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Abstract. In this paper, we make two contributions to the field of level set based image segmentation. Firstly, we
propose shape dissimilarity measures on the space of level set functions which are analytically invariant under the
action of certain transformation groups. The invariance is obtained by an intrinsic registration of the evolving level
set function. In contrast to existing approaches to invariance in the level set framework, this closed-form solution
removes the need to iteratively optimize explicit pose parameters. The resulting shape gradient is more accurate in
that it takes into account the effect of boundary variation on the object’s pose.

Secondly, based on these invariant shape dissimilarity measures, we propose a statistical shape prior which allows
to accurately encode multiple fairly distinct training shapes. This prior constitutes an extension of kernel density
estimators to the level set domain. In contrast to the commonly employed Gaussian distribution, such nonparametric
density estimators are suited to model aribtrary distributions.

We demonstrate the advantages of this multi-modal shape prior applied to the segmentation and tracking of a
partially occluded walking person in a video sequence, and on the segmentation of the left ventricle in cardiac
ultrasound images. We give quantitative results on segmentation accuracy and on the dependency of segmentation
results on the number of training shapes.

Keywords: image segmentation, shape priors, level set methods, Bayesian inference, alignment, kernel density
estimation

1. Introduction context of image segmentation. In this work, we fo-
cus on prior knowledge about the shape of objects of

When interpreting a visual scene, it can be advanta- interest.

geous to exploit high-level knowledge about expected

objects in order to disambiguate the low-level intensity 1.1.  Explicit versus Implicit Shape Representations

or color information of a given image. Much research

effort has been devoted to integrating prior knowledge There exist various definitions of the term shape in the

into machine-vision algorithms, in particular in the literature. Kendall (1977) for example defines shape
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as all the geometrical information that remains when
location, scale and rotational effects are filtered out
from a collection of point coordinates. For recognition
purposes there is no default invariance group. While
invariance to affine transformations may be useful for
recognizing 3D objects in 2D views, invariance to rota-
tion may be undesirable in other applications: Certain
pairs of letters such as “p” and “d” are identical up to
rotation, yet they should not be identified by a char-
acter recognition system. In this work, we therefore
denote as shape the closed contours defined implic-
itly as the zero level set of some embedding function
¢ : R? — R. Moreover, we will introduce shape dis-
similarity measures for implicit contours which are by
construction invariant under the action of certain trans-
formation groups.

Most research on statistical shape modeling has been
devoted to explicit contour representations. We refer to
the book by Dryden and Mardia (1998) for an overview.
The concept of considering shapes as points on an in-
finite dimensional manifold, representing shape defor-
mations as the action of Lie groups on this manifold and
computing statistics on the space of diffeomorphisms
was pioneered by Grenander (1976) and Grenander
et al. (1991). Some more recent advances were done
by Trouvé (1998) and Younes (1998) and by Klassen
et al. (2004). Applications of explicit statistical shape
models in image segmentation were among others pro-
posed in Grenander et al. (1991), Cootes et al. (1995),
Cremers et al. (2002), Mio et al. (2004), Cremers et al.
(2003).

A mathematical representation of shape which is in-
dependent of parameterization was pioneered in the
analysis of random shapes by Fréchet (1961) and in
the school of mathematical morphology founded by
Matheron (1975). Osher and Sethian introduced the
level set method (Osher and Sethian, 1988; Osher and
Fedkiw, 2002; Osher and Paragios, 2003) as a means
of propagating contours (independent of parameteriza-
tion) by evolving associated embedding functions via
partial differential equations. For a precursor contain-
ing some of these ideas we refer to the work of Dervieux
and Thomasset (1979).

While we do not claim that implicit boundary repre-
sentations are superior to explicit ones, we want to clar-
ify why we believe the statistical modeling of implicitly
represented shapes to be worth investigating. Explicit
parameterizations allow for compact representations of
shapes in terms of a few landmarks or control points.
They allow to easily define correspondence of parts and

the notion of contour shrinking and stretching (cf. Basri
et al. (1988) and Gdalyahu and Weinshall (1999)). Yet,
factoring out the reparameterization group and identi-
fying an initial point correspondence (when matching
shapes) are numerically involved processes (Klassen
etal., 2004), especially when generalizing to higher di-
mensions (surface matching). Moreover, extensions of
explicit representations to model multiply-connected
objects are not straightforward. Finally, the notion of
point-wise correspondence can be introduced into im-
plicit boundary representations as well (Pons et al.,
2003). In this work, we therefore adopt the implicit
shape representation given by the level set framework.

1.2. Prior Shape Knowledge in Level Set
Segmentation

Among variational approaches, the level set method
(Osher and Sethian, 1988) has become a popular frame-
work for image segmentation. It has been adapted to
segment images based on numerous low-level criteria
such as edge consistency (Malladi et al., 1995; Caselles
et al., 1995; Kichenassamy et al., 1995), intensity ho-
mogeneity (Chan and Vese, 2001; Tsai etal.,2001), tex-
ture information (Paragios and Deriche, 2002; Rousson
etal.,2003; Heiler and Schnorr, 2003; Brox and Weick-
ert,2004) and motion information (Cremers and Soatto,
2005).

More recently, it was proposed to integrate prior
knowledge about the shape of expected objects into the
level set framework. Leventon et al. (2000) suggested
to represent a set of training shapes by their signed
distance function sampled on a regular grid (of fixed
dimension) and to apply principal component analy-
sis (PCA) to this set of training vectors. Subsequently
they enhanced a geodesic active contours segmenta-
tion process (Caselles et al., 1995; Kichenassamy et al.,
1995) by adding a term to the evolution equation which
draws the level set function toward the function which
is most probable according to the learnt distribution.
Tsai et al. (2001) also performed PCA to obtain a set
of eigenmodes and subsequently reformulated the seg-
mentation process to directly optimize the parameters
associated with the first few deformation modes. Chen
et al. (2002) proposed to impose prior knowledge onto
the segmenting contour extracted after each iteration
of the level set function. While this approach allows
to introduce shape information into the segmentation
process, it is not entirely in the spirit of the level set
scheme since the shape prior acts on the contour and is



therefore not capable of modeling topological changes.
Rousson and Paragios (2002) and Rousson et al. (2004)
impose shape information into the the variational for-
mulation of the level set scheme, either by a model
of local (spatially independent) Gaussian fluctuations
around a mean level set function or by global defor-
mation modes along the lines of Tsai et al. (2001). An
excellent study regarding the equivalence of the topolo-
gies induced by three different shape metrics and mean-
ingful extensions of the concepts of sample mean and
covariance can be found in the work of Charpiat et al.
(2005). More recently, level set formulations were pro-
posed which allow to impose dynamical shape priors
(Cremers, 2006) and concepts of tracking (Rathi et al.,
2005), to apply shape knowledge selectively in certain
image regions (Cremers, Sochen and Schnorr, 2003;
Chan and Zhu, 2003), or to impose multiple compet-
ing shape priors so as to simultaneously reconstruct
several independent objects in a given image sequence
(Cremers et al., 2006).

The above approaches allow to improve the level set
based segmentation of corrupted images of familiar ob-
jects. Yet, existing methods to impose statistical shape
information on the evolving embedding function suffer
from three limitations:

— The existing statistical models are based on the as-
sumption that the training shapes are distributed ac-
cording to a Gaussian distribution. As shown in Cre-
mers et al. (2003), this assumption is rather limiting
when it comes to modeling more complex shape dis-
tributions such as the various silhouettes of a 3D
object. Figure 4 shows a set of sample shapes and
Figure 5 the density estimated for a 3D projection of
the corresponding embedding functions: clearly the
projected data do not form a Gaussian distribution.
Moreover, as shown in Charpiat et al. (2005), notions
such as the empirical mean shape of a set of shapes
are not always uniquely defined.

— They commonly work under the assumption that
shapes are represented by signed distance functions
(cf. Leventon et al. (2000) and Rousson et al. (2004)).
Yet, for a set of training shapes encoded by their
signed distance function, neither the mean level set
function nor the linear combination of eigenmodes
will in general correspond to a signed distance func-
tion, since the space of signed distance functions is
not a linear space.'

— Invariance of the shape prior with respect to cer-
tain transformations is introduced by adding a set of
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explicit parameters and numerically optimizing the
segmentation functional by gradient descent (Chen
et al., 2002; Rousson and Paragios, 2002; Yezzi and
Soatto, 2003). This iterative optimization not only
requires a delicate tuning of associated gradient de-
scent time step sizes (in order to guarantee a stable
evolution). It is also not clear in what order and how
frequently one is to alternate between the various
gradient descent evolutions. In particular, we found
in experiments that the order of updating the differ-
ent pose parameters and the level set function affects
the resulting segmentation process.

1.3.  Contributions

In this paper, we are building up on the above develop-
ments and propose two contributions in order to over-
come the discussed limitations:

— We introduce invariance of the shape prior to cer-
tain transformations by an intrinsic registration of the
evolving level set function. By evaluating the evolv-
ing level set function not in global coordinates, but in
coordinates of an intrinsic reference frame attached
to the evolving surface, we obtain shape distances
which are by construction invariant. Such a closed-
form solution removes the need to iteratively update
local estimates of explicit pose parameters. More-
over, we will argue that this approach is more ac-
curate because the resulting shape gradient contains
an additional term which accounts for the effect of
boundary variation on the pose of the evolving shape.

— We propose a statistical shape prior by introduc-
ing the concept of kernel density estimation (Rosen-
blatt, 1956; Parzen, 1962) to the domain of level set
based shape representations. In contrast to existing
approaches of shape priors in level set segmentation
(which are based on the assumption of a Gaussian
distribution), this prior allows to well approximate
arbitrary distributions of shapes. Moreover, our for-
mulation does not require the embedding function
to be a signed distance function. Numerical results
demonstrate our method applied to the segmentation
of a partially occluded walking person.

While numerical results are only computed in two di-
mensions, the methods developed in this paper can be
applied in higher dimensions as well.

The organization of the paper is as follows: In
Section 2, we briefly review the level set scheme for the
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two-phase Mumford-Shah functional (Chan and Vese,
2001; Tsai et al.,2001). In Section 3, we review and dis-
cuss dissimilarity measures for two shapes represented
by level set functions. In Section 4, we review exist-
ing approaches to model pose invariance and introduce
a solution to induce invariance by intrinsic alignment.
In Section 5, we detail the computation of the Euler-
Lagrange equations associated with the proposed in-
variant shape dissimilarity measures. We demonstrate
the invariance properties and the effect of the addi-
tionally emerging terms in the shape gradient on the
segmentation of a human silhouette. In Section 6, we
introduce a novel (multi-modal) statistical shape prior
by extending the concept of non-parametric kernel den-
sity estimation to the domain of level set based shape
representations. In Section 7, we formulate level set
segmentation as a problem of Bayesian inference in
order to integrate the proposed shape distribution as a
prior on the level set function. In Section 8, we pro-
vide qualitative and quantitative results of applying the
nonparametric shape prior to the segmentation of a par-
tially occluded walking person in a video sequence and
to the segmentation of the left ventricle in cardiac ul-
trasound images. Preliminary results of this work were
presented at a conference (Cremers et al., 2004).

2. Level Set Segmentation

Originally introduced in the community of computa-
tional physics as a means of propagating interfaces
(Osher and Sethian, 1988), the level set method has
become a popular framework for image segmentation
(Malladi et al., 1995; Caselles et al., 1995; Kichenas-
samy et al., 1995). The central idea is to implicitly
represent a contour C in the image plane @ C R? as
the zero-level of an embedding function ¢ : 2 — R:

C={xeQ|okx)=0} ey

Rather than directly evolving the contour C, one
evolves the level set function ¢. The two main ad-
vantages are that firstly one does not need to deal
with control or marker points (and respective regrid-
ding schemes to prevent overlapping). And secondly,
the embedded contour is free to undergo topological
changes such as splitting and merging which makes
it well-suited for the segmentation of multiple or
multiply-connected objects.

In the present paper, we use a level set formulation
of the piecewise constant Mumford-Shah functional

(Mumford and Shah, 1989; Tsai et al., 2001; Chan and
Vese, 2001). In particular, a two-phase segmentation of
an image / : 2 — R can be generated by minimizing
the functional (Chan and Vese, 2001):

E.(¢) = /Q (I —uy)Hp(x)dx
- /(1 —u_)*(1— Ho(x))dx
Q

+v| IVH@ldx, (@)
Q

with respect to the embedding function ¢. Here H¢p =
H(¢) denotes the Heaviside step function and u and
u_ represent the mean intensity in the two regions
where ¢ is positive or negative, respectively. For re-
lated computations based on the use of the Heaviside
function, we refer to Zhao et al. (1996). While the first
two terms in (2) aim at minimizing the gray value vari-
ance in the separated phases, the last term enforces
a minimal length of the separating boundary. Gradi-
ent descent with respect to ¢ amounts to the evolution
equation:

¢ 0E. (YO
5— ¢ —3e(¢)|:leV(|v¢|> I —uy)

+(I — u)2:|. (3)

Chan and Vese (2001) propose a smooth approximation
8¢ of the delta function which allows the detection of
interior boundaries.

In the corresponding Bayesian interpretation, the
length constraint given by the last term in (2) corre-
sponds to a prior probability which induces the seg-
mentation scheme to favor contours of minimal length.
But what if we have more informative prior knowl-
edge about the shape of expected objects? Building
up on recent advances (Leventon et al., 2000; Tsai
et al., 2001; Chen et al., 2002; Rousson and Paragios,
2002; Cremers, Sochen and Schnorr, 2003; Cremers
and Soatto, 2003; Charpiat et al., 2005; Cremers et al.,
2006; Chan and Zhu, 2003) and on classical methods of
non-parametric density estimation (Rosenblatt, 1956;
Parzen, 1962), we will in the following construct a
shape prior which statistically approximates an arbi-
trary distribution of training shapes (without making
the restrictive assumption of a Gaussian distribution).



3. Shape Distances for Level Sets

The first step in deriving a shape prior is to define a dis-
tance or dissimilarity measure for two shapes encoded
by the level set functions ¢; and ¢,. We shall briefly
discuss three solutions to this problem. In order to guar-
antee a unique correspondence between a given shape
and its embedding function ¢, we will in the following
assume that ¢ is a signed distance function, i.e. ¢ > 0
inside the shape, ¢ < 0 outside and |V¢| = 1 almost
everywhere. A method to project a given embedding
function onto the space of signed distance functions
was introduced in Sussman et al. (1994).

Given two shapes encoded by their signed distance
functions ¢, and ¢, a simple measure of their dissim-
ilarity is given by their L,-distance in :

/ (1 — ¢o)? dx. @)
Q

This measure has the drawback that it depends on the
domain of integration 2. The shape dissimilarity will
generally grow if the image domain is increased — even
if the relative position of the two shapes remains the
same. Various remedies to this problem have been pro-
posed.

In Rousson and Paragios (2002), it was proposed to
constrain the integral to the domain where ¢, is posi-
tive:

di (1, ¢2) = /Q (1 — ¢)* Hpi(x)dx,  (5)

where H ¢ again denotes the Heaviside step function.
As shown in Cremers and Soatto (2003), this measure
can be further improved by normalizing with respect
to the area where ¢, is positive and by symmetrizing
with respect to the exchange of ¢; and ¢,. The resulting
dissimilarity measure,

h h
di (1. 92) = /Q (¢1 =)’ w dx,
with h¢= 19 ©
- [Hedx

constitutes a pseudo-distance on the space of signed
distance functions (Cremers and Soatto, 2003).
Although the requirement of symmetry may appear
to be a theoretical formality, such symmetry consider-
ations can have very relevant practical implications. In
particular, asymmetric measures of the form 5 do not
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Shape 1 Shape 2

Figure 1. A shape comparison for which the asymmetric shape
dissimilarity measures (5) and (7) fail (see text).

allow to impose prior shape information outside the
evolving shape (i.e. in areas where ¢; < 0). Figure 1
shows an example of two circles which only differ by
the fact that the second shape has a spike. The measure
(5) gives the same distance between the two shapes,
no matter how long the spike is, because it only takes
into account shape discrepancy inside the first shape.
In contrast, the symmetric variant (6) also takes into ac-
count shape discrepancies within the second shape. It
gives a more informative measure of the shape dissim-
ilarity and therefore allows for more powerful shape
priors.

Alternatively (Bresson et al., 2003) one can constrain
the integration in (4) to the contour C| represented by
¢1 (i.e. to the area where ¢ = 0):

dy (@1, o) = fé $5dCy = /Q $5(x) 8(¢1)| Vi | dx.
' )

Due to the definition of the signed distance function,
this measure corresponds to the distance of the closest
point on the contour C; (given by |¢,|) integrated over
the entire contour Cy. As with Eq. (5), this measure suf-
fers from not being symmetric. The measure in (7) for
example will only take into account points of contour
C, which are sufficiently close to contour Cy, distant
(and possibly disconnected) components of C, will be
ignored. A symmetric variant of (7) is given by:

p2dC, + P ¢?dC,

Cy C;

= fg ¢3(x) IVH¢1| + ¢p7(x) |V Hep| dx.

i ($1, $2) =

Further normalization with respect to the contour
length is conceivable.

A third variant to compute the dissimilarity of two
shapes represented by their embedding functions ¢,
and ¢, is to compute the area of the set symmetric
difference, as was proposed in Chan and Zhu (2003),
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Riklin-Raviv et al. (2004), Charpiat et al. (2005):

d*(¢1, ¢2) = /Q (Hpi(x) — Hpo(x))*dx.  (8)

In the present work, we will define the distance between
two shapes based on this measure, because it has several
favorable properties. Beyond being independent of the
image size 2, measure (8) defines a distance: it is non-
negative, symmetric and fulfills the triangle inequality.
Moreover, it is more consistent with the philosophy
of the level set method in that it only depends on the
sign of the embedding function. In practice, this means
that one does not need to constrain the two level set
functions to the space of signed distance functions. It
can be shown (Charpiat et al., 2005) that L> and W'+
norms on the signed distance functions induce equiva-
lent topologies as the metric (8). Since the distance (8)
is not differentiable, we will in practice consider an ap-
proximation of the Heaviside function H by a smooth
(differentiable) version H.,.

4. Invariance by Intrinsic Alignment

One can make use of the shape distance (8) in a
segmentation process by adding it as a shape prior
Espape(9) = d*(¢, ¢o) in a weighted sum to the data
term, which is in our case the Chan-Vese functional (2).
Minimizing the total energy

Eiorai(@) = Ecy(¢) + « Eshape((ﬁ)
= Ec(9) + ad*(9, ¢o) ©

with a weight « > 0, induces an additional driving
term which aims at maximizing the similarity of the
evolving shape with a given template shape encoded
by the function ¢yg.

By construction this shape prior is not invariant with
respect to certain transformations such as translation,
rotation and scaling of the shape represented by ¢.

4.1. Iterative Optimization of Explicit Parameters

A common approach to introduce invariance (c.f. Chen
et al. (2002), Rousson and Paragios (2002), Cremers
et al. (2006)) is to enhance the prior by a set of explicit
parameters to account for translation by u, rotation by
an angle 6 and scaling by o of the shape:

d* (@, ¢o, 1, 0,0)

= /Q (H(¢(0 Rg(x — w))) — Heo(x))* dx.
(10)

This approach to estimate the appropriate transforma-
tion parameters has several drawbacks:

— Optimization of the shape energy (10) is done by lo-
cal gradient descent. In particular, this implies that
one needs to determine an appropriate time step for
each parameter, chosen so as to guarantee stabil-
ity of resulting evolution. In numerical experiments,
we found that balancing these parameters requires a
careful tuning process.

— The optimization of u, 6, o and ¢ is done simul-
taneously. In practice, however, it is unclear how to
alternate between the updates of the respective pa-
rameters. How often should one iterate one or the
other gradient descent equation? In experiments, we
found that the final solution depends on the selected
scheme of optimization.

— The optimal values for the transformation parameters
will depend on the embedding function ¢. An accu-
rate shape gradient should therefore take into account
this dependency. In other words, the gradient of (10)
with respect to ¢ should take into account how the
optimal transformation parameters w(¢), o(¢) and
0(¢) vary with ¢.

In order to eliminate these difficulties associated
with the local optimization of explicit transformation
parameters, we will in the following present an alterna-
tive approach to obtain invariance. We will show that
invariance can be achieved analytically by an intrinsic
registration process. We will detail this for the cases
of translation and scaling. Extensions to rotation and
other transformations are conceivable but will not be
pursued here.

4.2.  Translation Invariance by Intrinsic Alignment

Assume that the template shape represented by ¢y is
aligned with respect to its center of gravity. Then we
define a shape energy by:

Esnape(9) = d*(9, o)
_ /Q (Ho(x + pg) — Hopo(x) dx, (1)



where the function ¢ is evaluated in coordinates relative
to its center of gravity g4 given by:

H¢
JoHpdx
This intrinsic alignment guarantees that the distance
(11) is invariant to the location of the shape ¢. In con-
trast to the shape energy (10), we no longer need to

iteratively update an estimate of the location of the ob-
ject of interest.

He = thq&dx, with h¢ = (12)

4.3.  Translation and Scale Invariance via Alignment

Given a template shape (represented by ¢g) which is
normalized with respect to translation and scaling, one
can extend the above approach to a shape energy which
is invariant to translation and scaling:

Esnape(9) = d*(9, o)
= /Q (Hp(opx + 1g) — Hpo(x))* dx,
(13)

where the level set function ¢ is evaluated in coordi-
nates relative to its center of gravity u, and in units
given by its intrinsic scale o, defined as:

1

oy = (/(x—m%dx)z,

H¢

where hp = ———.
¢ Jo Hopdx

(14)

In the following, we will show that functional (13) is
invariant with respect to translation and scaling of the
shape represented by ¢. Let ¢ be a level set function
representing a shape which is centered and normalized
such that uy = 0 and o4 = 1. Let ¢ be an (arbitrary)
level set function encoding the same shape after scaling
by o € R and shifting by 1 € R?:

Hp(x) = Ho (%) .

Indeed, center and intrinsic scale of the transformed
shape are given by:

o [ xHédx _ [xH¢ (%)dx
M= THEdx ~ [He (L) dx
[lox"+ WHpx)odx'

= T T Hpthede oMo tH= M
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o [(x — uyp)*Hedx :
¢ [ Hedx

_(Je—wPHS () dx |’
S\ JH¢(SE)dx

([ [exPHENdx\
_< [ Hp(x)dx' ) N

The shape energy (13) evaluated for ¢ is given by:

Eunape (@) = /Q (HP(oz x + 1g) — Heox))dx
= /Q (Hp(o x + ) — Heo(x))*dx
= fQ (Hp(x) — Hpo(x))’dx = Espape(d)

Therefore, the proposed shape dissimilarity measure is
invariant with respect to translation and scaling.

Note, however, that while this analytical solution
guarantees an invariant shape distance, the transforma-
tion parameters (4 and oy are not necessarily the ones
which minimize the shape distance (10). Extensions of
this approach to a larger class of invariance are conceiv-
able. For example, one could generate invariance with
respect to rotation by rotational alignment with respect
to the (oriented) principal axis of the shape encoded
by ¢. We will not pursue this in the present work. For
explicit contour representations, an analogous intrin-
sic alignment with respect to similarity transformation
was proposed in Cremers et al. (2002).

5. Euler-Lagrange Equations for Nested
Functions

The two energies (11) and (13) derive their invariance
from the fact that ¢ is evaluated in coordinates relative
to its own location and scale. In a knowledge-driven
segmentation process, one can maximize the similarity
of the evolving shape encoded by ¢ and the template
shape ¢y by locally minimizing one of the two shape
energies. For the sake of differentiability, we will ap-
proximate the Heaviside functions H by smoothed ap-
proximations Hj as was done in the work of Chan and
Vese (2001)—see Eq. (3).

The associated shape gradient is particularly inter-
esting since the energies (11) and (13) exhibit a nested
dependence on ¢ via the moments 14 and oy. In the
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following, we will detail the computation of the cor-
responding Gateaux derivatives for the two invariant
energies introduced above.

5.1.  Shape Derivative of the Translation Invariant
Distance

The gradient of energy (11) with respect to ¢ in direc-
tion of an arbitrary deviation ¢ is given by the Gateaux
derivative:

OE .1 ~
= 3133) g(E(¢> +ep) — E(9)),

d¢p

5
1 -
= lin(l) g / (H(p +€p)(x + iyied) — Ho(x))*
€—> Q

—(H(@)(x+1g) — Hpo(x))dx. 5)

With the short-hand notation §¢p = §(¢), the effect of
the shape variation on the center of gravity is given
by:

o - [x(H$ +€ddp)dx
Hoves _/ Yh(@ +ep)dx = T(Hp + cd 8¢)dx
_ € TRy 2
=ttt / (x— 1P 8 dx + O(E?),
(16)

Inserting (16) into (15) and further linearization in €
leads to a directional shape derivative of the form:

oE

¢

= 2 [(Hp0)~ Hou)00)
@

- 1
X X)—— 17
[¢<x>+V¢<x) THedr (17)

x [ = upde o) dx’]dx,

where ¥ = x+ 4 denotes the coordinates upon cen-
tering. We therefore deduce that the shape gradient for
the translation-invariant energy (11) is given by:

0E B B (x—pg)"
% —2a¢><x><(H¢<x> Hoo(x—pg) )+ 2y
x /(Hqs(x/)—H¢>o<x/—u¢))8¢<x’)w<x/>dx).

(18)

Let us make several remarks in order to illuminate
this result:

— As for the image-driven flow in (3), the entire ex-
pression in (18) is weighted by the §-function which
stems from the fact that the function E in (11) only
depends on H¢.

— In a gradient descent evolution, the first of the two
terms in (18) will draw H¢ to the template H ¢,
transported to the local coordinate frame associated
with ¢.

— The second term in (18) results from the ¢-
dependency of 14 in (11). It compensates for shape
deformations which merely lead to a translation of
the center of gravity 4. Not surprisingly, this sec-
ond term contains an integral over the entire domain
because the center of gravity is an integral quan-
tity. Figure 2 demonstrates that when applied as a
shape prior in a segmentation process, this additional
term tends to facilitate the translation of the evolving
shape. While the boundary evolution represented in
the top row was obtained using the first term of gra-
dient (18) only, the contour flow shown in the bottom
row exploits the full shape gradient. The additional
term speeds up the convergence (cf. the segmenta-
tions obtained after 140 iterations) and generates a
more accurate segmentation.

5.2.  Shape derivative of the Translation and Scale
Invariant Distance

The above computation of a translation invariant shape
gradient can be extended to the functional (13). An
infinitesimal variation of the level set function ¢ in di-
rection ¢ affects the scale o4 defined in (14) as follows:

1

Optep = (/(x - M¢+e$)2h(¢ + éé)dx> 2

€
204 [Hpdx

X /((x—u¢)2 —0,) 8¢ dx + O(€).

This expression is inserted into the definition (15) of
the shape gradient for the shape energy (13). Further
linearization in € gives a directional shape derivative
of the form:

0E
IEl _, / (Hp(E) — Hepo(x))5(X)
dp !
. _ 1
x (¢><x> + Wx)[—f Hodv (19
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Iter. 0 Tter. 40

Iter. 110

Tter. 140 Iter. 900

Segmentation using only the first term of gradient (18).

Iter. O

Iter. 40
Segmentation using the full shape gradient (18).

Iter. 110

Tter. 140 Iter. 270

Figure 2. Effect of the additional term in the shape gradient. Segmentation of a human silhouette obtained by minimizing (9), a weighted sum
of the data term (2) and a translation-invariant shape prior of the form (11) encoding the given silhouette. The top row is obtained by merely
using the first term of the shape gradient in (18): The contour does not converge to the desired solution. In contrast, the bottom row is obtained
by using the full shape gradient, including the second term which is due to the ¢-dependence of the descriptor 114 in (11). For the specific choice
of parameters (kept constant for the two experiments), including the additional term both speeds up the convergence (cf. the results after 140

iterations) and improves the segmentation.

x
204 [Hpdx'

X / (" = pg)* — aqf) 8¢ dx’])dx

xf(x/—u¢)<7>5¢dx/+

where ¥ = oyx + pg. Since this directional shape
gradient corresponds to a projection of the full shape
gradient onto the respective direction ¢, i.e.

/¢( )—(X)dx

we need to rearrange the integrals in order to read off
the shape gradient:

oF —3¢(x>(—<H¢<x> Hoo(Tx) + L9
0 oy ’ [H¢ dx

X /(H¢(X’)—H¢0(TX’))5¢(X/)V¢>(X’) dx’

(Tx)* —
——— |(H Hopo(T 20
+2fH¢>d /( ()= Hepo(Tx')) (20)

x 8¢p(xX'WTx") V(x') dx/>,

where Tx = x;ﬂ denotes the transformation into the
local coordinate frame associated with ¢. The three
terms in the shape gradient (20) can be interpreted as
follows:

— The first term draws the contour toward the boundary
of the familiar shape represented by ¢, transported
to the intrinsic coordinate frame of the evolving
function ¢.

— The second term results from the ¢-dependency of
ie. It compensates for deformations which merely
result in a shift of the center of gravity.

— The third term stems from the ¢-dependency of o.
Analogous to the second term, it compensates for
variations of ¢ which merely lead to changes in the
scale 0.

To demonstrate the scale-invariant property of the
shape energy (13), we applied the segmentation scheme
to an image of a partially occluded human silhouette,
observed at three different scales. Figure 3 shows the
contour evolutions generated by minimizing the total
energy (9) with the translation and scale invariant shape
energy (13), where ¢y is the level set function associ-
ated with a normalized (centered and rescaled) version
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Segmentation of the same figure at a large scale.

Figure 3. Invariance with respect to scaling and translation. Segmentation of a partially occluded human silhouette obtained by minimizing
(9), a weighted sum of the data term (2) and the invariant shape energy (13) encoding the given silhouette. For the three experiments, we kept
all involved parameters constant. Due to the analytic invariance of the shape energy to translation and scaling, there is no need to numerically
optimize explicit pose parameters in order to reconstruct the object of interest at arbitrary scale and location.

Pt

Figure 4. Selected sample shapes from a set of a walking silhouettes.

of the silhouette of interest. The results demonstrate
that for the same (fixed) set of parameters, the shape
prior enables the reconstruction of the familiar silhou-
ette at arbitrary location and scale. For a visualization
of the intrinsic alignment process, we also plotted the
evolving contour in the normalized coordinate frame
(left). In these normalized coordinates the contour con-
verges to essentially the same solution in all three cases.

6. Kernel Density Estimation in the Level Set
Domain

In the previous sections, we have introduced a transla-
tion and scale invariant shape energy and demonstrated
its effect on the reconstruction of a corrupted version
of a single familiar silhouette the pose of which was

S

unknown. In many practical problems, however, we do
not have the exact silhouette of the object of interest.
There may be several reasons for this:

— The object of interest may be three-dimensional.
Rather than trying to reconstruct the three dimen-
sional object (which generally requires multiple im-
ages and the estimation of correspondence), one may
learn the two dimensional appearance from a set
of sample views. A meaningful shape dissimilarity
measure should then measure the dissimilarity with
respect to this set of projections. We refer to Cremers
et al. (2003) for such an example.

— The object of interest may be one object out of a class
of similar objects (the class of cars or the class of tree
leaves). Given a limited number of training shapes
sampled from the class, a useful shape energy should



Figure 5. Density estimated for a 3D projection of 100 silhouettes
(see Figure 4).

provide the dissimilarity of a particular silhouette
with respect to this class.

— Even a single object, observed from a single view-
point, may exhibit strong shape deformation—the
deformation of a gesticulating hand or the defor-
mation which a human silhouette undergoes while
walking. In many cases, possibly because the cam-
era frame rate is low compared to the speed of the
moving hand or person, one is not able to extract
a model of the temporal succession of silhouettes.
In this paper, we will assume that one can merely
generate a set of stills corresponding to various (ran-
domly sampled) views of the object of interest for
different deformations: Figure 4, shows such sam-
ple views for the case of a walking person. In the
following, we will demonstrate that—without being
able to construct a dynamical model of the walking
process—one can exploit this set of sample views
in order to improve the segmentation of a walking
person.

In the above cases, the construction of appropriate
shape dissimilarity measures amounts to a problem of
density estimation. In the case of explicitly represented
boundaries, this has been addressed by modeling the
space of familiar shapes by linear subspaces (PCA)
(Cootes et al., 1995) and the related Gaussian distribu-
tion (Cremers et al., 2002), by mixture models (Cootes
and Taylor, 1999) or nonlinear (multi-modal) represen-
tations via simple models in appropriate feature spaces
(Cremers et al., 2003).

For level set based shape representations, it was sug-
gested (Leventon et al., 2000; Tsai et al., 2001; Rous-
son et al., 2004) to fit a linear sub-space to the sam-
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pled signed distance functions. Alternatively, it was
suggested to represent familiar shapes by the level set
function encoding the mean shape and a (spatially in-
dependent) Gaussian fluctuation at each image loca-
tion (Rousson and Paragios, 2002). These approaches
were shown to capture some shape variability. Yet,
they exhibit two limitations: Firstly, they rely on the
assumption of a Gaussian distribution which is not
well suited to approximate shape distributions encod-
ing more complex shape variation. Secondly, they work
under the assumption that shapes are represented by
signed distance functions. Yet, the space of signed dis-
tance functions is not a linear space. Therefore, in gen-
eral, neither the mean nor the linear combination of a
set of signed distance functions will correspond to a
signed distance function.

In the following, we will propose an alternative ap-
proach to generate a statistical shape dissimilarity mea-
sure for level set based shape representations. Itis based
on classical methods of (so-called non-parametric)
kernel density estimation and overcomes the above
limitations.

Given a set of training shapes {¢;};—;..ny — such as
those shown in Figure 4—we define a probability den-
sity on the space of signed distance functions by in-
tegrating the shape distances (11) or (13) in a Parzen-
Rosenblatt kernel density estimator (Rosenblatt, 1956;
Parzen, 1962):

1 & 1
P@) o ~ ; exp (‘ﬁ d*(He, H@)) . Q@

The kernel density estimator is among the theoretically
most studied density estimation methods. It was shown
(under fairly mild assumptions) to converge to the true
distribution in the limit of infinite samples (and o —
0), the asymptotic convergence rate was studied for
different choices of kernel functions.

It should be pointed out that the theory of classi-
cal nonparametric density estimation was developed
for the case of finite-dimensional data. For a general
formalism to model probability densities on infinite-
dimensional spaces, we refer the reader to the theory of
Gaussian processes (Rasmussen and Williams, 2006).
In our case, an extension to infinite-dimensional objects
such as level set surfaces ¢ : 2 — R could be tackled
by considering discrete (finite-dimensional) approxi-
mations {¢;; € R} n j=1,..,m of these surfaces
at increasing levels of spatial resolution and studying
the limit of infinitesimal grid size (i.e. N, M — 00).
Alternatively, given a finite number of samples, one
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can apply classical density estimation techniques effi-
ciently in the finite-dimensional subspace spanned by
the training data (Rousson and Cremers, 2005).

There exist extensive studies on how to optimally
choose the kernel width o, based on asymptotic ex-
pansions such as the parametric method (Deheuvels,
1977), heuristic estimates (Wagner, 1975; Silverman,
1978) or maximum likelihood optimization by cross
validation (Duin, 1976; Chow et al., 1983). We refer
to Devroye and Gyorfi (1985); Silverman (1992) for a
detailed discussion. For this work, we simply fix o2 to
be the mean squared nearest-neighbor distance:

1N
2 = — mind2 H iy Ho;). 22
o N;#i (He; Hoj).  (22)

The intuition behind this choice is that the width of the
Gaussians is chosen such that on the average the next
training shape is within one standard deviation.
Reverting to kernel density estimation resolves the
drawbacks of existing approaches to shape models for
level set segmentation discussed above. In particular:

— The silhouettes of a rigid 3D object or a deformable
object with few degrees of freedom can be expected
to form fairly low-dimensional manifolds. The ker-
nel density estimator can capture these without im-
posing the restrictive assumption of a Gaussian dis-
tribution. Figure 5, shows a 3D approximation of our
method: We simply projected the embedding func-
tions of 100 silhouettes of a walking person onto the
first three eigenmodes of the distribution. The pro-
jected silhouette data and the kernel density estimate
computed in the 3D subspace indicate that the under-
lying distribution is not Gaussian. The estimated dis-
tribution (indicated by an isosurface) shows a closed
loop which stems from the fact that the silhouettes
were drawn from an essentially periodic process.

— Kernel density estimators were shown to converge
to the true distribution in the limit of infinite (inde-
pendent and identically distributed) training samples
(Devroye and Gyorfi, 1985; Silverman, 1992). In the
context of shape representations, this implies that our
approach is capable of accurately representing arbi-
trarily complex shape deformations.

— By not imposing a linear subspace, we circumvent
the problem that the space of shapes (and signed
distance functions) is not a linear space. In other
words: Kernel density estimation allows to estimate
distributions on non-linear (curved) manifolds. In the
limit of infinite samples and kernel width o going to

zero, the estimated distribution is more and more
constrained to the manifold defined by the shapes.

7. Knowledge-driven Segmentation

In the following, we will detail how the statistical dis-
tribution (21) can be used to enhance level set based
segmentation process. To this end, we formulate level
set segmentation as a problem of Bayesian inference,
where the segmentation is obtained by maximizing the
conditional probability

P )P
Ppin =0, 23)

with respect to the level set function ¢, given the input
image /. For a given image, this is equivalent to mini-
mizing the negative log-likelihood which is given by a
sum of two energies’:

1
E(¢) = ;Ecv(qs) + Eshape(¢)v (24’)

with a positive weighting factor « and the shape energy
Eshape(¢) = - 10g P(¢), (25)

Minimizing the energy (24) generates a segmenta-
tion process which simultaneously aims at maximizing
intensity homogeneity in the separated phases and a
similarity of the evolving shape with respect to all the
training shapes encoded through the statistical estima-
tor (21).

Gradient descent with respect to the embedding
function amounts to the evolution:

8¢ _ 1 BECU 8Eshape
at o d¢ EY)

, (26)

with the image-driven component of the flow given in
(3) and the knowledge-driven component is given by:
OEggpe 2 %igzd°(Ho. He)

dp 202 q; ’

which simply induces a force in direction of each train-
ing shape ¢; weighted by the factor:

27

1
o = exp <_F d*(Ho, H¢,~)) , (28)

which decays exponentially with the distance from
the training shape ¢;. The invariant shape gradient



%dz(Hgb, H ¢;) is given by the expression (18) or (20),
respectively.

8. Experimental Results
8.1. Tracking a Walking Person

In the following we apply the proposed shape prior to
the segmentation of a partially occluded walking per-
son. To this end, a sequence of a dark figure walk-
ing in a (fairly bright) squash court was recorded.
We subsequently introduced a partial occlusion and
ran an intensity segmentation by iterating the evo-
lution (3) 100 times for each frame (using the pre-
vious result as initialization). For a similar applica-
tion of the Chan-Vese functional (without statistical
shape priors), we refer to Moelich and Chan (2003).
Figure 6 shows that this purely image-driven segmen-
tation scheme is not capable of separating the object
of interest from the occluding bar and similarly shaded
background regions such as the object’s shadow on the
floor.

In a second experiment, we manually binarized the
images corresponding to the first half of the original
sequence (frames 1 through 42) and aligned them to
their respective center of gravity to obtain a set of train-
ing shape—see Figure 4. Then we ran the segmenta-
tion process (26) with the shape prior (21). Apart from
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adding the shape prior we kept the other parameters
constant for comparability.

Figure 7 shows several frames from this knowledge-
driven segmentation. A comparison to the correspond-
ing frames in Figure 6 demonstrates several properties
of our contribution:

— The shape prior permits to accurately reconstruct an
entire set of fairly different shapes. Since the shape
prior is defined on the level set function ¢—rather
than on the boundary C (cf. Chen et al. (2002)—it
can easily reproduce the topological changes present
in the training set.

— The shape prior is invariant to translation such that
the object silhouette can be reconstructed in arbitrary
locations of the image. All training shapes are cen-
tered at the origin, and the shape energy depends
merely on an intrinsically aligned version of the
evolving level set function.

— The statistical nature of the prior allows to also recon-
struct silhouettes which were not part of the training
set—corresponding to the second half of the images
shown (beyond frame 42).

8.2.  Dependency on the Number of Training Shapes

In the experiment of Figure 7, we segmented 85 frames
from a walking sequence using a statistical prior con-
structed on the first 42 shapes. While the number of

S N N 4 4
T i o

Figure 6. Purely intensity-based segmentation. Various frames show the segmentation of a partially occluded walking person generated by
minimizing the Chan-Vese energy (2). The walking person cannot be separated from the occlusion and darker areas of the background such as

the person’s shadow.
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Figure 7. Segmentation with nonparametric invariant shape prior. Segmentation generated by minimizing energy (24) combining intensity
information with the statistical shape prior (21). For every frame in the sequence, the gradient descent equation was iterated (with fixed
parameters), using the previous segmentation as initialization. Comparison with the respective frames in Fig. 7 shows that the multi-modal shape
prior permits to separate the walking person from the occlusion and darker areas of the background such as the shadow. The shapes in the second

half of the sequence were not part of the training set.

training shapes affects the run time linearly, it is not
obvious how it affects the segmentation process. To as-
sess this question numerically, we defined a measure
of segmentation accuracy given by the relative error €
between the estimated segmentation H¢ and the true
segmentation H ¢g:

2
__ J(HY — HoPdx 29
f H ¢0 dx

When reducing the number of training shapes, the
average distance between neighboring shapes, and
hence our estimate of the kernel width o in (22) will
increase. As a consequence, the estimated shape model

14
1 _g--a--8-F
-

10 L n . n . L . L

40 35 30 25 20 15 10 5
Number of training shapes

becomes less accurate and the segmentation accuracy
will degrade. Both of these effects are demonstrated in
Figure 8. It shows the estimated kernel width o and the
reconstruction error € averaged over several segmen-
tations of the sequence in Figure 7, using priors con-
structed from random subsets of the initial 42 training
shapes.

8.3.  Segmentation of Cardiac Ultrasound Images

As a second example, we applied the proposed method
to the segmentation of the left ventricle in cardiac ultra-
sound images. This is a challenging problem, because
the object of interest differs very little from the sur-

0.28
0.26 /
0.24 /
II
0.22 [
02 !R\ ! 1
0.18 P
0.16 el

0.14 _a——gg” ]

012 n . L . L . L .

Number of training shapes

Figure 8. Kernel width o and segmentation error € versus training set size.
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Contour evolution with nonparametric invariant shape prior.

Figure 9. Segmentation of the left ventricle in cardiac ultrasound images. The top row shows a purely data-driven segmentation with the
Chan-Vese functional (2). The bottom row shows the boundary evolution obtained with a nonparametric invariant shape prior of the form (21)
constructed from a set of 21 aligned manually segmented training shapes. The use of the shape prior speeds up the computation and reduces the

segmentation error from 25% (top right) to 9% (bottom right).

rounding background. Figure 9, top row, shows that
even by merely imposing a length constraint, one does
not obtain an accurate segmentation of the structure of
interest. By including a nonparametric shape prior con-
structed from 21 training images, the segmentation can
be drastically improved. Moreover, the segmentation
converged after 140 iterations (rather than 900 in the
absence of a statistical shape prior). The computation
time was approximately 30 seconds (in MATLAB).

9. Conclusion

We proposed solutions to open problems regarding sta-
tistical shape priors for level set based segmentation
schemes. In particular, we made two contributions:
Firstly, we combined concepts of non-parametric
density estimation with level set based shape repre-
sentations in order to create a statistical shape prior
for level set segmentation which can accurately repre-
sent arbitrary shape distributions. In contrast to existing
approaches, we do not rely on the restrictive assump-
tions of a Gaussian distribution and can therefore en-
code fairly distinct shapes. Moreover, by reverting to
a non-parametric density estimation technique, we are
able to model shape distributions on curved manifolds,
thereby circumventing the problem that the space of
signed distance functions is not a linear space.
Secondly, we proposed an analytic solution to gener-
ate invariance of the shape prior with respect to trans-
lation and scaling of the objects of interest. By eval-

uating the evolving level set function in local coordi-
nates defined relative to its current center of gravity
and in units relative to its current scale, our method no
longer requires the numerical and iterative optimiza-
tion of explicit pose parameters. This removes the need
to select appropriate gradient time steps and to define
a meaningful alternation process for the descent equa-
tions. Due to the intrinsic alignment, an additional term
emerges in the Euler-Lagrange equations which takes
into account the dependency of the transformation pa-
rameters on the level set function.

In numerical experiments, we showed that the ad-
ditional term in the shape gradient both improves and
speeds up the convergence of the contour to the de-
sired solution. We showed that the scale invariant prior
allows to reconstruct familiar silhouettes at arbitrary
scale. Finally, we applied the statistical shape prior to
the segmentation and tracking of a partially occluded
walking person and to the segmentation of the left
ventricle in cardiac ultrasound images. In particular,
we demonstrated that the proposed multi-modal shape
prior permits to reconstruct fairly distinct silhouettes in
arbitrary locations and at arbitrary scales. We numeri-
cally validated that areduction in the number of training
shapes leads to a decay in the segmentation accuracy.
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Notes

1. One can define a mean shape by back-projection onto the space
of signed distance functions

2. In the Bayesian terminology, the length constraint in the Chan-
Vese functional (2) should be associated with the shape energy as
a (geometric) prior favoring shapes of minimal boundary. How-
ever, for notational simplicity, we will only refer to the statistical
component as a shape energy.
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