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Abstract

In this paper, we propose a multi-phase fuzzy region competition model for
texture image segmentation. In the functional, each region is represented by
a fuzzy membership function and a probability density function that is esti-
mated by a nonparametric kernel density estimation. The overall algorithm
is very efficient as both the fuzzy membership function and the probability
density function can be implemented easily. We apply the proposed method
to synthetic and natural texture images, and synthetic aperture radar im-
ages. Our experimental results have shown that the proposed method is
competitive with the other state-of-the-art segmentation methods.

Key words: Texture, Multiphase region competition, Kernel density
estimation, Fuzzy membership function, Total variation.

1. Introduction

Image segmentation is a fundamental task in image processing and com-
puter vision. It is aimed to partition an image into a finite number of sub-
regions with homogeneous intensity (color, texture) properties which will
hopefully correspond to objects or object parts. Approaches based on the
calculus of variation and partial differential equations (PDEs) are power-
ful in image segmentation. One important reason of their success is that
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these models are flexible in integrating the geometric information such as
shape, length and area. The best known and most influential approaches are
Mumford-Shah model [21], geodesic active contour [5], geodesic active region
[24], Chan-Vese model [7], region competition [31].

In this paper, we focus on the segmentation of texture images. Piecewise
smooth/constant models such as Mumford-Shah model [21] and Chan-Vese
model [7] fail in this case. Recently, some variational methods have been
proposed to tackle the segmentation of complex textures based on feature
extraction techniques [9, 27, 25, 13]. In [9, 27], a set of Gabor filters with
different scales, orientations and frequencies are applied to the image to cre-
ate the features to represent texture in the image. Chan et al in [9] extended
the Chan-Vese model to these vector features for texture image segmentation.
Because there are many features to be used in the model, the correspond-
ing minimization method can be slow. Savig et al [27] used the Beltrami
framework on the texture features to define a new texture indicator func-
tion, and then integrated this function in a combined model of the geodesic
active contour [5] and the vectorial Chan-Vese model [7] to segment textural
regions. Rousson et al [25] extracted the texture features by applying an
anisotropic diffusion process to the structure tensor. In their segmentation
framework, a Gaussian approximation is used for all the features channels,
and a nonparametric approximation is used for the first gray image channel.
The choice of Gaussian approximation restricts the applicability to limited
set of images that satisfy the underlying assumption.

Another kind of variational methods for texture image segmentation is
based on region competition. Zhu et al [31] proposed a region competi-
tion method unifying snake, region growing and Bayesian statistics. It is a
parametric model since they assume that each region follows a Gaussian dis-
tribution. Kim et al in [17] proposed a nonparametric statistical method for
image segmentation using mutual information and curve evolution. However,
the above mentioned variational approaches have some practical shortcom-
ings. The above energy functionals are not convex in the optimization space
(usually the characteristic functions of sets, which is nonconvex collection)
and they have local minima. Typically, the gradient decent method is used
in the implementation of these models, and are therefore prone to getting
stuck in these local minima. Hence these methods are sensitive to initializa-
tion. Meanwhile, the implementation of the above models are based on curve
evolution and level set approach [22]. The drawback in the level set imple-
mentation consists of initializing the active contour in a distance function and
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re-initializing periodically during the evolution, which is time-consuming.
Based on the observation in the Rudin-Osher-Fatemi [26] model for binary

image denoising and Chan-Vese segmentation model, the drawback of leading
to local minima comes from the non-convexity of characteristic functions.
Recently, Chan et al [10] proposed to use a “segmentation” variable valued
in [0,1] to substitute a characteristic function and obtain a new constrained
convex functional such that the global minimizer can be achieved in the
segmentation process. To make the algorithm more efficient, Bresson et al
[2] proposed to add another new variable to approximate “segmentation”
variable such that the Chambolle’s fast dual projection method [6] can be
employed. The advantage of this algorithm is that it is fast and easy to
implement. There are several works following this idea [19, 20, 3, 4, 13]. Mory
et al [19, 20] derived the fuzzy region competition method, parametric and
nonparametric statistics error functions in the region terms are considered
and studied respectively. Ni et al [4] used histogram and Wasserstein distance
in the region term. Houhou et al [13] used shape operator borrowed from
different geometry to extract only one texture feature and then used the
popular Kullback-Leiber distance in the region term. We remark that the
above techniques are only used in two-phase image segmentation.

In [28], Shen developed a multiphase stochastic variational soft segmen-
tation Mumford-Shah model employed a double well potential regularization
term in the model. As a set of partial differential equations arising from
the model have to be solved, the resulting method is computationally expen-
sive. This method may not be handled a more complicated texture image
segmentation problem.

In this paper, we propose a multi-phase fuzzy region competition model
for texture image segmentation. In the functional, each region is represented
by a fuzzy membership function and a probability density function. The
fuzzy membership function is used to represent the region such that the en-
ergy functional is convex with respect to membership functions. The prob-
ability density function is estimated in each region by using kernel density
method. The estimation method is different from [17, 20]. The overall algo-
rithm is very efficient as both the fuzzy membership function and the prob-
ability density function can be implemented easily. We apply the proposed
method to synthetic and natural texture images, and synthetic aperture radar
images. Our experimental results have shown that the proposed method is
competitive with the other state-of-the-art segmentation methods.

The outline of the paper is as follows. We review some related work
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for texture image segmentation in Section 2. In Section 3, we propose our
method and the numerical algorithm. Experimental results on various images
are showed in Section 4. Finally, we conclude our paper in Section 5.

2. Related Works

The general N -phase segmentation problem can be formulated as follows:
Given an image I : Ω → R where the image domain Ω is a bounded, smooth
and open subset of R

2, the aim is to partition Ω into N regions {Ωi}N
i=1 such

that Ωi ∩ Ωj = ∅, j 6= i and
⋃N

i=1 Ωi = Ω by certain suitable measure. We
review some texture image segmentation methods which are closely related
to our method.

2.1. Region Competition

Zhu and Yuille [31] proposed to minimize the following energy

F (Γ, {αi}) =
N

∑

i=1

{

µ

2

∫

∂Ωi

ds −
∫

Ωi

log Pi (I|αi)dx

}

. (1)

The first term within the braces is the length of the boundary curve ∂Ωi

for region Ωi. Γ =
⋃N

i=1 ∂Ωi is the segmentation boundaries of the entire
image. The second term is the sum of the cost for coding the intensity I into
region Ωi by the conditional probability distributions − log Pi (I|αi) where αi

is the parameter in the probability density function Pi. Usually a Gaussian
probability density function is considered:

Pi (I|αi) =
1√
2πσi

exp

(

−(I − µi)
2

2σ2
i

)

,

where αi = (µi, σi) are scalar parameters. Curve evolution technique is used
in the implementation to solve the optimization problem in (1).

2.2. Two Phase Fuzzy Region Competition

In order to solve a general two-phase region competition problem as min-
imizing

F (Γ, α1, α2) =

∫

∂Ω1

ds + λ

∫

Ω1

rα1

1 dx + λ

∫

Ω2

rα2

2 dx,
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where the image region Ω is partitioned into Ω1 and Ω2, αi is the region
parameter of the region Ωi, and rαi

i is error function, Mory et al [19] proposed
to use fuzzy membership function u ∈ BV[0,1] (Ω) to represent the region and
minimize the two-phase fuzzy region competition energy instead

F (u, α1, α2) =

∫

Ω

|∇u|dx + λ

∫

Ω

urα1

1 dx + λ

∫

Ω

(1 − u)rα2

2 dx. (2)

The fast dual projection method proposed by Chambolle [6] is introduced to
solve the problem. The error functions in Chan-Vese model [7]

(

rαi

i = (I − ci)
2)

and the local version are studied in the paper.
In the later work [20], Mory et al considered nonparametric probability

density function as an error function and minimize

F (u, p1, p2) =

∫

Ω

|∇u|dx + λ

∫

Ω

u

∫

a∈A

(p1(a) − K(I(x) − a))2dadx

+λ

∫

Ω

(1 − u)

∫

a∈A

(p2(a) − K(I(x) − a))2dadx
(3)

where K is a symmetric Gaussian kernel

K(z) =
1√
2πσ

exp

(

− z2

2σ2

)

(4)

and A ⊂ R is the values domain of the image. However, the computation is
expensive since it involves the integration in domain A .

2.3. Nonparametric Method using Mutual Information

For two-phase image segmentation, Kim et al [17] proposed to minimize
the following energy

F (Γ) =

∫

∂Ω1

ds − λ

∫

Ω1

log(P1(I(x), Ω1))dx − λ

∫

Ω2

log(P2(I(x), Ω2))dx

where Pi(I(x), Ωi)dx = 1
|Ωi|

∫

Ωi

K(I(x)− I(x̂))dx̂ and K is a Gaussian kernel

as defined in (4). The last two terms in the right hand side come from
the mutual information. Active contour method is used in the formulation.
The derived curve evolution equation is quite complicated, especially for
multiphase image segmentation.
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3. The Proposed Method

3.1. The Proposed Energy

We propose to use nonparametric probability density function in the re-
gion competition model which energy is

E(Γ) =
N

∑

i=1

µ

2

∫

∂Ωi

ds −
N

∑

i=1

∫

Ωi

log Pi(I, Ωi)dx. (5)

Here Pi(I, Ωi) is the nonparametric probability density function in region Ωi

which is determined by the pixel values in the region of the image. With a
suitable change of the parameter, (5) becomes

E(χ) =
N

∑

i=1

∫

Ω

|∇χi|dx −
N

∑

i=1

λ

∫

Ω

χi log Pi(I, χi)dx (6)

where χ = (χ1, ..., χN) is the characteristic function of the region Ωi. Follow-
ing the idea of [19], we replace the characteristic functions χi by fuzzy mem-
bership functions ui ∈ BV[0,1](Ω). Note that BV[0,1](Ω) is the set of bounded
variation functions valued in the interval [0, 1]. Hence our new fuzzy region
competition image segmentation model is to minimize the following energy

E(U, P ) =
N

∑

i=1

∫

Ω

|∇ui|dx −
N

∑

i=1

λ

∫

Ω

ui log Pi(I, ui)dx (7)

where the membership functions {ui} satisfies two constraints

(i) ui ∈ BV[0,1](Ω) and (ii)
N

∑

i=1

ui = 1

and U = (u1, ..., uN), P = (P1, ..., PN). Note that the term
∫

Ω
|∇ui|dx is a

total variation regularization term which is widely used in variational image
processing.

For the purpose of efficiency, we follow the idea in [2, 19, 20, 14] and take
use of Chambolle’s fast dual projection algorithm [6]. For that end we add
auxiliary variables V = (v1, ..., vN) and approximate E(U, P ) by

Er(U, V, P ) =
N

∑

i=1

(
∫

Ω

|∇vi|dx +
1

2θ

∫

Ω

(vi − ui)
2dx − λ

∫

Ω

ui log Pi(I, ui)dx

)

(8)
where θ is chosen small enough such that ui and vi are almost identical with
respect to the L2 norm.
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3.2. Energy Minimization

To find the minimizer of energy Er under the constraint (i) and (ii), we
use an alternate minimization method.

3.2.1. Solving U

First we relax constraint (i) by letting

uN = 1 −
N−1
∑

i=1

ui (9)

in Er(U, V, P ). Then for fixed P and V , we solve U by minimizing

E1(Ū) =
1

2θ

N−1
∑

i=1

∫

Ω

(vi − ui)
2dx + λ

N−1
∑

i=1

∫

Ω

ui log

(

PN

Pi

)

dx (10)

subject to
0 ≤ ui(x) ≤ 1, for i = 1 : N − 1.

where Ū = (u1, ..., uN−1). Since the objective function is strictly convex
and the feasible region is convex, there exists a unique global minimizer
Ū∗ = (u∗

1, ..., u
∗
N−1) of (10) and the following KKT conditions [? ] are both

necessary and sufficient: Suppose Ũ∗ is the global minimizer of (10), then

(a) u∗
i (x) ≥ 0, 1 − u∗

i (x) ≥ 0
(b) There exist Lagrange multipliers β∗

i (x) and γ∗
i (x) for each point x ∈ Ω such that

∂E1(Ū)
∂u∗

i
(x)

= λ log
(

PN (x)
Pi(x)

)

+ 1
θ
(u∗

i (x) − vi(x)) = β∗
i (x) − γ∗

i (x)

(c) β∗
i (x)u∗

i (x) = 0, γ∗
i (x)(1 − u∗

i (x)) = 0
(d) β∗

i (x) ≥ 0, γ∗
i (x) ≥ 0

for i = 1 : N − 1.
First we assume Ũ = (ũ1, ..., ũN−1) satisfies

λ log

(

PN(x)

Pi(x)

)

+
1

θ
(ũi(x) − vi(x)) = 0.

The solution is

ũi = vi − λθ log

(

PN

Pi

)

.
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Then we construct ûi by projecting ũi on [0,1], that is

ûi := min{max{ũi, 0}, 1}.

Let ηi(x) = λ log
(

PN (x)
Pi(x)

)

+ 1
θ
(ûi(x) − vi(x)). For each x ∈ Ω, we choose

β̂i(x) and γ̂i(x) as follows:
if ûi(x) ∈ (0, 1), then β̂i(x) := 0 and γ̂i(x) := 0;
if ûi(x) = 0, then β̂i(x) := ηi(x) ≥ 0 and γ̂i(x) := 0;
if ûi(x) = 1, then β̂i(x) := 0 and γ̂i(x) := −ηi(x) ≥ 0.

It is easy to verify that {ûi, β̂i, γ̂i} satisfies KKT conditions (a)-(d). Therefore
Û is a minimizer of energy (10) and by uniqueness Ū∗ = Û .

Then we conclude that the closed form solution of ui, i = 1 : N − 1 is
given by

ui = max

{

min

{

vi − λθ log

(

PN

Pi

)

, 1

}

, 0

}

. (11)

and uN is given by (9).

3.2.2. Estimation of P

Fix U and V , we estimate the probability density function Pi(I, ui) for
class i using the following nonparametric kernel density estimation method.
If x1, x2, ..., xn ∼ f is an independent and identically-distributed sample of
a random variable, then the kernel density approximation of its probability
density function is

f̂h(x) =
1

nh

n
∑

i=1

K

(

x − xi

h

)

(12)

where K is some kernel and h is the bandwidth (smoothing parameter) [23].
In this paper K is taken to be a standard Gaussian function with mean zero
and variance 1

K(z) =
1√
2π

exp

(

−z2

2

)

(13)

We use the optimal bandwidth [1] for the Gaussian kernel density estimation
which is

h =

(

4

3n

)
1

5

.

Note that different from the proposed method, in [17], the bandwidth is fixed
for all regions. The quantity Pi, i = 1 : N is then estimated by formula (12)
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in which the samples are the intensities I(x) of the pixels x ∈ Ω where the
membership function ui(x) ≥ 0.5. When the class number N ≥ 3, we use
a non-uniform formula to estimate PN in order to overcome the errors of

chosen samples in the Nth class. We estimate PN in the term log
(

PN

Pi

)

by

formula (12) with samples I(x) satisfying ui(x) < 0.5.

3.2.3. Solving V

By fixing P and U , the variables V can be solved by minimizing
∫

Ω

|∇vi|dx +
1

2θ

∫

Ω

(vi − ui)
2dx. (14)

This problem can be efficiently solved by fast duality projection algorithm.
The solution is given by

vi = ui − θdiv pi, (15)

where the vector pi can be solved by fixed point method: Initializing p0
i = 0

and iterating

pn+1
i =

pn
i + τ∇ (div pn

i − ui/θ)

1 + τ |∇ (div pn
i − ui/θ)|

with τ ≤ 1/8 to ensure convergence. See [6] for more details.

3.3. The Algorithm

The algorithm of minimizing E can be summarized in the following four
steps:

• Step 1) Initialize the membership functions ui, i = 1 : N such that the
constraints (A) and (B) are both satisfied.

• Step 2) Estimate Pi using (12) with different samples;

• Step 3) Update vi by formula (15) for i = 1 : N − 1;

• Step 4) Update ui by formula (11) for i = 1 : N − 1 and (9) for i = N ;

Repeat Steps 2)-4) until termination. The termination criterion is as
follows:

‖Unew − Uold‖ ≤ ǫ

where ‖ · ‖ denotes the Euclidean distance and ǫ is a small positive
number.

Remark that the auxiliary variable vN is not used in the iteration.
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4. Experimental Results

We test our algorithm on various images include synthetic texture images,
natural images and synthetic aperture radar (SAR) images which appear
in the recent image segmentation literatures. We display the segmentation
results by paint the contour ui = 0.5(i = 1 : N−1) with different colors on the
original image. The membership functions are also displayed for illustration.
Our results are compared with other state-of-the-art segmentation methods.
Test 1: Fig. 1 shows six synthetic texture images with the two-phase seg-
mentation results by the proposed algorithm. The results are satisfactory.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 1: Two-phase segmentation. The First and Fourth columns: synthetic images; the
Second and Fifth columns: segmentation results; the Third and Sixth columns: member-
ship functions u1.

Test 2: We test synthetic images generated by several sets of distributions
in Fig. 2 as used in [17]. In Fig. 2(a) the two distributions for the foreground
and the background are Gaussian with different means and the same variance.
In Fig. 2(d) the two distributions for the foreground and the background
are Gaussian with the same mean and different variances. For these two
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cases, the method of Yezzi et al. [30] would require the selection of the
appropriate statistic (i.e., the means and variances for the first and second
cases, respectively) a priori, whereas our method solves the segmentation
problem without a prior information. We see from Fig. 2 that the result is as
well as that given in [17]. Fig. 2(g) shows a challenging case. The underlying
distributions of the foreground and the background are a unimodal Gaussian
density and a bimodal density with two Gaussian components as illustrated
in Fig. 7(c)-(d) in [17]. The two distributions have the same mean and same
variance, so it is hard even for a human observer to separate the foreground
from the background. However, our method still gives good segmentation
results.
Test 3: In Fig. 3 and Fig. 4, we test our method with 3-phase image seg-
mentation and 4-phase image segmentation respectively. The segmentation
results are still satisfactory.
Test 4: In Fig. 5, three natural texture images are tested. Compared with
the results of the state-of-the-art works showed in Fig. 6, our results are also
satisfactory.

In Fig. 7, we illustrate the evolution of membership function with dif-
ferent initializations for the zebra image in Fig. 5(d). In Fig. 7(a) and
Fig. 7(e), we initialize u1 = 1 in the white circle, and otherwise u1 = 0. In
Fig. 7(i), we set the initial membership function u1 = I/255. In Fig. 7(m),
we choose the initial membership function randomly valued in [0,1]. Fig. 7
shows that our method is not sensitive to initialization which is a drawback
of active contour based method. However, the running time of the proposed
method depends on the initialization. Good initialization such as Fig. 7(a)
converges faster than other initializations. We remark that by experience,
the best initialization in terms of speed is obtained by choosing characteristic
function of a region inside the object to be segmented.
Test 5: In Fig. 8 and Fig. 9, we make comparison with our method and
some other methods for SAR image segmentation. SAR image segmentation
is usually said to be a complex problem in the pattern recognition area, due
to the presence of speckle derived from the coherency of the image formation
process. Fig. 8(a) is a SAR image of trees and grass which has been tested
in [15]. They point out that the accurate segmentation of such imagery is
quite challenging and cannot be accomplished using standard edge detection
algorithms. As illustrated in Fig. 8(b), our method can generate satisfactory
segmentation results. Compared with Fig. 8(d) which is the result of method
in [15], our method gives a more smooth membership function as shown in
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Fig. 8(c). Fig. 8(e) and Fig. 8(i) are two SAR images tested in [16]. The
segmentation results by the multiscale probability neural network method in
[16] are shown in Fig. 8(h) and Fig. 8(l). Our method gives more satisfactory
results in Fig. 8(g) since the small branches of river are better segmented
while in Fig. 8(h) many branches are broken. Our result in Fig. 8(k) has
a smooth boundary and is more accurate than Fig. 8(l). Fig. 8(m) is a
test SAR image contains Wujiang river in China which is tested in [12]. The
water area is extracted in Fig. 8(p) by their method. Our method gives
satisfactory segmentation results in Fig. 8(n) with a more accurate and
smoother boundary.

Fig. 9(a) shows a real MSTSAR SAR image of vehicle T72 which has
been tested in [12]. This image mainly contains three regions: background,
target and shadow. Fig. 9(b) shows the three-phase segmentation result
of our proposed method. Fig. 9(c) and Fig. 9(d) display the membership
functions u1 and u2. Our result is better than the result Fig. 9(d) by method
in [29] and competitive with the result Fig. 9(e) by method in [12].

5. Conclusion

A general multiphase fuzzy region competition model for texture image
segmentation is proposed in this paper. There are two novelties. One is that
a fuzzy membership function is introduced to represent a region for handling
multiphase segmentation. The other is the use of kernel density estimation
with optimal bandwidth to estimate the probability density function in each
region represented by the fuzzy membership function. The proposed method
is faster and easier to implement than the other curve evolution based meth-
ods. According to our experimental results, we find that our method is com-
petitive with other state-of-the-art segmentation methods for texture images
and SAR images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Two-phase image segmentation. The First column: synthetic images; the Second
column: segmentation results; the Third column: membership functions u1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Three-phase image segmentation. The First column: synthetic images; the
Second column: segmentation results; the Third column: membership functions u1; the
Fourth column: membership functions u2.
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(a) (b)

(c) (d) (e)

Figure 4: Four-phase image segmentation. (a) synthetic image; (b) segmentation result;
(c) membership function u1; (d) membership function u2; (d) membership function u3.

18



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Two-phase image segmentation. The First column: natural images; the Second
column: segmentation results; the Third column: membership functions u1

(a) (b) (c)

(d)

Figure 6: The Comparison. (a), (b) and (d) by the method in [25]; (c) by the method in
[20] with energy (3). 19



(a) initial (b) intermediate (c) intermediate (d) final

(e) initial (f) intermediate (g) intermediate (h) final

(i) initial (j) intermediate (k) intermediate (l) final

(m) initial (n) intermediate (o) intermediate (p) final

Figure 7: Evolution of the membership functions with different initializations on a zebra
image. The final results from top to bottom are obtained at iterations 105, 270, 150 and
240 respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 8: Two-phase SAR image segmentation. The First column: SAR images; the
Second column: segmentation results; the Third column: membership functions u1; the
Fourth column: segmentation results of the other methods: (d) by the method in [15]; (h)
and (l) by the method in [16]; (p) by the method in [12].
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(a) (b) (c) (d)

(e) (f)

Figure 9: Three-phase SAR image segmentation. (a) SAR image; (b) segmentation result
by the proposed method; (c) membership function u1; (d) membership function u2; (e)
segmentation result by method in [29]; (f) segmentation result by method in [12].
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