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When estimating loss distributions in insurance, large and small losses are usually split because it is
difficult to find a simple parametric model that fits all claim sizes. This approach involves determining
the threshold level between large and small losses. In this article, a unified approach to the estimation
of loss distributions is presented. We propose an estimator obtained by transforming the data set with
a modification of the Champernowne cdf and then estimating the density of the transformed data by
use of the classical kernel density estimator. We investigate the asymptotic bias and variance of the
proposed estimator. In a simulation study, the proposed method shows a good performance. We also
present two applications dealing with claims costs in insurance.
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1. Introduction

In finance and non-life insurance, estimation of loss distributions is a fundamental part
of the business. In most situations, losses are small, and extreme losses are rarely observed,
but the number and the size of extreme losses can have a substantial influence on the profit of
the company. Standard statistical methodology, such as integrated error and likelihood, does
not weigh small and big losses differently in the evaluation of an estimator. These evaluation
methods do not, therefore, emphasize an important part of the error: the error in the tail.

Practitioners often decide to analyse large and small losses separately, because no single,
classical parametric model fits all claim sizes. This approach leaves some important chal-
lenges: choosing the appropriate parametric model, identifying the best way of estimating the
parameters and determining the threshold level between large and small losses.
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This work presents a systematic approach to the estimation of loss distributions which is
suitable for heavy tailed situations. The proprosed estimator is obtained by transforming the
data set with a parametric estimator and afterwards estimating the density of the transformed
data set using the classical kernel density estimator [1, 2]

f̂ (y) = 1

Nb

N∑
i=1

K

(
y − Yi

b

)
,

where K is the kernel function, b is the bandwidth and Yi , i = {1, . . . , N} is the transformed
data set. The estimator of the original density is obtained by back-transformation of f̂ (y).
We will call this method a semiparametric estimation procedure because a parametrized
transformation family is used. We propose to use a transformation based on the little-known
Champernowne cdf, because it produces good results in all the studied situations and it is
straightforward to apply.

The semiparametric estimator with shifted power transformation was introduced by Wand
et al. [3] in 1991. They showed that the classical kernel density estimator was improved
substantially by applying a transformation and suggested the shifted power transformation
family. Bolancé et al. [4] improved the shifted power transformation for highly skewed data
by proposing an alternative parameter selection algorithm. The semiparametric estimator with
the Johnson family transformation function was studied by Yang and Marron [5]. Hjort and
Glad [6] advocated a semiparametric estimator with a parametric start, which is closely related
to the bias reduction method described by Jones et al. [7]. The Möbius-like transformation
was introduced by Clements et al. [8]. In contrast to the shifted power transformation, which
transforms (0, ∞) into (−∞, ∞), the Möbius-like transformation transforms (0, ∞) into
(−1, 1) and the parameter estimation method is designed to avoid boundary problems. Scaillet
[9] has recently studied non-parametric estimators for probability density functions which have
support on the non-negative real line using alternative kernels.

The original Champernowne distribution has density [10]

f (x) = c

x ((1/2)(x/M)−α + λ + (1/2)(x/M)α)
x ≥ 0, (1)

where c is a normalizing constant and α, λ and M are parameters. The distribution was men-
tioned for the first time in 1936 by D.G. Champernowne when he spoke on ‘The Theory of
Income Distribution’at the Oxford Meeting of the Econometric Society [11, 12] in 1936. Later,
he gave more details about the distribution [13], and its application to economics. When λ

equals 1 and the normalizing constant c equals (1/2)α, the density of the original distribution
is simply called the Champernowne distribution

f (x) = αMαxα−1

(xα + Mα)2

with cdf

F(x) = xα

xα + Mα
. (2)

The Champernowne distribution converges to a Pareto distribution in the tail, while looking
more like a lognormal distribution near 0 when α > 1. Its density is either 0 or infinity at 0
(unless α = 1).

In the transformation kernel density estimation method, if we transform the data with the
Champernowne cdf, the inflexible shape near 0 results in boundary problems. We argue that a
modification of the Champernowne with an additional parameter can solve this inconvenience.
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We did not choose to work with classical extensions of the Pareto distribution such as the
generalized Pareto distribution [14], GPD. The reason for doing so is that the GPD often
estimates distributions of infinite support to have finite support and hence it cannot be used as
a transformation. We carried out a small simulation study of a standard lognormal distribution;
more than half the time the GPD suggested a distribution with finite support. Furthermore,
the GPD needs a (hard to pick) threshold from where the distribution starts; such that the
transformation methodology meets problems also in the beginning of the distribution.

In this paper, we study the transformation kernel density estimation method. The conclu-
sion of the simulation study is that the new approach based on the modified Champernowne
distribution is the preferable method, because it is the only estimator which has a good per-
formance in most of the investigated situations. Section 2 describes the transformation family
and explains the parameter estimation procedure. Section 3 presents the semiparametric kernel
density estimator and its properties. In section 4, the simulation study is presented and section
5 shows two applications. Finally, section 6 outlines the main conclusions.

2. The modified Champernowne distribution function

We generalize the Champernowne distribution with a new parameter c. This parameter ensures
the possibility of a positive finite value of the density at 0 for all α.

DEFINITION 2.1 The modified Champernowne cdf is defined for x ≥ 0 and has the form

Tα,M,c(x) = (x + c)α − cα

(x + c)α + (M + c)α − 2cα
∀x ∈ R+ (3)

with parameters α > 0, M > 0 and c ≥ 0 and density

tα,M,c(x) = α(x + c)α−1((M + c)α − cα)

((x + c)α + (M + c)α − 2cα)2
∀x ∈ R+.

Corresponding to the Champernowne distribution, the modified Champernowne distribution
converges to a Pareto distribution in the tail:

tα,M,c(x) → α
(
((M + c)α − cα)1/α

)α

xα+1
as x −→ ∞.

The effect of the additional parameter c is different for α > 1 and for α < 1. The parameter
c has some ‘scale parameter properties’: when α < 1, the derivative of the cdf becomes larger
for increasing c, and conversely, when α > 1, the derivative of the cdf becomes smaller for
increasing c. When α �= 1, the choice of c affects the density in three ways. First, c changes
the density in the tail. When α < 1, positive cs result in lighter tails, and the opposite when
α > 1. Secondly, c changes the density in 0. A positive c provides a positive finite density
in 0:

0 < tα,M,c(0) = αcα−1

(M + c)α − cα
< ∞ when c > 0.

Thirdly, c moves the mode. When α > 1, the density has a mode, and positive cs shift the
mode to the left. We therefore see that the parameter c also has a shift parameter effect. When
α = 1, the choice of c has no effect.

Figure 1 illustrates the role of c: the two graphs on the top show the cdfs and the densities
for the modified Champernowne distribution for fixed α < 1 and M = 3. In the cdf plot, we
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Figure 1. Different shapes of the modified Champernowne distribution with different choices of α, as well as the
effect of the parameter c. In all plots c = 0, dashed line and c = 2, solid line.

see that increasing c results in lower values of the cdf in the interval [0, M) and higher values
of the cdf in the interval [M, ∞). In the density plot, we see that increasing c results in a
lighter tail and a finite density at 0. In the two graphs in the middle, we have fixed α = 1 and
M = 3. We see that changing c has no effect. The two graphs at the bottom illustrate the effect
of increasing c when α > 1, for M = 3. Notice that the values of the cdf become higher in
the interval [0, M) and lower in the interval [M, ∞). The density plot shows that positive cs
move the mode to the left and produce a heavier tail.

From a computational point of view, it is simpler to estimate M and then proceed to the
other parameters.

In the Champernowne distribution, we notice that Tα,M,0(M) = 0.5. The same holds for the
modified Champernowne distribution:Tα,M,c(M) = 0.5.This suggests thatM can be estimated
as the empirical median of the data set. The empirical median is a robust estimator, especially
for heavy-tailed distributions, as shown by Lehmann [15]. He studied the properties of the
median and the mean as an estimator of location for the normal distribution and the Cauchy
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distribution, and showed that whereas the mean works well as an estimator of location for the
normal distribution, it works poorly for the Cauchy distribution due to its heavy tail. Tukey [16]
reached the same conclusion when he studied the efficiency of the median and the mean. He
showed that the median efficiency increases as the tail becomes heavier. Corresponding models
have also been studied for heavy-tailed distributions [17–19]. A similar type of discussion for
the variance estimation was done by Hubert [20]. As we are especially concerned about heavy
tails, we consider the robustness of the median to be important.

After parameter M has been estimated as described earlier, the next step is to estimate the
pair (α, c) which maximizes the log likelihood function:

l (α, c) = N log α + N log ((M + c)α − cα) + (α − 1)

N∑
i=1

log(Xi + c)

− 2
N∑

i=1

log ((Xi + c)α + (M + c)α − 2cα) . (4)

For a fixed M , this likelihood function is concave and has a maximum.

3. The semiparametric transformation kernel density estimator

In this section, we will make a detailed derivation of the estimator based on the modified
Champernowne distribution, which we will call KMCE. The resulting estimator is obtained
by computing a non-parametric classical kernel density estimator for the transformed data set
and, finally, the result is back-transformed.

3.1 Transformation with the modified Champernowne distributions

Let Xi , i = 1, . . . , N, be positive stochastic variables with an unknown cdf F and density f .
The following describes in detail the transformation kernel density estimator of f , and figure 2
illustrates the four steps of the estimation procedure for a data set with 1000 observations
generated from a Weibull distribution. The resulting transformation kernel density estimator
of f based on the Champernowne distribution is denoted by KMCE.

(i) Calculate the parameters
(̂
α, M̂, ĉ

)
of the modified Champernowne distribution as

described in section 2 to obtain the transformation function. In the first plot in figure 2,
we see the estimated transformation function and the true Weibull distribution. Notice
that the modified Chapernowne density has a larger mode and that the tail is too heavy.

(ii) Transform the data set Xi , i = 1, . . . , N, with the transformation function, T :

Yi = Tα̂,M̂,̂c(Xi), i = 1, . . . , N.

The transformation function transforms data into the interval (0, 1), and the parameter
estimation is designed to make the transformed data as close to a uniform distribution as
possible. The transformed data are illustrated in the second plot in figure 2.
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Figure 2. Four steps of the KMCE estimator. a) The estimated transformation function (solid line) and the true
density (dashed line). b) The histogram of the transformed data set. c) The estimated classical kernel density estimator
of the transformed data set. d) The final KMCE estimator (solid line) and the true density (dashed line).

(iii) Calculate the classical kernel density estimator on the transformed data, Yi, i = 1, . . . , N :

f̂trans(y) = 1

Nky

N∑
i=1

Kb(y − Yi),

where Kb(·) = (1/b)K(·) and K(·) is the kernel function. The boundary correction, ky,

is required because the Yi are in the interval (0, 1) so that we need to divide by the integral
of the part of the kernel function that lies in this interval. The boundary correction ky is
defined as

ky =
∫ min(1,(1−y)/b)

max(−1,−y/b)

K(u) du.

The classical kernel density estimator of the transformed data set is illustrated in the third
plot in figure 2.

(iv) The classical kernel density estimator of the transformed data set results in the KMCE
estimator on the transformed scale. Therefore, the estimator of the density of the original
data set, Xi , i = 1, . . . , N is

f̂ (x) = f̂trans
(
Tα̂,M̂,̂c(x)

)∣∣∣∣(T −1
α̂,M̂,̂c

)′ (
Tα̂,M̂,̂c(x)

)∣∣∣∣ .
The KMCE results for the Weibull data set is seen in the last plot in figure 2.

The expression of the KMCE is

f̂ (x) = 1

N kTα̂,M̂,̂c(x)

N∑
i=1

Kb(Tα̂,M̂,̂c(x) − Tα̂,M̂,̂c(Xi))T
′
α̂,M̂,̂c

(x). (5)
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3.2 Asymptotic theory for the transformation kernel density estimator

In this section, we investigate the asymptotic theory of the transformation kernel density
estimator in general. We derive its asymptotic bias and variance.

THEOREM 3.1 Let X1, . . . , XN be independent identically distributed variables with density
f . Let f̂ (x) be the transformation kernel density estimator of f (x)

f̂ (x) = 1

N

N∑
i=1

Kb(T (x) − T (Xi))T
′(x),

where T (·) is the transformation function.
Then the bias and the variance of f̂ (x) are given by

E
[
f̂ (x)

] − f (x) = 1

2
µ2(K)b2

((
f (x)

T ′(x)

)′ 1

T ′(x)

)′
+ o(b2),

V
[
f̂ (x)

] = 1

Nb
R(K)T ′(x)f (x) + o

(
1

Nb

)
as N → ∞, where µ2(K) = ∫

u2K(u) du and R(K) = ∫
K2(u) du.

Proof We assume that X1, . . . , XN are independent identically distributed variables with
density f . Let f̂ (x) be the transformation kernel density estimator of f (x):

f̂ (x) = 1

N

N∑
i=1

Kb(T (x) − T (Xi))T
′(x),

where T (·) is the transformation function. Let the transformed variable have distribution g:

Yi = T (Xi) ∼ g(y) = f (T −1(y))

T ′(T −1(y))

and let ĝ(y) be the classical kernel density estimator of g(y):

ĝ(y) = 1

N

N∑
i=1

Kb(y − Yi).

The mean and variance of the classical kernel density estimator is

E [̂g(y)] = g(y) + 1

2
b2µ2(K)g′′(y) + o(b2), (6)

V [̂g(y)] = 1

Nb
R(K)g(y) + o

(
1

Nb

)
. (7)

The transformation kernel density estimator can be expressed by the standard kernel density
estimator:

f̂ (x) = T ′(x)ĝ(T (x))
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implying

E
[
f̂ (x)

] = T ′(x)E [̂g(T (x))]

= T ′(x)

(
g(T (x)) + 1

2
b2µ2(K)

∂2g(T (x))

∂(T (x))2
+ o(b2)

)
. (8)

Note that

g(T (x)) = f (x)

T ′(x)
,

∂g(T (x))

∂T (x)
=

(
f (x)

T ′(x)

)′ 1

T ′(x)
,

and

∂2g(T (x))

∂(T (x))2
=

((
f (x)

T ′(x)

)′ 1

T ′(x)

)′
1

T ′(x)

which are used to find the mean of the transformation kernel density estimator

E
[
f̂ (x)

] = f (x) + 1

2
b2µ2(K)

((
f (x)

T ′(x)

)′ 1

T ′(x)

)′
+ o(b2). (9)

The variance is calculated in a similar way

V
[
f̂ (x)

] = (T ′(x))2
V [̂g(T (x))]

= (T ′(x))2

(
1

Nb
R(K)g(T (x)) + o

(
1

Nb

))
= 1

Nb
R(K)T ′(x)f (x) + o

(
1

Nb

)
. (10)

It is known [21] that the classical kernel density estimator follows a normal distribution
asymptotically:

√
Nb (ĝ(y) − E [̂g(y)]) ∼ N

(
0,

1

Nb
R(K)g(y)

)
.

Then, as f̂ (x) = T ′(x)ĝ(y) with y = T (x), then

√
Nb

(
f̂ (x) − E

[
f̂ (x)

])
∼ N

(
0,

1

Nb
R(K)T ′(x)f (x)

)
.

For a parametric transformation T (x) = Tθ (x), if we assume that θ̂ is a square-root-n con-
sistent estimator of θ, then it follows that the asymptotic distribution of f̂ (x) with parametric
estimated transformation Tθ̂ (x), equals the asymptotic distribution of f̂ (x) with parametric
transformation Tθ (x).
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4. Simulation study

This section presents a comparison of our semiparametric method based on the modified
Champernowne distributions with two benchmark estimators. We simulate data from four
distributions with different tails and different shapes near 0. We measure the error between the
estimated density and the true density using four different error measures. In subsection 4.3,
we evaluate the performance of the KMCE estimators compared to the estimator described
by Clements et al. [8], in the following called CHL, and the estimator described by Bolancé
et al. [4], in the following called BGN.

4.1 The distributions

We have simulated four distributions with different characteristics: lognormal, lognormal–
Pareto, Weibull and truncated logistic. The lognormal distribution has a moderately light tail,
and when we mix the lognormal distribution with the Pareto distribution, which is a heavy-
tailed distribution, the resulting distribution is also heavy-tailed. The Weibull distribution is a
light-tailed distribution that starts at 0 and has a mode. The truncated logistic is a light-tailed
distribution that has a positive finite density at 0. The distributions and the chosen parameters
are listed in table 1 and figure 3 plots the densities to show the diversity of shapes.

4.2 Measuring the error

We measure the performance of the estimators by the error measures L1, L2, WISE and E.
Let f̂ (x) be the estimated density and f (x) be the true density. The L1 norm measures the
distance between the estimated density and the true density on the whole support.

L1 =
∫ ∞

0

∣∣f̂ (x) − f (x)
∣∣ dx.

We also calculate the L2 norm between the two distributions.

L2 =
(∫ ∞

0

(
f̂ (x) − f (x)

)2
dx

)1/2

.

Both L1 and L2 weigh errors of the estimator near 0 and in the tail equally, although the
consequences for some real-world situations of a poor estimation in the tail are much more
critical than the consequences of a poor estimation near 0.

Table 1. Distributions used in the simulation study.

Distribution Density for x > 0 Parameters

Lognormal (µ, σ 2) f (x) = 1√
2πσ 2x

e
− (log x−µ)2

2σ2 (µ, σ 2) = (0, 0.5)

Mixtures of p lognormal
(µ, σ ) and (1 − p)

Pareto (λ, ρ, c)

f (x) = p
1√

2πσ 2x
e
− (log x−µ)2

2σ2

+ (1 − p)(x − c)−(ρ+1)ρλρ

(p, µ, σ, λ, ρ, c) = (0.7, 0, 1, 1, 1, −1)

= (0.3, 0, 1, 1, 1, −1)

Weibull (γ ) f (x) = γ x(γ−1)e−xγ
γ = 1.5

Truncated logistic f (x) = 2
s

e
x
s

(
1 + e

x
s

)−2
s = 1
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Figure 3. Shape of the different distributions used in the simulation study. In plot b) 30% Pareto (solid line) and
70% Pareto (dashed line).

WISE weighs the distance between the estimated and the true distribution with the squared
value of x. This results in an error measure that emphasizes the tail of the distribution, which
is very relevant in practice when dealing with income or cost data.

WISE =
(∫ ∞

0

(
f̂ (x) − f (x)

)2
x2 dx

)1/2

.

The last error measure, E, calculates the distance between the estimated mean excess function
and the true mean excess function. It emphasizes the error in the tail as well.

E =
(∫ ∞

0
(̂e(x) − e(x))2 f (x) dx

)1/2

=
(∫ ∞

0

(∫ ∞

x

u
(
f (u) − f̂ (u)

)
du

)2

f (x) dx

)1/2

,

To calculate the error measures, we used the change of variable y = (x − M)/(x + M)

proposed by Clements et al. [8].

4.3 Comparison of the estimation methods

We compare the performance of the KMCE, the CHL and the BGN estimators. The comparison
is based on data simulated from the four distributions described in table 1, and four sample
sizes: N = 50, N = 100, N = 500 and N = 1000. Each combination of distribution and
sample size is replicated 2000 times. In tables 2 and 3, we show the means of the error
measures for the 2000 samples. We show the results obtained when using the rule of thumb
method [2] for bandwidth selection. We also investigated the Seather and Jones [22] method
and the conclusions do not change.
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Table 2. The estimated error measures for sample size 50 and 100 based on 2000 repetitions.

Log-Pareto

Log-normal p = 0.7 p = 0.3 Weibull Tr. Logist.

N = 50 L1 KMCE 0.1821 0.1713 0.1664 0.1855 0.1732
CHL 0.1811 0.1815 0.1860 0.1955 0.2009
BGN 0.1927 0.1860 0.1895 0.1852 0.1892

L2 KMCE 0.1402 0.1130 0.1099 0.1420 0.1065
CHL 0.1326 0.1311 0.1617 0.1338 0.1183
BGN 0.1456 0.1151 0.1267 0.1391 0.1257

WISE KMCE 0.1391 0.1139 0.1299 0.1178 0.1281
CHL 0.1316 0.1385 0.1693 0.1288 0.1546
BGN 0.1431 0.1347 0.1588 0.1217 0.1403

E KMCE 0.0373 0.0760 0.1474 0.0313 0.0480
CHL 0.0388 0.1109 0.2295 0.0359 0.0574
BGN 0.0402 0.0974 0.2024 0.0338 0.0523

N = 100 L1 KMCE 0.1363 0.1287 0.1236 0.1393 0.1294
CHL 0.1381 0.1412 0.1423 0.1533 0.1468
BGN 0.1451 0.1383 0.1413 0.1426 0.1578

L2 KMCE 0.1047 0.0862 0.0837 0.1084 0.0786
CHL 0.1018 0.1021 0.1244 0.1044 0.1000
BGN 0.1100 0.0855 0.0972 0.1079 0.0924

WISE KMCE 0.1039 0.0859 0.0958 0.0886 0.0977
CHL 0.1018 0.1068 0.1276 0.1029 0.1078
BGN 0.1093 0.1004 0.1191 0.0939 0.1241

E KMCE 0.0268 0.0572 0.1073 0.0224 0.0344
CHL 0.0289 0.0816 0.1677 0.0277 0.0391
BGN 0.0297 0.0716 0.1572 0.0255 0.0443

Table 3. The estimated error measures for sample size 500 and 1000 based on 2000 repetitions.

Log-Pareto

Log-normal p = 0.7 p = 0.3 Weibull Tr. Logist.

N = 500 L1 KMCE 0.0786 0.0676 0.0646 0.0831 0.0745
CHL 0.070 0.0786 0.0786 0.0869 0.0915
BGN 0.0761 0.0703 0.0761 0.0763 0.0791

L2 KMCE 0.0585 0.0480 0.0470 0.0676 0.0437
CHL 0.0560 0.0581 0.0685 0.0594 0.0591
BGN 0.0590 0.0454 0.0601 0.0588 0.0574

WISE KMCE 0.0585 0.0471 0.0517 0.0530 0.0598
CHL 0.0555 0.0587 0.0685 0.0604 0.0718
BGN 0.0579 0.0507 0.0686 0.0510 0.0585

E KMCE 0.0125 0.0306 0.0591 0.0111 0.0171
CHL 0.0143 0.0405 0.0808 0.0149 0.0235
BGN 0.0145 0.0342 0.0974 0.0129 0.0120

N = 1000 L1 KMCE 0.0659 0.0530 0.0507 0.0700 0.0598
CHL 0.0572 0.0606 0.0609 0.0688 0.0730
BGN 0.0684 0.0541 0.0584 0.0583 0.0587

L2 KMCE 0.0481 0.0389 0.0393 0.0582 0.0339
CHL 0.0435 0.0450 0.0528 0.0476 0.0521
BGN 0.0454 0.0360 0.0509 0.0453 0.0434

WISE KMCE 0.0481 0.0384 0.0417 0.0450 0.0501
CHL 0.0434 0.0453 0.0524 0.0478 0.0561
BGN 0.0448 0.0390 0.0539 0.0394 0.0437

E KMCE 0.0094 0.0251 0.0492 0.0084 0.0126
CHL 0.0107 0.0295 0.0588 0.0113 0.0178
BGN 0.0108 0.0255 0.0780 0.0096 0.0143
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For the moderately light-tailed lognormal, all three estimators exhibit good performance
in general. The KMCE and CHL estimators show the best performance. The CHL estimator
outperforms the KMCE estimator for all N , but it seems to outperform the KMCE estimator
near 0 rather than in the tail, as seen by the fact that the improvement obtained on L1 and L2

is greater than the improvement obtained on WISE and E. The BGN estimator also performs
well in this case. The performance of this estimator is only 3–4% worse than the performance
of the KMCE estimator.

For the heavy-tailed distributions, the KMCE estimator shows a significantly better perfor-
mance than the CHL and the BGN estimators. The performance of the CHL estimator is poor
compared to the KMCE estimator. For the 70% lognormal–30% Pareto, the KMCE estimator
outperforms the CHL estimator by about 15–20%, and the performance gap seems to become
larger when N increases. The largest performance gap occurs with WISE and E, which indi-
cates that the performance gap is mainly in the tail. The BGN estimator is also outperformed
by the KMCE estimator: the error measures are about 10% better for the KMCE estimator
than the BGN estimator for the 70% lognormal–30% Pareto, but the improvement seems to
go down when N increases.

The results for the 30% lognormal–70% Pareto are similar to the previous ones. The KMCE
estimator still outperforms the CHL and BGN estimators. This indicates that when the tail
becomes heavier, the benefits of using the KMCE estimator instead of the CHL and the
BGN estimators become greater. For the lognormal–Pareto distribution, the parameter c in the
KMCE estimator tends to 0 when N increases. Comparing the estimated αs for the KMCE
estimator, we observe that the αs are around 1.4–1.8 for the 70% lognormal–30% Pareto
distribution, whereas they are around 1.2–1.3 for the 30% lognormal–70% Pareto distribution.
This is due to the fact that the 30% lognormal–70% Pareto distribution has a heavier tail than
the 70% lognormal–30% Pareto distribution.

For the light-tailed Weibull distribution, we can see that the KMCE, the CHL and the BGN
estimators show good performance. The KMCE estimator is 5–20% worse on L2 compared to
the CHL estimator, and about 10% better with respect to WISE. This means that the KMCE
estimator near 0 is worse than the CHL estimator, whereas the KMCE estimator is better than
the CHL estimator in the tail. As compared to the BGN estimator, the KMCE estimator also
gives a similar performance.

For the truncated logistic distribution, the KMCE and the BGN estimators show good per-
formance. The bad performance of the CHL estimator is due to the fact that the transformation
functions in this case always starts at 0 when α > 1. The estimator therefore transforms the
true distribution, which has a positive value at 0, with a function that is 0 at 0, and this gives
a positive value divided by 0, which results in a bad fit near 0. We see that the CHL estimator
underestimates the true distribution around 0 for all values of N . The KMCE estimator also
underestimates the true density around 0, but when N increases, the error around 0 decreases.
We have also seen that the KMCE estimator overestimates the tail, which is because the
transformation function has a heavy Pareto tail.

The main conclusion of our simulation study is that the KMCE estimator is recommended
for heavy tailed situations.

We have designed the simulation study to be comparable to the simulation study in Clements
et al. [8]. They compared their estimator to the transformation kernel density estimator with the
modified-power transformation function proposed by Wand et al. [3], which we call WMR, and
the transformation kernel density estimator with the iterated transformation function suggested
by Yang and Marron [5], which we called YM. We can therefore use their simulation study to
compare our estimators and the BGN estimator with the WMR and the YM estimators, even
though the CHL simulation study only compares the L1 and the L2 error measures, and not
error measures that emphasize the tail.
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The CHL simulation study [8] shows that the CHL estimator performs well in general
compared with WMR andYM. But for some distributions, the CHL estimator is outperformed
by one of the other estimators. For the heavy-tailed 70% lognormal–30% Pareto distribution,
the CHL estimator is outperformed with respect to L2 by theYM estimator, but the performance
of the KMCE estimator in our simulation study is even better than that of the YM estimator
in the heavy-tail situation. For the Weibull distribution, the WMR estimator still gives very
good performance compared with both the CHL and KMCE estimators. On the other hand,
we are also able to make a comparison between the BGN estimator and the WMR and theYM
estimators: the BGN estimator outperforms the WMR and the YM estimator in all situations
investigated in the CHL simulation study.

5. Data study

In this section, we will apply our semiparametric estimation method to two data sets. The first
data set contains automobile claims from a Spanish insurance company, and the second data set
is about employer’s liability from an Irish insurance company. The first data set was analysed
in detail by Bolancé et al. [4]. It is a typical insurance claims amount data set: it contains a lot
of observations and it seems to be heavy-tailed. Unlike the automobile insurance, the liability
data set from Ireland is rather light-tailed. The reason is that claims are undeveloped, i.e., large
claims are underrepresented in this data set because they take longer to process.

5.1 Automobile claims

We study bodily injury payments from automobile accidents occurring in Spain in 1997.
The data are divided into two age groups: claims from policyholders who are less than 30
years old and claims from policyholders who are 30 years old or older. The first group of
the data set consists of 1061 observations in the interval [1; 126,000] with mean value 402.7.
The second group consists of 4061 observations in the interval [1; 17,000] with mean value
243.1. Estimation of the parameters in the modified Champernowne distribution function is for
young drivers α̂1 = 1.116, M̂1 = 66, ĉ1 = 0.000 and for older drivers α̂2 = 1.145, M̂2 = 68,
ĉ2 = 0.000, respectively. The bandwidths are b1 = 0.172 and b2 = 0.134. Figure 4 presents
the classical kernel density estimator of the transformed data separated in the two age groups.

We notice that α1 < α2, which indicates that the data set for young drivers has a heavier
tail than the data set for older drivers.

Figure 4. Classical kernel density estimator of the transformed automobile claims separated into policyholders
<30 years old and >30 years old from an insurance company.
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Figure 5. KMCE estimator of automobile claims from an insurance company, claims are separated into
policyholders <30 years old and >30 years old, split into three groups.

Figure 5 shows the resulting KMCE estimator for the two groups of policyholders. The
claims have been split into three categories: Small claims in the interval (0; 2000), moderately
sized claims in the interval [2000; 14,000), and extreme claims in the interval [14,000; ∞).
The figure illustrates that the tail in the estimated density of young policyholders is heavier
than the tail of the estimated density of older policyholders. This can be taken as evidence
that young drivers are more likely to claim a large amount so that they should pay a higher
premium than older drivers. Therefore, the method is useful to identify high risk groups, i.e.,
those having more extreme claims. The usefulness of the methodology is specially interesting
in this point. It allows to plot the estimated density in regions where data are scarce. If risk
groups (such as young drivers or type of vehicles) are plotted separately, the density estimates
inform about the risk orderings (i.e., which type of customers are likely to claim an extreme
cost).

5.2 Employer’s liability

In this section, we will apply our semiparametric estimation method to the costs of employer’s
liability from an Irish insurance company. The data set consists of 2522 claims. Here we want to
see the effect of not including the additional c parameter in the transformation. The estimation
of the parameters in the modified Champernowne distribution is α̂ = 1.955, M̂ = 32379.307,
ĉ = 64758.614 and bandwidth b = 0.147. When c is assumed equal to 0, then α̂ = 0.954 while
M̂ is the same because it corresponds to the sample median. Figure 6 presents the classical
kernel density estimator of the transformed data, using two different values of c.

In figure 7, we plot the estimators on the original scale. The estimators are nearly identical
for small and moderate claims (low costs), whereas the KMCE with c = 0 overestimated the
tail. This shows the importance of considering the modified Champernowne distribution.
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Figure 6. Classical kernel density estimation of the EL data transformed with estimated Champernowne (c = 0)
distribution (dashed line) and modified Champernowne (c > 0) distribution (solid line).

Figure 7. KMCE with c = 0 (dashed line) and KMCE with c > 0 (solid line) estimation of the EL data, separated
into three disjoint intervals.

6. Conclusion

In this work, we have introduced an alternative method for estimating loss distributions. The
method, which we have called a semiparametric transformation kernel density estimator, is
based on a parametric estimator that is subsequently corrected with a non-parametric estimator.
When we have a lot of information, the estimator is close to a non-parametric estimator, whereas
it is close to a parametric estimator when we have little information.

The Champernowne distribution has an inflexible shape near 0, and we have generalized
the distribution to the modified Champernowne distribution, which is heavy-tailed as well. We
have used this modification for the transformation kernel density estimator.

The KMCE estimator turns out to perform very well compared with existing transformation
kernel density estimators. The estimators were compared on simulated data. The KMCE
estimator is the only estimator that performed well for all distributions. Therefore, the KMCE
estimator is a basis for a unified approach that can be used for all kinds of data.

In insurance companies today, many analyses of loss distributions are based on parametric
estimation. Our results show that our proposed method can overcome many disadvantages:
in parametric estimation, the analyst must decide on a parametric model and a parameter
estimation method. Insurance data sets are often large and the true distribution of real data
rarely follows a simple known parametric distribution. We claim that there is no need to
separate small and large claims. We believe that the use of our unified method results in an
estimation of loss distributions that is very straightforward and can be useful in practice.
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