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Abstract. Kernel density estimation is a technique for estimation of probability density function 

that is a must-have enabling the user to better analyse the studied probability distribution than when 

using a traditional histogram. Unlike the histogram, the kernel technique produces smooth estimate 

of the pdf, uses all sample points' locations and more convincingly suggest multimodality. In its 

two-dimensional applications, kernel estimation is even better as the 2D histogram requires 

additionally to define the orientation of 2D bins. Two concepts play fundamental role in kernel 

estimation: kernel function shape and coefficient of smoothness, of which the latter is crucial to the 

method. Several real-life examples, both for univariate and bivariate applications, are shown. 

1 Introduction  

Out of all probability distribution functions, probability 

density function (pdf) best shows how the whole 100% 

probability mass is distributed over the x-axis, i.e., over 

the values of an X random variable. However, the oldest 

pdf empirical representation  a histogram  is a highly 

subjective structure as its shape depends on the 

subjective choice of the number (or widths) of class 

intervals (bins) to which the range of a sample is 

divided, and on the choice of the initial point (e.g., [1]). 

To this aim several formulas have been proposed of 

which most relate the number of intervals to the sample 

size only [2–3]; the other include additionally certain 

sample characteristics as standard deviation [4], 

interquartile range [5] or skewness [6].  

Independently of the class selection method used, the 

histogram suffers from its original sin: data binning, 

which depraves the data of their individual location 

replacing their locations with a bin (interval) location. 

This causes the histogram shape to become 

discontinuous, and flat in each bin. 

Kernel estimation of probability density function has 

not these drawbacks. It produces (in in most practical 

applications) a smooth empirical pdf based on individual 

locations of all sample data. Such pdf estimate seems to 

better represent the "true" pdf of a continuous variable.  

Kernel estimation is not a quite new technique: it was 

originated more than a half century ago by Rosenblatt 

[7] and Parzen [8]. With the development of computer 

technology, this method has been developing rapidly and 

vastly [4, 9–17]. 

The paper shows the advantages and disadvantages 

of the method illustrating them with real-life examples 

for one- and two-dimensional applications. 

Two concepts play fundamental role in kernel 

estimation: the kernel function and the coefficient of 

smoothness. 

2 Kernel density  

Let the series {x1, x2,..., xn} be an independent and 

identically distributed (iid) sample of n observations 

taken from a population X with an unknown probability 

distribution function f(x). Kernel estimate ˆ ( )f x of 

original f(x) assigns each i-th sample data point xi 

a function K(xi,t) called a kernel function in the 

following way [11]: 
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K(x,t) is nonnegative and bounded for all x and t: 

 0 ( , )  for all real ,  K x t x t  (2) 

and, for all real x, 
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Property (3) ensures the required normalization of 

kernel density estimate (1):  
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In other words, kernel transforms the "sharp" (point) 

location of xi into an interval centred (symmetrically or 

not) around xi. 
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In most common practical applications, the kernel 

estimation uses symmetric kernel function, although 

asymmetric functions have recently been increasingly 

used [18–20]. Figs. 1 and 2 illustrate the idea of kernel 

estimation for both cases. 

 

Fig. 1. Construction of kernel density estimator (1) (continuous 

line) with a symmetric kernel (dashed lines) for a 4-element 

sample (vertical segments). 

 

 

Fig. 2. Construction of kernel density estimator (1) (continuous 

line) with an asymmetric kernel (dashed lines) for the same 4-

element sample as in Fig. 1. 

Fig. 1 shows that the shape of a symmetric kernel is 

the same for all sample points while Fig. 2 reveals that 

the shape of an asymmetric kernel differs with the point 

placement.  

Symmetry property allows to write the kernel 

function in a form used most frequently: 
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K x t K

h h
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where parameter h, called smoothing parameter, window 

width or bandwidth, governs the amount of smoothing 

applied to the sample (Fig. 3). 

For symmetrical kernel functions, the choice of the 

shape of the kernel function K(.) has rather little effect 

on the shape of the estimator [11, 21], whereas  as Fig. 

3 shows  the influence of the smoothing parameter h is 

critical because it determines the amount of smoothing. 

Too small value of h may cause the estimator to show 

insignificant details while too large value of h causes 

oversmoothing of the information contained in the 

sample, which, in consequence, may mask some of 

important characteristics, e.g. multimodality, of f(x) (cf. 

Fig. 3). A certain compromise is needed. 

 

 

Fig. 3. The value of the smoothing parameter h influences the 

shape of the resulting kernel density. The 4-element sample 

(vertical segments) are the same as in Figs. 1 and 2. 

Many types of kernel function can be found in the 

relevant literature. Examples of symmetric kernels are 

presented in Table 1 and in Fig. 4, while Table 2 shows 

the asymmetric ones. 

Table 1. Examples of symmetrical kernel functions [11]. 
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Table 2. Examples of asymmetrical kernel functions.  

Symbol b denotes the smoothing parameter. 

Kernel Definition 
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Fig. 4. Shapes of symmetric kernels defined in Table 1. 

Fig. 5 illustrates how the kernel type (cf. Table 1) 

used to estimate pdf influences the kernel pdf estimate. 

Triangular and rectangular kernels (especially the latter) 

produce many local maxima and thus they are rather not 

recommended for application. The biweight kernel has 

shorter support than the Epanechnikov one, so reveals 

more details and more clearly suggests two basic modes. 

The Gaussian kernel, distributed over the whole x-axis, 

produces the most smooth estimate, and this property 

probably causes the kernel to be most frequently used. 

 

Fig. 5. Different symmetrical kernel functions applied to 

a sample of 45 standardized annual maximum 

flows  (1961–1995) of Odra river recorded at the 

Racibórz-Miedonia gauge station (data source: [22]). 

The univariate case can be easily formally extended 

to the multivariate case [23]. However, its illustrative 

(graphical) power works well for bivariate case only. 

The most frequently used bivariate kernel function is 

symmetric 

  
1

1ˆ ( , ) ,
n

ji

ix y x y

y yx x
f x y K

nh h h h
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where {xi, yi}, i = 1,2,...,n, is a sample, and hx and hy are 

smoothing coefficients. Available are multivariate 

counterparts of univariate kernel functions listed in 

Table 1, e.g., multivariate Epanechnikov kernel or 

multivariate Gaussian kernel [11].  

Two versions of (6) are used in practice: the product 

kernel estimator and the radial kernel estimator [24].  

In its most popular form, the product kernel estimator 

may be written as follows 
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The radial kernel estimator is based on the Euclidean 

distance between an arbitrary point {x,y} and sample 

point {xi,yi}, i = 1,2, ..., n: 
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In practice, the product kernel estimator is mostly 

used. 

The advantage of multivariate kernel pdf over 

multivariate histogram is even greater than in an 

univariate case. This is because of an additional 

subjective requirement occurs: the user has to decide 

about the orientation of a two-dimensional bin, which 

may considerably influence the final shape of the 

histogram. 

3 Measures of discrepancy between the 

kernel density estimator f̂  and the true 

density f 

Each estimator ˆ ( )f x differs from its original f(x) with 

100% probability. In order to build a method producing 

an estimator ˆ ( )f x which will be as close to f(x) as 

possible, certain measures should be defined to evaluate 

this discrepancy.  

For each single x, a difference between the "true" 

density function f(x) and its estimator ˆ ( )f x can be 

estimated with the mean squared error, MSEx, [11]: 

       2ˆ ˆMSE E
x

f f x f x    
 (9) 

which, after simple transformations, can be presented as 

follows: 

 
        

   

2

2

ˆ ˆ ˆMSE E var

ˆ ˆbias var

x
f f x f x f x

f x f x

  

   

 (10) 

that is, MSEx is the sum of the square bias and the 

variance of ˆ ( )f x at x. Reducing the bias causes variance 

to increase and vice versa, so a trade-off between these 

terms is needed. 

MSEx is a local measure. Integration of MSEx over 

all x gives a global measure of conformity of ˆ ( )f x with 

f(x), called the mean integrated square error, MISE, [11]: 
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MISE is one of measures used to estimate the smoothing 

parameter. 

In practice, an approximate version of MISE, called 

AMISE (asymptotic MISE) is also used, developed by 

expanding MISE into a Taylor series and taking only the 

most important parts [25, 26]. 

Integrated square error, ISE, is an intermediate 

measure, between MISE and MSE: 

     2ˆ ˆISE( )





 f f x f x dx  (12) 

which is also a discrepancy measure used to estimate the 

magnitude of the smoothing parameter. 

4 Methods for calculating optimum 
value of smoothing parameter  

The choice of the optimal smoothing parameter is based, 

i.a., on formulas that minimize the criterion functions 

discussed above, mainly ISE [27], MISE [28] and 

AMISE [11, 15, 29–32].  

Many other methods for calculating the smoothing 

parameter are available in the relevant literature; many 

of them are available also through statistical software. 

Two methods are described below  one for the 

symmetrical kernel function (Gaussian), the other for 

any kernel function. 

4.1 Rule-of-thumb method 

The rule-of-thumb method is based on the asymptotic 

mean integrated square error, AMISE, when the kernel 

function and true distribution are assumed normal. 

Silverman [11] got then the values of the smoothing 

parameter h as follows: 

 1/5ˆ1.06h n     (13) 

where ̂ is the sample standard deviation and n is the 
sample size. 

In order to have an estimator more robust against 

outliers the sample interquartile range IRQ may be 

applied [11]: 

 
1/50.79h IQR n
    (14) 

Silverman [11] believes that the value (13) smoothes 

non-unimodal distributions too much, and  as one of the 

remedies  proposes a slightly reduced value of the 

smoothing parameter (13): 

 
1/5ˆ0.9 min ,

1.34

IQR
h n 

 
    

 
 (15) 

The value (15) is widely used in practice and referred to 

as the Silverman’s bandwidth or (Silverman’s) rule of 

thumb, and will be used in most of the remainder of the 

paper. 

4.2 Least squares cross validation method 
(LSCV) 

The least squares cross validation method (LSCV) of 

selecting the smoothing parameter is a very popular 

technique [11, 30, 33–38]. 

LSCV uses the integrated square error, ISE (12), 

which can be expressed in the following form 11: 
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The last part of the expression (16) does not depend 

on the estimator ˆ ( )f x  (it is a constant), therefore the 

choice of the smoothing parameter (in the sense of 

minimizing ISE) will correspond to the choice of 

h which minimizes the function 

        2ˆ ˆ ˆ2R f f x dx f x f x dx

 

 

     (17) 

To estimate the second part of (17) a leave-one-out 

density estimator,  ˆ
i

f x , is used: 

    1ˆ ,
1

i j

j i

f x K x x
n





   (18) 

which is an estimate of the density function calculated 

using all sample values except xi. The resulting form of 

the LSCV criterion function is 

      2 2ˆ ˆLSCV
i i

i

h f x dx f x
n






    (19) 

The optimal smoothing parameter 
LSCV

h  is the value for 

which the LSCV(h) function achieves the minimum. The 

final form of LSCV function (19), applicable to both 

symmetrical and asymmetrical kernels, is: 
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Least squares cross-validation is also referred to as 

unbiased cross-validation 26. 

Unfortunately, the LSCV method also has 

drawbacks: the variance of the obtained smoothing 
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parameters calculated for samples drawn from the same 

distribution is large [30]. It happens that the LSCV(h) 

function has several minimums, often false and far on 

the side of too small smoothing [39]; sometimes 

LSCV(h) does not have any minima at all [14, 30].  

There are other versions of the cross-validation 

method, e.g. biased cross-validation (BCV) or smoothed 

cross-validation (SCV), and other methods to obtain 

optimum smoothing coefficient (e.g., [40]). Some 

resulting examples are shown in Fig. 6. 

 

 

Fig. 6. Different methods for kernel smoothing coefficient 

estimation available in Wolfram Mathematica 11.1 applied to 

the 1961–1995 series of standardized annual maximum flows 

 of Odra river recorded at the Racibórz-Miedonia 

gauge station (data source: [22]). 

5 Kernel density in practice 

5.1 The univariate case 

Figs. 7 through 9 contain several kernel pdf estimates 

obtained for maximum and minimum annual flows of 

certain rivers and maximum annual precipitations in 

Poland. Apart from the nice smoothness contrasting with 

a histogram shape, a very attractive characteristic of 

kernel estimation is shown: its ability to suggest 

multimodality in a more convincing way than the 

histogram does. 

 

Fig. 7. Kernel density estimates for four 45-year time series of 

standardized annual maximum flows  (1961–1995) 

of given River/Gauging station (data source: [22]). 

 

Fig. 8. Kernel density estimates for four 32-year time series of 

standardized annual minimum flows  (1983–2015) 

of given River/Gauging station (data source: [41]). 

 

Fig. 9. Kernel density estimates for four 30-year time series of 

standardized annual maximum precipitation  (1984–
2013) at given Precipitation station/River basin/ (data source: 

[42]). 

Of course, the multimodal shape of a pdf estimate 

does not prove the existence of the real multimodality. It 

is, however, a sign of possible non-homogeneity that 

should be considered through the analysis of the 

mechanism generating the data. Some attempts to 

statistical testing multimodality are described in [11]; 
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however, as Silverman ([11], p. 141) conclude: "It may 

be futile to expect very high power from procedures 

aimed at such broad hypotheses as unimodality and 

multimodality". Nevertheless, the kernel estimation is 

a good method for an initial stage of the planned study 

on probability distribution. 

When the variable under study is nonnegative, it may 

happen that kernel estimate exhibits an undesirable case: 

probability leakage below zero. It occurs when a part of 

the sample lies near zero and the magnitude of the 

smoothing coefficient enables such crossing in 

a considerable amount. Four such cases are presented in 

Fig. 10. 

 

 

Fig. 10. Probability leakage below zero (marked dark blue) in 

kernel density estimates for time series of standardized annual 

maximum flow  (1961–1995), top two graphs, and 

annual minimum flows  (1983–2015), bottom two 

graphs, of given River/Gauging station (data source: [22]). The 

numbers within the graphs show the magnitude of probability 

leakage. 

 

 

Fig. 11. Removing probability leakage below zero (4.9%, 

marked dark blue) in kernel density estimate (a) of the 1984–
2015 time series of standardized annual maximum flows 

; (b) logarithmized pdf added; (c) asymmetric 

gamma kernel pdf added (cf. Table 2, kernel KGAM1, b = 0.06); 

(d) three cumulative distribution functions (data source: [41]). 

If the amount of the probability leakage cannot be 

disregarded, one of the remedies is to logarithmize the 

data and apply the kernel estimation to such data. If pdf 

of logarithmized data is ˆ( )g x  the following recalculation 

should be used:  

 
1ˆ ˆ( ) (ln( ))f x g x
x

 (21) 

 Fig. 11(b) shows the result. The leakage has been 

removed; unfortunately, the second mode disappeared 

although certain suggestion of non-unimodality has 

remained visible in the heaviness of the right tail.  

Another remedy is to use an asymmetric kernel 

shown in Fig. 11(c). This approach shows the bimodality 

revealed in Fig. 11(a). In terms of cumulative 

distribution function (Fig. 11(d)), log transformation and 

asymmetric kernel approach are almost equivalent. 

5.2 The bivariate case and some general 
remarks on the multivariate case 

Formally, the univariate case can be easily extended to 

the multivariate one, which has been exemplified by 

equations (7) and (8) for the bivariate kernel. Fig. 12 

illustrates with the use of equation (7) how the relation 

between the two variables studied evolves over the year. 

2D kernel pdf graphics may help the user in 

differentiating the sample into subsamples, for which 

a non-statistical (cause-and-effect) confirmation may be 

found. Such graphics is informative when a sample 

contains many identical data, which are not visible in an 

x-y plot.  

Unfortunately, graphical illustration or interpretation 

for more than two-variate case is at least difficult if not 

impossible. Moreover, sample size necessary for 

preserving similar accuracy as that for one-dimensional 

case grows rapidly with growing dimension  the 

problem known as the 'curse of dimensionality'.  

Minimization of the effect of the curse of 

dimensionality requires not only sufficient data, but also 

careful data preparation [23]. This may involve proper 

transformation of marginal variable in order to reduce 

the large skewness or heavy tails, determination if the 

data are of full rank, and even  if the data do not have 

many significant digits  carefully blurring the data [23].  

6 Summary and conclusions  

When compared with the commonly used histogram, the 

kernel density estimator shows several advantages. 

1. It is a smooth curve and thus it better exhibits the 

details of the pdf, suggesting in some cases non-

unimodality. 

2. It uses all sample points' locations, so, therefore, it 

better reveal the information contained in the sample.  

3. It more convincingly suggests multimodality. 

4. The bias of the kernel estimator is of one order 

better than that of a histogram estimator [26]. 

5. Compared with 1D application, 2D kernel 

applications are even more better as the 2D histogram 
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requires additionally the specification of the orientation 

of the bins which enhances the subjectivity of histogram. 

It should be remembered, however, that the value of 

smoothing coefficient is to some extent a subjective 

estimate. 

 

 

 

 

 

 

Fig. 12. Bivariate kernel density estimates for two-dimensional 

random variable (monthly maximum temperature tmx, and 

monthly sunshine duration, S), in Oxford, UK, 1853–2017 

(data source:[43]).  
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