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Abstract. A kernel method is proposed to estimate the condensed density of the

generalized eigenvalues of pencils of Hankel matrices whose elements have a joint non-

central Gaussian distribution with nonidentical covariance. These pencils arise when the

complex exponentials approximation problem is considered in Gaussian noise. Several

moments problems can be formulated in this framework, and the estimation of the con-

densed density above is the main critical step for their solution. It is shown that the

condensed density satisfies approximately a diffusion equation, which allows us to esti-

mate an optimal bandwidth. It is proved by simulation that good results can be obtained

even when the signal-to-noise ratio is so small that other methods fail.

Introduction. Many difficult moments problems such as the trigonometric, the com-

plex, and the Hausdorff ones can be formulated as the complex exponentials approxima-

tion problem (CEAP), which can be stated as follows, denoting random variables by

bold characters. Given a uniformly sampled signal made up of a linear combination of

complex exponentials

sk =

p∗∑
j=1

cjξ
k
j , (0.1)

where cj , ξj ∈ C, let us assume to know an even number n = 2p, p ≥ p∗ of noisy samples

dk = sk + εk, k = 0, 1, 2, . . . , n− 1

where εk is a complex Gaussian, zero mean, white noise, with finite known variance

σ2. The CEAP problem consists of estimating p∗, cj , ξj , j = 1, . . . , p∗. This is a well-

known ill-posed inverse problem often addressed in the literature; see, e.g., [15,17,18,23].

More specifically, in [12, 13], a method based on the solution of many CEAP problems

was developed to reconstruct high resolution Magnetic Resonance (MR) images from

a small set of data, cutting the permanence time of a patient in the MR machine by

Received June 20, 2012.
2010 Mathematics Subject Classification. Primary 62G07, 41A30.
Key words and phrases. Condensed density, random matrices, parabolic PDE.
E-mail address: p.barone@iac.cnr.it, piero.barone@gmail.com

c©2014 Brown University
Reverts to public domain 28 years from publication

291

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/qam/
http://www.ams.org/jourcgi/jour-getitem?pii=S0033-569X-2014-01333-4


292 PIERO BARONE

a factor of about three and improving spatial resolution at the same time. The basic

idea was that a statistical approach based on replicated measurements could overcome

the bad reputation of standard methods to solve the CEAP. We then developed several

techniques to generate pseudosamples from the only measured sample and exploited the

strong nonlinearity of the critical parameters ξj to build powerful estimation methods

[4–11,20,22,24]. In this paper a new method is proposed to estimate a density function,

related to the nonlinear parameters ξj , which turns out to be the basic stone of all the

above quoted methods.

We notice that, in the noiseless case and when p = p∗, the parameters ξj are the

generalized eigenvalues of the pencil (U1, U0) where U1 and U0 are Hankel matrices

defined as

U0 =

⎡
⎢⎢⎣

s0 s1 . . . sp−1

s1 s2 . . . sp
. . . . . .

sp−1 sp . . . sn−2

⎤
⎥⎥⎦ , U1 =

⎡
⎢⎢⎣

s1 s2 . . . sp
s2 s3 . . . sp+1

. . . . . .

sp sp+1 . . . sn−1

⎤
⎥⎥⎦ . (0.2)

If we define U0 and U1 as U0 and U1 but start from dk, k = 0, . . . , n−1, it is evident that

the generalized eigenvalues of the pencil (U1,U0) provide information about the location

in the complex plane of the generalized eigenvalues ξj , j = 1 . . . , p, whose estimation is

the most difficult part of CEAP.

To make precise this statement, let us consider a p× p random matrix U and denote

by {ξj , j = 1, . . . , p} its eigenvalues which form a set of exchangeable random variables.

Their marginal density h(z), z ∈ C, also called condensed density [21], is the expected

value of the (random) normalized counting measure on the zeros of U, i.e.,

h(z) =
1

p
E

⎡
⎣ p∑
j=1

δ(z − ξj)

⎤
⎦

or, equivalently, for all Borel sets A ⊂ C,∫
A

h(z)dz =
1

p

p∑
j=1

Prob(ξj ∈ A).

If a pencil U = (U1,U0) of random matrices is considered, the condensed density of

its generalized eigenvalues can be computed by the formula above. Its relative maxima

provide information about the location in the complex plane of the generalized eigenvalues

ξj , j = 1 . . . , p. In [4–6], the use of this function for solving several moments problems was

illustrated. However, when the signal-to-noise ratio (SNR) measured, e.g., by SNR =

minj
|cj |2
σ2 is low, the computation of the condensed density is very difficult even if we

assume to have replicated observations as we do in the following. The main problem is

that many relative maxima related to noise are present in the condensed density which

are slightly less intense than those related to the true signals. As we are interested only

in signal-related relative maxima of the condensed density, we look for an estimation

method with noise-filtering abilities.

The aim of the paper is to show that it is possible to devise a kernel density estimation

method which does have such properties. In [2], the same project was developed for
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the real exponentials approximation problem which is better known as the exponential

analysis problem. The idea was to use a method proposed by Botev et al. [14], based on a

class of kernels which satisfy a diffusion PDE, which allows us to automatically estimate

the optimal bandwidth. It was shown that the generalized eigenvalues of the pencil U

can be approximated by the ratio of Gaussian variables whose density satisfies a specific

diffusion PDE. In the limit for SNR ↓ ∞, this PDE belongs to the class considered in

[14] and their method can be used.

In the following, a different approach is proposed. An explicit expression of the con-

densed density is derived and approximated by the Laplace method. Then an anisotropic

diffusion PDE is derived which admits the approximated condensed density as a solution

in the limit for σ ↓ 0. Finally, an optimal bandwidth is derived on the same lines of

the Botev et al. results. We can then propose an estimator which has better filtering

abilities than the standard one based on Gaussian kernel.

The paper is organized as follows. In Section 1, the condensed density of the gener-

alized eigenvalues of U is derived. In Section 2, its Laplace approximation is computed.

In Section 3, the anisotropic diffusion PDE is derived. In Section 4, the kernel estima-

tor and the optimal bandwidth are computed. In Section 5, the proposed algorithm is

illustrated. Finally in Section 6, two numerical examples are discussed. The Appendix

contains the proof of most theorems and lemmas.

1. The condensed density of the generalized eigenvalues of U . From [6, eq.(7)]

the condensed density of the generalized eigenvalues of U is

hn(z, σ) =
2

n
E

⎡
⎣n/2∑
j=1

δ(z − ξj)

⎤
⎦ =

2

n

n/2∑
j=1

E
[
δ(z − ξj)

]
=

2

n

n/2∑
j=1

h(j)
n (z, σ)

where

h(j)
n (z, σ) =

1

(πσ2)n

∫
Cn/2−1

∫
Cn/2

J∗
C(ζ

(j), z, γ)e
− 1

σ2

∑n−1
k=0

∣
∣
∣
∑1,n/2

h �=j γhζ
k
h+γjz

k−sk

∣
∣
∣
2

dζ(j)dγ,

ζ(j) = {ζh, h �= j}, and

J∗
C(ζ

(j), z, γ) =

{
γ if n = 2,

(−1)n/2
∏1,n/2

j=1 γj
∏

r<h;r,h �=j(ζr − ζh)
4
∏

r �=j(ζr − z)4 if n ≥ 4.

In the following Lemmas we give simpler forms and properties of the condensed density.

Lemma 1.1.

h(j)
n (z, σ) =

1

(πσ2)n

∫
Cn/2−1

∫
Cn/2

J∗
Ce

− 1
σ2 [(γ−μ

j
)HQj(γ−μ

j
)+νj ]dζ(j)dγ,

J∗
C = J∗

C(ζ
(j), z, γ), μ

j
= μ

j
(ζ(j), z), Qj = Qj(ζ

(j), z), νj = νj(ζ
(j), z),

and

x
(j)
hk =

{
ζk−1
h , h �= j

zk−1, h = j
, s = [s0, . . . , sn−1],

Xj(h, k) = x
(j)
hk , qj = Xjs, Xj ∈ C

n/2×n, Qj = XjX
H
j ∈ C

n/2×n/2,
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μ
j
= Q−1

j q
j
, νj =

n−1∑
k=0

|sk|2 − μH
j
Qjμj

= sH(In −XH
j (XjX

H
j )−1Xj)s.

Lemma 1.2. If

X(h, k) = ξ
k−1

h , s = XHc, ν(ξ) = sH(In −XH(XXH)−1X)s,

then ν(ξ) = 0.

Proof. ν(ξ) = sH(In −XH(XXH)−1X)s = cHX(In −XH(XXH)−1X)XHc = 0.

Lemma 1.3. When n = 2, the condensed density is given by

h
(1)
2 (z, σ) = e

−ρ
|z−ξ1|2

1+|z|2

(
ρ|1 + zξ1|2
π(1 + |z|2)3 +

1

π(1 + |z|2)2

)

where ρ = |c1|2
σ2 denotes the SNR.

Lemma 1.4. When n > 2,

h(j)
n (z, σ) =

∫
Rn−2

fj(ζ
(j), z)

∏
r<h;r,h �=j |ζr − ζh|8

∏
r �=j |ζr − z|8

(πσ2)n/2|Q̃j(ζ
(j), z)| 12

e−
1
σ2 νj(ζ

(j),z)d�ζ(j)d	ζ(j)

where

fj(ζ
(j), z, σ) = E

⎡
⎣1,n/2∏

i=1

γ̃TAiγ̃

⎤
⎦ , Ai = I2 ⊗ eie

T
i .

E denotes the expectation with respect to the Gaussian density N
(
μ̃
j
,Σj

)
where Σj =

σ2

2 Q̃−1
j ,

Q̃j =

[
�Qj −	Qj

	Qj �Qj

]
,

and γ̃, μ̃
j
are obtained by stacking the real and imaginary parts of γ and μ

j
respectively.

Lemma 1.5.

fj(ζ
(j), z, σ) = Pn/2(σ

2, z) =

n/2∑
h=0

βh(ζ
(j), z)

σ2h

2hDn−h
j

where βh(ζ
(j), z) are positive polynomials and Dj = det(Q̃j). Moreover,

β0(ζ
(j), z) =

n/2∏
i=1

q̃T
j
Q̂jAiQ̂j q̃j ,

and βn/2(ζ
(j), z) is the only coefficient that does not depend on s.

Corollary 1.6. When n > 2,

h(j)
n (z̃, σ) =

∫
Rn−2

gj(ζ̃
(j)

, z̃, σ)e−
1
σ2 νj(ζ̃

(j)
,z̃)dζ̃

(j)
(1.1)
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where z̃ and ζ̃
(j)

are the vectors obtained by stacking the real and imaginary parts of z

and ζ(j) respectively, and

gj(ζ̃
(j)

, z̃, σ) =
1

σnπn/2

n/2∑
k=0

σ2k

2k
βk(ζ̃

(j)
, z̃)

∏
r<h;r,h �=j |ζ̃r − ζ̃h|8

∏
r �=j |ζ̃r − z̃|8

D
n−k+ 1

2
j (ζ̃

(j)
, z̃)

.

Corollary 1.7. When n > 2, ∀j = 1, . . . , n/2,

h(j)
n (z̃,∞) = h(1)

n (z̃,∞)

=
1

(2π)n/2

∫
Rn−2

βn/2(ζ̃
(1)

, z̃)

∏
r<h;r,h �=1 |ζ̃r − ζ̃h|8

∏
r �=1 |ζ̃r − z̃|8

D
n+1
2

1 (ζ̃
(1)

, z̃)
dζ̃

(1)
.

Moreover, this is also the condensed density obtained when s = 0, i.e., when c = 0 and

it is circularly symmetric, i.e., it depends only on |z̃|2.

2. The Laplace approximation of the condensed density. The expression of

the condensed density given in Corollary 1.6 can be approximated in the limit for σ ↓ 0

as follows.

Theorem 2.1. In the limit for σ ↓ 0 for z̃ ∈ Nj where Nj is a neighbor of ξj , we have

h(j)
n (z̃, σ) ≈ ĥ(j)

n (z̃, σ) = σ−2Gj(ζ̂
(j)

, z̃)e−
1
σ2 νj(ζ̂

(j)
,z̃) (2.1)

where

Gj(ζ̂
(j)

, z̃) = (2π)
n
2 −1|Hj(ζ̂j , z̃)|

− 1
2Kj(ζ̂j , z̃)

Kj(ζ̃
(j)

, z̃) =
1

π
n
2
β0(ζ̃

(j)
, z̃)

∏
r<h;r,h �=j |ζ̃r − ζ̃h|8

∏
r �=j |ζ̃r − z̃|8

D
n+ 1

2

j (ζ̃
(j)

, z̃)
.

Hj is the Hessian of νj , ζ̂j is the unique minimum of νj(ζ̃
(j)

, ξj) in a neighbor Dj of

{ξh, h �= j}, and β0(ζ̃
(j)

, z̃) is given in Lemma 1.5.

3. The diffusion equation. In [6, Th. 2] it was proved that hn(z, σ) converges

weakly to the positive measure 2
n

∑p
h=1 δ(z − ξh) when σ ↓ 0. By the definition of

h
(j)
n (z, σ), the same proof implies that h

(j)
n (z, σ) converges weakly to δ(z−ξj). Moreover,

from Corollary 1.2 we know that for σ ↓ ∞, h
(j)
n (z, σ) converges to a density independent

of ξ. Therefore we can guess that when σ moves from 0 to ∞, h
(j)
n (z, σ) diffuses from an

atomic measure centered in ξj to a measure circularly symmetric w.r. to zero. We then

look for a diffusion equation which admits ĥ
(j)
n (z, σ) as solution for σ ↓ 0.

Let us define z = x+ iy and consider the anisotropic diffusion ht = L[h] where

L[h](x, y, t) = div

[
aj(x, y)∇

(
h(x, y, t)

p(x, y)

)]
, (3.1)

p(x, y) = h
(j)
n (x, y,∞) is the stationary probability density, and aj(x, y) > 0 is the un-

known diffusion coefficient. Substituting h(x, y, t) in the equation above with ĥ
(j)
n (x, y, σ),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



296 PIERO BARONE

t = σ2 where now σ is considered as a variable (not a fixed known value), and dropping

the indices j, n and the variables (x, y), we get

Ce−
ν
t

p3

(
E1

t
+

E2

t2
+

E3

t3

)
= 0 (3.2)

where

E1 = −ayGyp
2 − axGxp

2 + ayGpyp+ axGpxp+ 2ap (Gypy +Gxpx)

− a (Gyy +Gxx) p
2 + aG (pyy + pxx) p− 2aG

(
p2y + p2x

)
,

E2 = ayGp2νy + axGp2νx + 2aGyp
2νy + 2aGxp

2νx − 2aGpypνy

− 2aGpxpνx + aGp2 (νyy + νxx)−Gp3,

E3 = −aGp2ν2y − aGp2ν2x +Gp3ν.

In the limit for t ↓ 0, the dominant term on the left side of the equation is Ce−
ν
t

p3
E3

t3 ;

therefore, the equation is approximately satisfied when E3 = 0 or, equivalently, when

a(x, y) =
p(x, y)ν(x, y)

νx(x, y)2 + νy(x, y)2
> 0.

In the following Lemma we prove that the Csiszár distance between h(x, y, t) and

p(x, y), defined as

D(h, p) =

∫
R2

p(x, y)Ψ

(
h(x, y, t)

p(x, y)

)
dxdy, Ψ ∈ C2 : R+ → R

+, Ψ′′(·) > 0, Ψ′(1) = 0,

is a monotonic decreasing function of t; therefore, h(x, y, t) tends monotonically to p(x, y)

when t ↓ ∞.

Lemma 3.1.

∂D(h, p)

∂t
= −

∫
R2

a(x, y)Ψ′′
(
h(x, y, t)

p(x, y)

)∥∥∥∥∇
(
h(x, y, t)

p(x, y)

)∥∥∥∥
2

2

dxdy < 0.

4. The kernel estimator. Given a sample of size R of the data

d(r) = [d
(r)
1 , . . . ,d(r)

n ], r = 1, . . . , R

where E[d
(r)
k ] = sk, we consider the kernel estimator of h

(j)
n (z, t) with bandwidth t given

by

h(j)
n (x, y, t) =

1

R

R∑
r=1

Φj(x, y, ζj(r); t)

where Φj(x, y, ζj(r); t) is a solution of the diffusion equation (3.1) at time t with initial

condition δ(z−ζj(r)) and ζj(r), j = 1, . . . , n/2 are the generalized eigenvalues obtained

from the data d(r). Hence h
(j)
n (x, y, t) is a solution of the diffusion equation (3.1) at time

t with initial condition

Ej(x, y) =
1

R

R∑
r=1

δ(z − ζj(r)). (4.1)
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Therefore Ej(x, y) is the empirical distribution of the generalized eigenvalue ζj and

E[Ej(z)] =
1

R

R∑
r=1

∫
C

δ(z − ζ)h(j)
n (ζ)dζ = h(j)

n (z)

where h
(j)
n (z) is the unknown true density corresponding to the known fixed value of σ.

In order to find the optimal bandwidth, we need the form of the kernel Φj(x, y,d
(r); t)

for t ↓ 0. By construction, dropping the index r, we have

Φj(x, y, ζ; t) = ĥ(j)
n (x, y, t) = t−1Gj(x, y, ζ)e

− 1
t νj(x,y,ζ), t ↓ 0.

Associated to the anisotropic diffusion (3.1), there exists a Markov process Xt whose

transition probabilities are given, when t ↓ 0, by Φj(z, ζ; t). Moreover, when the initial

density of X0 is δ(z − ζ), the density of Xt is ([16, eq. (5.1), Ch.X.5])

Φj(z, ζ; t) =

∫
C

Φj(z, u; t)δ(u− ζ)du.

Therefore the kernel Φj(z, ζ; t), ∀ζ and t > 0, satisfies the forward equation{
∂Φj

∂t (z, ζ; t)− L[Φj(z, ζ; t)] = 0

Φj(z, ζ; 0) = δ(z − ζ)
. (4.2)

Moreover, the conditional expectation of δ(u − Xt) on the hypothesis that X0 = z is

([16, eq. (4.5), Ch.X.4])

Φj(z, ζ; t) =

∫
C

Φj(u, ζ; t)δ(u− z)du

and therefore the kernel Φj(z, ζ; t), ∀z and t > 0, satisfies the backward equation{
∂Φj

∂t (z, ζ; t)− L∗[Φj(z, ζ; t)] = 0

Φj(z, ζ; 0) = δ(z − ζ)
(4.3)

where

L[Φj(z, ζ; t)] = divz

[
aj(z)∇z

(
Φj(z, ζ; t)

pj(z)

)]
i.e.

L[Φj(z, ζ; t)] = aj(z)Δz

[
Φj(z, ζ; t)

pj(z)

]
+ (∇zaj(z))

T∇z

[
Φj(z, ζ; t)

pj(z)

]
and

L∗[Φj(z, ζ; t)] = Δζ

[
aj(ζ)

Φj(z, ζ; t)

pj(ζ)

]
− divζ

[
Φj(z, ζ; t)

pj(ζ)
∇ζaj(ζ)

]
is the adjoint operator of L, and divz and ∇z denote respectively the divergence and the

gradient operators w.r. to the variable z.

The mean integrated squared error (MISE) criterion to determine an optimal band-

width t is given, dropping the index n, by

MISEh(j)(t) = Eh(j)

∫
C

[h(j)(z, t)− h(j)(z, t)]2dz
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or

MISEh(j)(t) =

∫
C

[Eh(j){h(j)(z, t)} − h(j)(z)]2dz +

∫
C

V arh[h
(j)(z, t)]dz.

Following Botev et al. [14], we have

Theorem 4.1. ∫
C

[Eh(j){h(j)(z, t)} − h(j)(z)]2dz ≈ t2‖L[h(j)]‖2

∫
C

V arh[h
(j)(z, t)]dz ≈ 1

2Rt
Eh(j) [Gj ].

The MISE is then

MISEh(j)(t) ≈ t2‖L[h(j)]‖2 + 1

2Rt
Eh(j) [Gj ]

which has a unique real positive minimum in

tj =
3

√
Eh(j) [Gj ]

4R‖L[h(j)]‖2 . (4.4)

The optimal kernel estimator of h
(j)
n (z, t) is then given by

h(j)
n (z, tj) =

1

R

R∑
r=1

Φj(z, ζj(r); tj),

and the optimal kernel estimator of hn(z, t) is given by

hn(z, t1, . . . , tn/2) =
2

n

n/2∑
j=1

h(j)
n (z, tj). (4.5)

5. The algorithm. In the following, we assume that the generalized eigenvalues

ζ
(r)
j , j = 1 . . . n/2 of the pencils [U

(r)
1 , U

(r)
0 ]—where the Hankel matrices U

(r)
0 , U

(r)
1 are

based on d
(r)
k —have been computed for each r = 1, . . . , R and clustered in such a way

that for each j = 1 . . . n/2 the j-th cluster is the set {ζ(r)j , r = 1, . . . , R} whose elements

are independent realizations of the r.v. ζj . The k-means method [19] can be used to

solve the clustering problem.

In order to use the optimal kernel estimator given in eqs. 4.4 and 4.5, for each

j = 1 . . . n/2 and r = 1, . . . , R, we need to solve the initial value problem obtained

by eq. 3.1 in the limit for σ ↓ 0 with initial condition given in eq. 4.1. By using

the transformation h̃(x, y, t) = h(x,y,t)
p(x,y,t) , the equation ht = L[h] can be rewritten as

h̃t =
1
pdiv

[
a∇

(
h̃
)]

. Therefore the initial value problems are

⎧⎨
⎩

∂Φjr

∂t = 1
p

(
ΔΦjr + ax

∂Φjr

∂x + ay
∂Φjr

∂y

)
Φjr(x, y, 0) =

Ej(x,y)
p(x,y)

(5.1)
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where Δ is the Laplacian operator, Ej(x, y) is the empirical distribution of the generalized

eigenvalue ζj , and

a(x, y; j, r) =
p(x, y)νjr(x, y)(

∂νjr

∂x (x, y)
)2

+
(

∂νjr

∂y (x, y)
)2 , νjr(x, y) = ŝH(In −XH

jr(XjrX
H
jr)

−1Xj)ŝ

where

ŝ =
1

R

R∑
r=1

d(r), Xjr(h, k) = x
(jr)
hk , x

(jr)
hk =

⎧⎨
⎩

(
ζ
(r)
h

)k−1

, h �= j

zk−1, h = j
.

The density p(x, y) = h
(j)
n (x, y,∞) is circularly symmetric (Cor. 1.7). Moreover, a closed

form model of its modulus for each n can be found in [7].

The initial value problems were solved by a collocation method described in [25] in a

mx ×my non-uniform grid. For each (j, r) the solution was approximated by the tensor

product of Chebyshev polynomials in each spatial variable. Fast Fourier transform was

used to compute the spatial derivatives. The resulting non-linear ODE system

w′(t) = F (t, w(t)), w(0) = e, w(t), e ∈ R
mxmy

was then solved by MATLAB’s built-in function ode45.m, where F is the discretized

right-hand side of Eq. 5.1 and e is the discretization of Ej(x, y). The method is fast

and stable provided that some spurious oscillations of the spatial derivatives close to the

border of the integration region are filtered out. This task is accomplished by multiplying

the derivatives by the function

F (x, y) = [arctan{(x̃+γ)/φ}−arctan{(x̃−γ)/φ}][arctan{(ỹ+γ)/φ}−arctan{(ỹ−γ)/φ}]

where

x̃ = π(x− xmin)/(xmax − xmin)− π/2, ỹ = π(y − ymin)/(ymax − ymin)− π/2

and γ and φ are suitable positive parameters.

To compute the optimal bandwidth, Eh(j) [Gj ] is estimated by the sample mean of

Gj(ζ, z); i.e., if the computed generalized eigenvalues are denoted by ζ
(r)
j , then

Eh(j) [Gj ] ≈
1

R

R∑
r=1

∫
R2

Gj(ζ
(r)
j , x, y)ĥ(j)

n

(
ζ
(r)
j , x, y

)
dxdy

≈ tj
R

R∑
r=1

mx∑
h=1

my∑
k=1

[Φjr(xh, yk, tj)]
2
e

νjr(ζ(r)j
,xh,yk)

tj δx(h)δy(k)

where δx(h) = xh − xh−1, δx(1) = δx(2), δy(k) = yk − yk−1, and δy(1) = δy(2).

Moreover,

‖L[h(j)
n ]‖2 ≈

∥∥∥∥∂Φjr

∂t

∥∥∥∥
2

≈ 1

R

R∑
r=1

mx∑
h=1

my∑
k=1

[
∂Φjr(xh, yk, ζ

(r)
j , tj)

∂t

]2

δx(h)δy(k).

To compute Eh(j) [Gj ] and ‖L[h(j)]‖2, we first need an estimate of tj which can be provided

e.g. by the variance t̂j of the generalized eigenvalues in each cluster.
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6. Numerical results. In order to appreciate the advantages of the proposed kernel

estimator, two numerical experiments were performed with different SNRs. R = 10

independent realizations d
(r)
k = sk + ε

(r)
k , k = 1, . . . , n, r = 1, . . . , R of the r.v. dk were

generated from the complex exponentials model with p∗ = 5 components given by

ξ =
[
e−0.1−i2π0.3, e−0.05−i2π0.28, e−0.0001+i2π0.2, e−0.0001+i2π0.21, e−0.3−i2π0.35

]

c = [6, 3, 1, 1, 20] , n = 74, p = 37, σ = 1, σ = 3.

We notice that the frequencies of the 4th and 5th components are closer than the Nyquist

frequency if n < 1/(0.21− 0.20) = 100. Therefore, a super-resolution problem has to be

solved. To speed up the computations, we limit the analysis of the condensed density to

two regions containing respectively the first and second components and the third and

fourth ones. The fifth component is isolated with a large amplitude; therefore, it is easy

to identify even if its decay is fast. The considered regions are the rectangles defined

by Ω = Ωx × Ωy where Ωx = [−0.8, 0.4], Ωy = [−1.4,−0.4] for the first region and

Ωx = [−0.1, 0.6], Ωy = [0.5, 1.3] for the second one. A mesh of size mx = 64, my = 64

was considered. The values γ = 1.6, φ = 0.02 of the derivatives filter were selected by

trial and error.

In order to apply the proposed method, a pilot density estimate was first computed

by the closed form approximation method given in [4]:

ĥ(z) ∝
N∑
r=1

p∑
k=1

Δ̂

{
Ψ

[(
R

(r)
kk (z)

2

σ2β
+ 1

)]}

where R(r)(z) is the R-factor of the QR factorization of the matrix U
(r)
1 − zU

(r)
0 and

β = 5nσ2 [3, Prop. 6]. Then the generalized eigenvalues of the pencils [U
(r)
1 , U

(r)
0 ], r =

1, . . . , R were pooled and the k-means method of clustering was applied with the number

of clusters equal to the number of relative maxima of the pilot estimate.

For comparison, a Gaussian kernel estimate of density was also computed by Algorithm

1 in [14, App. E].

In Figure 1, the results obtained for the first region when σ = 1 are plotted: the

empirical density (top left), the pilot density computed by the closed form approximation

method (top right), the Gaussian kernel estimate (bottom left) and the result obtained

by the proposed method (bottom right). In Figure 2, the same results are plotted for the

second region. In Figures 3 and 4, the results obtained when σ = 3 are reported. The

positions of the true complex exponentials are marked by a cross. It can be noticed that

the proposed method is able to identify the two true complex exponentials even in the

worst case, filtering out most of the spurious peaks of the empirical condensed density.

Even if the location of the peaks is not perfect, it is the only method which is able to

provide a reasonable solution to the super-resolution problem in the second region, and

also for the smallest SNR considered.
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Fig. 1. First region, σ = 1. The empirical density (top left), the
pilot density computed by the closed form approximation method
(top right), the Gaussian kernel estimate (bottom left) and the result
obtained by the proposed method (bottom right).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



302 PIERO BARONE

empirical
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Fig. 2. Second region, σ = 1. The empirical density (top left), the
pilot density computed by the closed form approximation method
(top right), the Gaussian kernel estimate (bottom left) and the result
obtained by the proposed method (bottom right).
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empirical
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Fig. 3. First region, σ = 3. The empirical density (top left), the
pilot density computed by the closed form approximation method
(top right), the Gaussian kernel estimate (bottom left) and the result
obtained by the proposed method (bottom right).
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empirical
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Fig. 4. Second region, σ = 3. The empirical density (top left), the
pilot density computed by the closed form approximation method
(top right), the Gaussian kernel estimate (bottom left) and the result
obtained by the proposed method (bottom right).

Appendix.

Proof of Lemma 1.1. Let us find μ
j
∈ Cn/2, Qj ∈ Cn/2×n/2 and νj ∈ C such that

n−1∑
k=0

∣∣∣∣∣∣
1,n/2∑
h �=j

γhζ
k
h + γjz

k − sk

∣∣∣∣∣∣
2

= (γ − μ
j
)HQj(γ − μ

j
) + νj .

We have

n−1∑
k=0

∣∣∣∣∣∣
1,n/2∑
h �=j

γhζ
k
h + γjz

k − sk

∣∣∣∣∣∣
2

=
n−1∑
k=0

∣∣∣∣∣∣
1,n/2∑

h

γhx
(j)
hk − sk

∣∣∣∣∣∣
2

.

Choosing μ
j
, Qj and νj as defined in the text of the Lemma, we get the result.

Proof of Lemma 1.3. From Lemma 1.1 we have

h
(1)
2 (z, σ) =

1

(πσ2)2

∫
C

γe−
1
σ2 [(γ−μ1)

HQ1(γ−μ1)+ν1]dγ
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where X1 = [1 z], Q1 = 1 + |z2|, μ1 = s0+zs1
1+|z2| , ν1 = |s0|2 + |s1|2 − |s0+zs1|2

1+|z2| ; therefore

h
(1)
2 (z, σ) =

1

(πσ2)2
e−

1
σ2 ν1

∫
C

γe−
(γ−μ1)H (γ−μ1)(1+|z2|)

σ2 dγ

=
1

(πσ2)2
e−

1
σ2 ν1

∫
R2

|γ|2e−
(γ−μ1)H (γ−μ1)(1+|z2|)

σ2 d�γd	γ

=
1

(πσ2)2
e−

1
σ2 ν1

πσ2

1 + |z|2

(
|μ1|2 +

σ2

1 + |z|2

)
.

If ξ = s1
s0
, then

ν1 = |s0|2
|z − ξ|2
1 + |z|2 , |μ1|2 = |s0|2

|1 + zξ|2
(1 + |z|2)2

and

h
(1)
2 (z, σ) = e

− |s0|2

σ2
|z−ξ|2
1+|z|2

(
|s0|2|1 + zξ|2
πσ2(1 + |z|2)3 +

1

π(1 + |z|2)2

)
.

But s0 = c1 and s1 = c1ξ1; hence ξ1 = ξ, and we get the thesis.

Proof of Lemma 1.4. By considering the vector μ̃
j
obtained by stacking the real and

imaginary parts of μ
j
and the real isomorph Q̃j of the matrix Qj , and remembering

that the Jacobian with respect to the real and imaginary part of a complex variable is

JR = |JC |2, we get from Lemma 1.1 for n > 2

h(j)
n (z, σ) =

1

(πσ2)n

∫
Rn−2

∫
Rn

|J∗
C |2e

− 1
σ2 [(γ̃−μ̃

j
)HQ̃j(γ̃−μ̃

j
)+νj ]dγ̃d�ζ(j)d	ζ(j)

=
1

(πσ2)n

∫
Rn−2

∫
Rn

1,n/2∏
j=1

|γj |2
∏

r<h;r,h �=j

|ζr − ζh|8

·
∏
r �=j

|ζr − z|8e−
1
σ2 [(γ̃−μ̃

j
)HQ̃j(γ̃−μ̃

j
)+νj ]dγ̃d�ζ(j)d	ζ(j).

By defining

fj(ζ
(j), z, σ) =

1

(πσ2)n/2|Q̃−1
j | 12

∫
Rn

⎛
⎝1,n/2∏

i=1

γ̃TAiγ̃

⎞
⎠ e

− 1
σ2 (γ̃−μ̃

j
)HQ̃j(γ̃−μ̃

j
)
dγ̃

and noticing that

|γi|2 = γ̃TAiγ̃,

we have

h(j)
n (z, σ) =

∫
Rn−2

fj(ζ
(j), z)

∏
r<h;r,h �=j |ζr − ζh|8

∏
r �=j |ζr − z|8

(πσ2)n/2|Q̃j(ζ
(j), z)| 12

e−
1
σ2 νjd�ζ(j)d	ζ(j),

and the thesis follows.
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Proof of Lemma 1.5. By considering the normalized vectors y
j
= Σ

− 1
2

j γ̃, we have

y
j
∼ N

(
mj , I

)
where

mj = Σ
− 1

2

j μ̃
j
=

√
2

σ
Q̃

1/2
j Q̃−1

j q̃
j
=

√
2

σ
Q̃

−1/2
j q̃

j
=

√
2

σD
1/2
j

Q̂
1/2
j q̃

j

where Dj = det(Q̃j) and Q̂j = adj(Q̃j). Moreover,

γ̃HAiγ̃ = (Σ
− 1

2
j γ̃)TΣ

1
2
j AiΣ

1
2
j Σ

− 1
2

j γ̃ = yT
j
Σ

1
2
j AiΣ

1
2
j yj = yT

j
Biyj

where

Bi = Σ
1
2

j AiΣ
1
2

j =
σ2

2
Q̃

−1/2
j AiQ̃

−1/2
j =

σ2

2Dj
Q̂

1/2
j AiQ̂

1/2
j .

From [1, Th. 1], denoting by Qi the quadratic form yT
j
Biyj , we have the recursion

fj(ζ
(j), z, σ) = E

⎡
⎣1,n/2∏

i=1

Qi

⎤
⎦ =

n/2−1∑
i=0

2i
n/2∑
j1=2

· · ·
n/2∑
ji=2

(
gj1...jiE

[Q2 . . .Qn/2

Qj1 . . .Qji

])

where for i = 0, g = mTB1m+ tr(B1) = E[Q1] and for i > 0, j1 �= j2 �= · · · �= ji and

gj1...ji = mT (B1Bj1 . . . Bji +Bj1B1Bj2 . . . Bji + · · ·+Bj1Bj2 . . . BjiB1)m

+ tr(B1Bj1 . . . Bji).

But then

gj1...ji =
σ2(i−1)

2i−1Di+1
j

q̃T
j
Aq̃

j
+

σ2i

2iDi
j

tr(A1Q̂jAj1Q̂j . . . AjiQ̂j)

gj1...ji =
σ2i

2iDi
j

(
2

σ2Dj
Q̂

1/2
j q̃T

j
Aq̃

j
+ tr(A1Q̂jAj1Q̂j . . . AjiQ̂j)

)
where

A = Q̂jA1Q̂jAj1Q̂j . . . Q̂jAjiQ̂j+Q̂jAj1Q̂jA1Q̂jAj2Q̂j . . . AjiQ̂j+· · ·+Q̂jAj1Q̂j . . . Aji

· Q̂jA1Q̂j .

We have

E[Q1] =
1

D2
j

q̃T
j
Q̂jA1Q̂j q̃j +

σ2

2Dj
tr(A1Q̂j)

E[Q1Q2] = E[Q1]E[Q2] + 4mT
j B1B2mj + 2tr(B1B2)

=
1

D4
j

q̃T
j
Q̂jA1Q̂j q̃j q̃

T
j
Q̂jA2Q̂j q̃j

+
σ2

2D3
j

(
q̃T
j
Q̂jA1Q̂j q̃jtr(A2Q̂j) + q̃T

j
Q̂jA2Q̂j q̃jtr(A1Q̂j) + q̃T

j
Q̂jAiQ̂jAiQ̂j q̃j

)

+
σ4

4D2
j

(
tr(A1Q̂j)tr(A2Q̂j) + tr(A1Q̂jA2Q̂j)

)
and, in general,

fj(ζ
(j), z, σ) = Pn/2(σ

2, z) =

n/2∑
h=0

βh(ζ
(j), z)

σ2h

2hDn−h
j
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where βh(ζ
(j), z) are positive polynomials. Moreover, βn/2(ζ

(j), z) is the only coefficient

that does not depend on q̃
j
and therefore it does not depend on s.

Proof of Corollary 1.6. By Lemma 1.4,

h(j)
n (z, σ) =

∫
Rn−2

fj(ζ
(j), z)

∏
r<h;r,h �=j |ζr − ζh|8

∏
r �=j |ζr − z|8

(πσ2)n/2|Q̃j(ζ
(j), z)| 12

e−
1
σ2 νjd�ζ(j)d	ζ(j) =

1

σnπn/2

n/2∑
k=0

σ2k

2k

∫
Rn−2

βk(ζ
(j), z)

∏
r<h;r,h �=j |ζr − ζh|8

∏
r �=j |ζr − z|8

D
n−k+ 1

2

j

e−
1
σ2 νjd�ζ(j)d	ζ(j).

Noting that |ζr − ζh|8 = |ζ̃r − ζ̃h|8 and |ζr − z|8 = |ζ̃r − z̃|8, we get the thesis.

Proof of Corollary 1.7. Noticing that in the definition of gj(ζ̃
(j)

, z̃, σ), when σ ↓ ∞,

all terms vanish but the last one, and we get the first part of the thesis. By Lemma 1.5

βn/2(ζ̃
(j)

, z̃) is the only coefficient which does not depend on s. Therefore, when s = 0,

Equation 1.1 reduces to h
(j)
n (z̃,∞). Finally, by symmetry, the condensed density does

not depend on j; therefore, all h
(j)
n (z̃,∞) must be equal. Moreover, in [7], it was proved

that, when s = 0, it depends only on |z̃|2.
Proof of Theorem 2.1. We recall that if

I =

∫
y∈D

K(y)e−λν(y)dy, D open set ⊂ R
d, λ ∈ R

+

and ν(y) has a unique minimum in D and this minimum occurs at a stationary point ŷ

of ν(y), then the Laplace’s approximation to I is given by

Ĩ = (2π)
d
2 λ− d

2 |H(ŷ)|− 1
2K(ŷ)e−λν(ŷ)

where H(y) is the Hessian of ν.

We know that νj ≥ 0 and, by Lemma 1.2, ξ is the only vector such that νj(ξ) =

0. Therefore by continuity, νj(ζ̃
(j)

, ξj) has a unique minimum ζ̂
j
in a neighbor Dj of

{ξh, h �= j}. Moreover, from Corollary 1.6, we notice that the dominant term in the sum

defining gj(ζ̃
(j)

, z̃, σ) when σ ↓ 0 is the first one; therefore, in this case

gj(ζ̃
(j)

, z̃, σ) ≈ 1

σnπn/2
β0(ζ̃

(j)
, z̃)

∏
r<h;r,h �=j |ζ̃r − ζ̃h|8

∏
r �=j |ζ̃r − z̃|8

D
n+ 1

2
j (ζ̃

(j)
, z̃)

=
1

σn
Kj(ζ̃

(j)
, z̃).

Then by using Laplace’s approximation with λ = 1
σ2 and d = n− 2, we have, for z̃ ∈ Nj

where Nj is a neighbor of ξj ,

ĥ(j)
n (z̃, σ) =

1

σn

∫
Dj

Kj(ζ̃
(j)

, z̃)e−
1
σ2 νj(ζ̃

(j)
,z̃)dζ̃

(j)

≈ σ−2(2π)
n
2 −1|Hj(ζ̂j , z)|

− 1
2Kj(ζ̂j , z̃)e

− 1
σ2 νj(ζ̂

j
,z̃)

(6.1)

where Hj is the Hessian of νj . For simplicity, we will denote this approximation by the

same symbol ĥ
(j)
n (z, σ). Let us define

Gj(ζ̂
(j)

, z̃) = (2π)
n
2 −1|Hj(ζ̂j , z̃)|

− 1
2Kj(ζ̂j , z̃);
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then

ĥ(j)
n (z̃, σ) = σ−2Gj(ζ̂

(j)
, z̃)e−

1
σ2 νj(ζ̂

(j)
,z̃). (6.2)

Proof of Lemma 3.1.

∂D(h, p)

∂t
=

∫
R2

p(x, y)
∂

∂t

[
Ψ

(
h(x, y, t)

p(x, y)

)]
dxdy =

∫
R2

Ψ′
(
h(x, y, t)

p(x, y)

)
ht(x, y)dxdy =

∫
R2

Ψ′
(
h(x, y, t)

p(x, y)

)
div

[
a(x, y)∇

(
h(x, y, t)

p(x, y)

)]
dxdy.

Integrating by parts we get

∂D(h, p)

∂t
=

∫
R2

div

[
Ψ′

(
h(x, y, t)

p(x, y)

)
a(x, y)∇

(
h(x, y, t)

p(x, y)

)]
dxdy

−
∫
R2

∇
[
Ψ′

(
h(x, y, t)

p(x, y)

)]
· a(x, y)∇

(
h(x, y, t)

p(x, y)

)
dxdy,

where · denotes scalar product. By the divergence theorem, the first integral is zero

because Ψ′(1) = 0. Moreover,

∇
[
Ψ′

(
h(x, y, t)

p(x, y)

)]
= ψ′′

(
h(x, y, t)

p(x, y)

)
∇
(
h(x, y, t)

p(x, y)

)
.

Proof of Theorem 4.1.

∂Eh(j){h(j)(z, t)}
∂t

=

∫
C

∂Φj

∂t
(z, ζ; t)h(j)(ζ)dζ =

∫
C

L∗[Φj(z, ζ; t)]h
(j)(ζ)dζ.

By definition of adjoint operator, taking into account that limz→∞ Φj(z, ζ; t) = 0, we get

for t ↓ 0

∂Eh(j){h(j)(z, t)}
∂t

=

∫
C

L∗[Φj(z, ζ; t)]h
(j)(ζ)dζ =

∫
C

Φj(z, ζ; t)L[h
(j)(ζ)]dζ.

But limt→0 Φj(z, ζ; t) = δ(z − ζ). Hence∫
C

Φj(z, ζ; t)L[h
(j)(ζ)]dζ ≈ L[h(j)(z)], t ↓ 0.

By considering the first-order Taylor series approximation of Eh(j){h(j)(z, t)}, we get

Eh(j){h(j)(z, t)} = Eh(j){h(j)(z, 0)}+ t
∂Eh(j){h(j)(z, t)}

∂t
|t=0 +O(t2),

but

Eh(j){h(j)(z, 0)} =

∫
C

Φj(z, ζ; 0)h
(j)(ζ)dζ =

∫
C

δ(z − ζ)h(j)(ζ)dζ = h(j)(z).

Hence

Eh(j){h(j)(z, t)} = h(j)(z) + tL[h(j)(z)] +O(t2)

and ∫
C

[Eh(j){h(j)(z, t)} − h(j)(z)]2dz ≈
∫
C

[tL[h(j)(z)]]2dz = t2‖L[h(j)]‖2.

For approximating the integrated variance, let us consider first the second moment

Eh(j){Φj(z, ζ; t)
2} =

∫
C

Φj(z, ζ; t)
2h(j)(ζ)dζ =

∫
C

t−2Gj(z, ζ)
2e−

2
t νj(z,ζ)h(j)(ζ)dζ.
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But it was proved in [6, Th. 2] that

lim
t→0

2

t
Gj(z, ζ)e

− 2
t νj(z,ζ) = δ(z − ζ).

Hence, for t ↓ 0,

Eh(j){Φj(z, ζ; t)
2} ≈ 1

2

∫
C

t−1Gj(z, ζ)δ(z − ζ)h(j)(ζ)dζ =
1

2
t−1Gj(z, z)h

(j)(z).

As ζj(r) are independent ∀r, it follows that

V arh[h
(j)(z, t)] = V arh

[
1

R

R∑
r=1

Φj(x, y, ζj(r); t)

]
=

1

R2

R∑
r=1

V arh
[
Φj(x, y, ζj(r); t)

]

=
1

R
Eh(j) [Φj(x, y, ζj(r); t)

2]− 1

R
(Eh(j) [Φj(x, y, ζj(r); t)])

2

≈ 1

2Rt
Gj(z, z)h

(j)(z)− (h(j)(z) + tL[h(j)(z)])2 ≈ 1

2Rt
Gj(z, z)h

(j)(z)

because for t ↓ 0 the second term is negligible w.r. to the first one and∫
C

V arh[h
(j)(z, t)]dz ≈ 1

2Rt

∫
C

Gj(z, z)h
(j)(z)dz =

1

2Rt
Eh(j) [Gj ].
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