

0.5N(−1, 0.52) + 0.5N(1, 0.52) 100 0.051 0.027 0.027 1.864 1.889

(Multi-modal distribution) 300 0.019 0.009 0.010 2.077 2.010

600 0.009 0.005 0.005 1.918 1.825

30 0.182 0.115 0.088 1.593 2.083

0.3N(−1.4, 1) + 0.7N(0.6, 0.42) 100 0.053 0.028 0.022 2.005 2.412

(Skewed distribution) 300 0.016 0.008 0.007 2.102 2.363

600 0.009 0.005 0.004 1.907 2.270
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Table 2: Simulation Results for the Slope Estimates.

Mean(MSE)
Error Distribution n

LSE KDRE KDRE1
RE(KDRE) RE(KDRE1)

30 0.418 0.456 0.543 0.918 0.771

N(0, 1) 100 0.119 0.128 0.144 0.933 0.826

(Standard normal) 300 0.046 0.049 0.053 0.951 0.878

600 0.020 0.020 0.020 1.020 0.999

30 0.520 0.414 0.413 1.259 1.259

U(−2, 2) 100 0.169 0.088 0.081 2.001 2.093

(Short-tail distribution) 300 0.048 0.018 0.018 2.634 2.673

600 0.026 0.009 0.009 3.010 3.070

30 0.526 0.242 0.267 2.174 1.970

t3/
√
3 100 0.114 0.065 0.067 1.744 1.691

(Heavy-tail distribution) 300 0.038 0.024 0.025 1.571 1.539

600 0.018 0.009 0.009 2.020 2.024

30 0.468 0.252 0.278 1.854 1.683

0.95N(0, 0.72) + 0.05N(0, 3.52) 100 0.123 0.068 0.071 1.815 1.739

(Contaminated normal) 300 0.043 0.020 0.021 2.118 2.097

600 0.023 0.012 0.013 1.904 1.812

30 0.519 0.319 0.256 1.629 1.985

0.5N(−1, 0.52) + 0.5N(1, 0.52) 100 0.144 0.055 0.050 2.630 2.863

(Multi-modal distribution) 300 0.058 0.019 0.018 3.058 3.157

600 0.023 0.007 0.007 3.358 3.358

30 0.546 0.239 0.173 2.283 3.148

0.3N(−1.4, 1) + 0.7N(0.6, 0.42) 100 0.157 0.042 0.036 3.702 4.396

(Skewed distribution) 300 0.046 0.012 0.011 4.007 4.153

600 0.027 0.006 0.006 4.401 4.594
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