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Abstract. When applied to high-dimensional pattern classification tasks such as
face recognition, traditional kernel discriminant analysis methods often suffer from
two problems: 1) small training sample size compared to the dimensionality of the
sample (or mapped kernel feature) space, and 2) high computational complexity.
In this chapter, we introduce a new kernel discriminant learning method, which
attempts to deal with the two problems by using regularization and subspace de-
composition techniques. The proposed method is tested by extensive experiments
performed on real face databases. The obtained results indicate that the method
outperforms, in terms of classification accuracy, existing kernel methods, such as
kernel Principal Component Analysis and kernel Linear Discriminant Analysis, at a
significantly reduced computational cost.
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1 Introduction

Statistical learning theory tells us essentially that the difficulty of an esti-
mation problem increases drastically with the dimensionality J of the sample
space, since in principle, as a function of J , one needs exponentially many pat-
terns to sample the space properly [18, 32]. Unfortunately, in many practical
tasks such as face recognition, the number of available training samples per
subject is usually much smaller than the dimensionality of the sample space.
For instance, a canonical example used for face recognition is a 112×92 image,
which exists in a 10304-dimensional real space. Nevertheless, the number of
examples per class available for learning is not more than ten in most cases.
This results in the so-called small sample size (SSS) problem, which is known
to have significant influences on the performance of a statistical pattern recog-
nition system (see e.g. [3, 5, 9, 12,13,16,21,33,34]).



When it comes to statistical discriminant learning tasks such as Linear Dis-
criminant Analysis (LDA), the SSS problem often gives rise to high variance
in the estimation for the between- and within-class scatter matrices, which are
either poorly- or ill-posed. To address the problem, one popular approach is to
introduce an intermediate Principal Component Analysis (PCA) step to re-
move the null spaces of the two scatter matrices. LDA is then performed in the
lower dimensional PCA subspace, as it was done for example in [3, 29]. How-
ever, it has been shown that the discarded null spaces may contain significant
discriminatory information [10]. To prevent this from happening, solutions
without a separate PCA step, called direct LDA (D-LDA) approaches have
been presented recently in [5,12,34]. The underlying principle behind the ap-
proaches is that the information residing in (or close to) the null space of the
within-class scatter matrix is more significant for discriminant tasks than the
information out of (or far away from) the null space. Generally, the null space
of a matrix is determined by its zero eigenvalues. However, due to insufficient
training samples, it is very difficult to identify the true null eigenvalues. As
a result, high variance is often introduced in the estimation for the zero (or
very small) eigenvalues of the within-class scatter matrix. Note that the eigen-
vectors corresponding to these eigenvalues are considered the most significant
feature bases in the D-LDA approaches [5, 12,34].

In this chapter, we study statistical discriminant learning algorithms in
some high-dimensional feature space, mapped from the input sample space
by the so-called “kernel machine” technique [18, 22, 25, 32]. In the feature
space, it is hoped that the distribution of the mapped data is simplified, so
that traditional linear methods can perform well. A problem with the idea is
that the dimensionality of the feature space may be extremely higher than
that of the sample space, resulting in the introduction of the SSS problem, or
the worse if it has existed. In addition, kernel-based algorithms are generally
much more computationally expensive compared to their linear counterparts.
To address these problems, we introduce a regularized discriminant analysis
method in the kernel feature space. This method deals with the SSS problem
under the D-LDA framework of [12, 34]. Nevertheless, it is based on a modi-
fied Fisher’s discriminant criterion specifically designed to avoid the unstable
problem with the approach of [34]. Also, a side-effect of the design is that
the computational complexity is significantly reduced compared to other two
popular kernel methods, kernel PCA (KPCA) [26] and kernel LDA (GDA) [2].
The effectiveness of the presented method is demonstrated in the face recog-
nition application.

2 Kernel-based Statistical Pattern Analysis

In the statistical pattern recognition tasks, the problem of feature extraction
can be stated as follows: Assume that we have a training set, Z = {Zi}C

i=1,
containing C classes with each class Zi = {zij}Ci

j=1 consisting of a number of



examples zij ∈ R
J , where R

J denotes the J-dimensional real space. Taking
as input such a set Z, the objective of learning is to find, based on opti-
mization of certain separability criteria, a transformation ϕ which produces
a feature representation yij = ϕ(zij), yij ∈ R

M , intrinsic to the objects of
these examples with enhanced discriminatory power.

2.1 Input Sample Space vs Kernel Feature Space

The kernel machines provide an elegant way of designing nonlinear algorithms
by reducing them to linear ones in some high-dimensional feature space F

nonlinearly related to the input sample space R
J :

φ : z ∈ R
J → φ(z) ∈ F (1)

Fig. 1. A toy example of two-class pattern classification problem [27]. Left: samples
lie in the 2-D input space, where it needs a nonlinear ellipsoidal decision boundary
to separate classes A and B. Right: Samples are mapped to a 3-D feature space,
where a linear hyperplane can separate the two classes.

The idea can be illustrated by a toy example depicted in Fig.1, where
two-dimensional input samples, say z = [z1, z2], are mapped to a three-
dimensional feature space through a nonlinear transform: φ : z = [z1, z2] →
φ(z) = [x1, x2, x3] :=

[
z2
1 ,
√

2z1z2, z
2
2

]
[27]. It can be seen from Fig.1 that in

the sample space, a nonlinear ellipsoidal decision boundary is needed to sep-
arate classes A and B, in contrast with this, the two classes become linearly
separable in the higher-dimensional feature space.

The feature space F could be regarded as a “linearization space” [1]. How-
ever, to reach this goal, its dimensionality could be arbitrarily large, possibly
infinite. Fortunately, the exact φ(z) is not needed and the feature space can
become implicit by using kernel machines. The trick behind the methods is to



replace dot products in F with a kernel function in the input space R
J so that

the nonlinear mapping is performed implicitly in R
J . Let us come back to the

toy example of Fig.1, where the feature space is spanned by the second-order
monomials of the input sample. Let zi ∈ R

2 and zj ∈ R
2 be two examples in

the input space, and the dot product of their feature vectors φ(zi) ∈ F and
φ(zj) ∈ F can be computed by the following kernel function, k(zi, zj), defined
in R

2,

φ(zi) · φ(zj) =
[
z2
i1,

√
2zi1zi2, z

2
i2

] [
z2
j1,

√
2zj1zj2, z

2
j2

]T

=
(
[zi1, zi2] [zj1, zj2]

T
)2

= (zi · zj)2 =: k(zi, zj)
(2)

From this example, it can be seen that the central issue to generalize a
linear learning algorithm to its kernel version is to reformulate all the compu-
tations of the algorithm in the feature space in the form of dot product. Based
on the properties of the kernel functions used, the kernel generation gives rise
to neural-network structures, splines, Gaussian, Polynomial or Fourier expan-
sions, etc. . Any function satisfying Mercer’s condition [17] can be used as a
kernel. Table 1 lists some of the most widely used kernel functions, and more
sophisticated kernels can be found in [24,27,28,36].

Table 1. Some of the most widely used kernel functions, where z1, z2 ∈ R
J .

Gaussian RBF k(z1, z2) = exp
(

−||z1−z2||2
σ2

)
, σ ∈ R

Polynomial k(z1, z2) = (a(z1 · z2) + b)d, a ∈ R, b ∈ R, d ∈ N

Sigmoidal k(z1, z2) = tanh(a(z1 · z2) + b), a ∈ R, b ∈ R

Inverse multiquadric 1/
√‖z1 − z2‖2 + σ2, σ ∈ R

2.2 Kernel Principal Component Analysis (KPCA)

To find principal components of a non convex distribution, the classic PCA
has been generalized to the kernel PCA (KPCA) [26]. Given the nonlinear
mapping of Eq.1, the covariance matrix of the training sample Z in the feature
space F can be expressed as

S̃cov =
1
N

C∑
i=1

Ci∑
j=1

(φ(zij) − φ̄)(φ(zij) − φ̄)T (3)

where N =
∑C

i=1 Ci, and φ̄ = 1
N

∑C
i=1

∑Ci

j=1 φ(zij) is the average of the en-
semble in F. The KPCA is actually a classic PCA performed in the feature
space F. Let g̃m ∈ F (m = 1, 2, · · · ,M) be the first M most significant eigen-
vectors of S̃cov, and they form a low-dimensional subspace, called “KPCA
subspace” in F. All these {g̃m}M

m=1 lie in the span of {φ(zij)}zij∈Z , and have



g̃m =
∑C

i=1

∑Ci

j=1 aijφ(zij), where aij are the linear combination coefficients.
For any input pattern z, its nonlinear principal components can be obtained
by the dot product, ym = g̃m · (φ(z) − φ̄), computed indirectly through a
kernel function k().

2.3 Generalized Discriminant Analysis (GDA)

As such, Generalized Discriminant Analysis (GDA, also known as kernel LDA)
[2] is a process to extract a nonlinear discriminant feature representation by
performing a classic LDA in the high-dimensional feature space F. Let S̃b and
S̃w be the between- and within-class scatter matrices in the feature space F

respectively, and they have following expressions:

S̃b =
1
N

C∑
i=1

Ci(φ̄i − φ̄)(φ̄i − φ̄)T (4)

S̃w =
1
N

C∑
i=1

Ci∑
j=1

(φ(zij) − φ̄i)(φ(zij) − φ̄i)T (5)

where φ̄i = 1
Ci

∑Ci

j=1 φ(zij) is the mean of class Zi. In the same way as LDA,
GDA determines a set of optimal nonlinear discriminant basis vectors by max-
imizing the standard Fisher’s criterion:

Ψ̃ = arg max
Ψ̃

∣∣∣Ψ̃T S̃bΨ̃
∣∣∣∣∣∣Ψ̃T S̃wΨ̃
∣∣∣ , Ψ̃ = [ψ̃1, · · · , ψ̃M ], ψ̃m ∈ F (6)

Similar to KPCA, the GDA-based feature representation of an input pattern
z can be obtained by a linear projection in F, ym = ψ̃m · z.

From the above presentation, it can be seen that KPCA and GDA are
based on the exactly same optimization criteria to their linear counterparts,
PCA and LDA. Especially, KPCA and GDA reduce to PCA and LDA, re-
spectively, when φ(z) = z. As we know, LDA optimizes the low-dimensional
representation of the objects with focus on the most discriminant feature ex-
traction while PCA achieves simply object reconstruction in a least-square
sense. The difference may lead to significantly different orientations of feature
bases as shown in Fig.2:Left, where it is not difficult to see that the represen-
tation obtained by PCA is entirely unsuitable for the task of separating the
two classes. As a result, it is generally believed that when it comes to solving
problems of pattern classification, the LDA-based feature representation is
usually superior to the PCA-based one [3, 5, 34].



Fig. 2. PCA vs LDA in different learning scenarios. Left: given a large size sample
of two classes, LDA finds a much better feature basis than PCA for the classification
task. Right: given a small size sample of two classes, LDA gets over-fitting, and is
outperformed by PCA [15].

3 Discriminant Learning in Small-Sample-Size Scenarios

For simplicity, we start the discussion with the linear case of discriminant
learning, i.e. LDA, which optimizes the criterion of Eq.6 in the sample space
R

J . This is equivalent to setting φ(z) = z during the GDA process.

3.1 The Small-Sample-Size (SSS) problem

As mentioned in Section 1, the so-called Small-Sample-Size (SSS) problem is
often introduced when LDA is carried out in some high-dimensional space.
Compared to the PCA solution, the LDA solution is much more susceptible
to the SSS problem given the same training set, since the latter requires
many more training samples than the former due to the increased number
of parameters needed to be estimated [33]. Especially when the number of
available training samples is less than the dimensionality of the space, the
two scatter matrix estimates, S̃b and S̃w, are highly ill-posed and singular.
As a result, the general belief that LDA is superior to PCA in the context
of pattern classification may not be correct in the SSS scenarios [15]. The
phenomenon of LDA over-fitting the training data in the SSS settings can be
illustrated by a simple example shown in Fig.2:Right, where PCA yields a
superior feature basis for the purpose of pattern classification [15].

3.2 Where are the optimal discriminant features?

When S̃w is non-singular, the basis vectors Ψ̃ sought in Eq.6 correspond to
the first M most significant eigenvectors of (S̃−1

w S̃b), where the “significant”



means that the eigenvalues corresponding to these eigenvectors are the first
M largest ones. However, due to the SSS problem, often an extremely singular
S̃w is generated when N � J . Let us assume that A and B represent the null
spaces of S̃b and S̃w respectively, while A′ = R

J −A and B′ = R
J −B denote

the orthogonal complements of A and B. Traditional approaches attempt to
solve the problem by utilizing an intermediate PCA step to remove A and
B. LDA is then performed in the lower dimensional PCA subspace, as it was
done for example in [3,29]. Nevertheless, it should be noted at this point that
the maximum of the ratio in Eq.6 can be reached only when

∣∣∣Ψ̃T S̃wΨ̃
∣∣∣ = 0 and∣∣∣Ψ̃T S̃bΨ̃

∣∣∣ �= 0. This means that the discarded null space B may contain the
most significant discriminatory information. On the other hand, there is no
significant information, in terms of the maximization in Eq.6, to be lost if A
is discarded. It is not difficult to see at this point that when Ψ̃ ∈ A, the ratio
|Ψ̃T S̃bΨ̃|
|Ψ̃T S̃wΨ̃| drops to its minimum value, 0. Therefore, many researchers consider

the intersection space (A′ ∩ B) to be spanned by the optimal discriminant
feature bases [5, 10].

Based on the above ideas, Yu and Yang proposed the so-called direct LDA
(YD-LDA) approach in order to prevent the removal of useful discriminant
information contained in the null space B [34]. However, it has been recently
found that the YD-LDA performance may deteriorate rapidly due to two
problems that may be encountered when the SSS problem becomes severe [13].
One problem is that the zero eigenvalues of the within-class scatter matrix are
used as possible divisors, so that the YD-LDA process can not be carried out.
The other is that the worse of the SSS situations may significantly increase the
variance in the estimation for the small eigenvalues of the within-class scatter
matrix, while the importance of the eigenvectors corresponding to these small
eigenvalues is dramatically exaggerated.

The discussions given in these two Sections are based on LDA carried out
in the sample space R

J . When LDA comes to the feature space F, it is not
difficult to see that the SSS problem becomes worse essentially due to the
much higher dimensionality. However, GDA, following traditional approach,
attempts to solve the problem simply by removing the two null spaces, A and
B. As a result, it can be known from the above analysis that some significant
discriminant information may be lost inevitably due to such a process.

4 Regularized Kernel Discriminant Learning (R-KDA)

To address the problems with the GDA and YD-LDA methods in the SSS
scenarios, a regularized kernel discriminant analysis method, named R-KDA,
is developed here.



4.1 A regularized Fisher’s criterion

To this end, we first introduce a regularized Fisher’s criterion [14]. The cri-
terion, which is utilized in this work instead of the conventional one (Eq.6),
can be expressed as follows:

Ψ̃ = arg max
Ψ̃

∣∣∣Ψ̃T S̃bΨ̃
∣∣∣∣∣∣η(Ψ̃T S̃bΨ̃) + (Ψ̃T S̃wΨ̃)

∣∣∣ (7)

where 0 ≤ η ≤ 1 is a regularization parameter. Although Eq.7 looks different
from Eq.6, it can be shown that the modified criterion is exactly equivalent
to the conventional one by the following theorem.

Theorem 1. Let R
J denote the J-dimensional real space, and suppose that

∀ψ ∈ R
J , u(ψ) ≥ 0, v(ψ) ≥ 0, u(ψ) + v(ψ) > 0 and 0 ≤ η ≤ 1. Let

q1(ψ) = u(ψ)
v(ψ) and q2(ψ) = u(ψ)

η·u(ψ)+v(ψ) . Then, q1(ψ) has the maximum (in-
cluding positive infinity) at point ψ∗ ∈ R

J iff q2(ψ) has the maximum at
point ψ∗.

Proof. Since u(ψ) ≥ 0, v(ψ) ≥ 0 and 0 ≤ η ≤ 1, we have 0 ≤ q1(ψ) ≤ +∞
and 0 ≤ q2(ψ) ≤ 1

η .

1. If η = 0, then q1(ψ) = q2(ψ).
2. If 0 < η ≤ 1 and v(ψ) = 0, then q1(ψ) = +∞ and q2(ψ) = 1

η .
3. If 0 < η ≤ 1 and v(ψ) > 0, then

q2(ψ) =
u(ψ)
v(ψ)

1 + η u(ψ)
v(ψ)

=
q1(ψ)

1 + ηq1(ψ)
=

1
η

(
1 − 1

1 + ηq1(ψ)

)
(8)

It can be seen from Eq.8 that q2(ψ) increases iff q1(ψ) increases.

Combining the above three cases, the theorem is proven.

The regularized Fisher’s criterion is a function of the parameter η, which
controls the strength of regularization. Within the variation range of η, two
extremes should be noted. In one extreme where η = 0, the modified Fisher’s
criterion is reduced to the conventional one with no regularization. In contrast
with this, strong regularization is introduced in another extreme where η = 1.

In this case, Eq.7 becomes Ψ̃ = arg max
Ψ̃

|Ψ̃T S̃bΨ̃|
|(Ψ̃T S̃bΨ̃)+(Ψ̃T S̃wΨ̃)| , which as a variant

of the original Fisher’s criterion has been also widely used for example in
[5,10–12]. Among these examples, the method of [12] is a D-LDA variant with
η = 1 (hereafter JD-LDA). The advantages of introducing the regularization
will be seen during the development of the R-KDA method proposed in the
following sections.



4.2 Eigen-analysis of S̃b in the Feature Space F

Following the D-LDA framework of [11,12], we start by solving the eigenvalue
problem of S̃b, which can be rewritten here as follows,

S̃b =
C∑

i=1

(√
Ci

N

(
φ̄i − φ̄

))(√
Ci

N

(
φ̄i − φ̄

))T

=
C∑

i=1

˜̄φi
˜̄φi

T
= Φ̃bΦ̃

T
b (9)

where ˜̄φi =
√

Ci

N

(
φ̄i − φ̄

)
and Φ̃b =

[
˜̄φ1, · · · , ˜̄φc

]
. Since the dimensionality

of the feature space F, denoted as J ′, could be arbitrarily large or possibly
infinite, it is intractable to directly compute the eigenvectors of the (J ′ × J ′)
matrix S̃b. Fortunately, the first m (≤ C − 1) most significant eigenvectors of
S̃b, corresponding to non-zero eigenvalues, can be indirectly derived from the
eigenvectors of the matrix Φ̃T

b Φ̃b (with size C × C) [11].
To this end, we assume that there exists a kernel function k(zi, zj) =

φ(zi) · φ(zj) for any φ(zi), φ(zj) ∈ F, and then define an N × N dot product
matrix K,

K = (Klh) l=1,···,C
h=1,···,C

with Klh = (kij) i=1,···,Cl
j=1,···,Ch

(10)

where kij = k(zli, zhj) = φli · φhj , φli = φ(zli) and φhj = φ(zhj). The matrix
K allows us to express Φ̃T

b Φ̃b as follows [11]:

Φ̃T
b Φ̃b = 1

N B · (AT
NC · K · ANC − 1

N (AT
NC · K · 1NC)−

1
N (1T

NC · K · ANC) + 1
N2 (1T

NC · K · 1NC)) · B (11)

where B = diag
[√

C1, · · · ,
√

Cc

]
, 1NC is an N × C matrix with terms all

equal to one, ANC = diag [ac1 , · · · ,acc
] is an N × C block diagonal matrix,

and aci
is a Ci × 1 vector with all terms equal to: 1

Ci
.

Let λ̃i and ẽi (i = 1, · · · , C) be the i-th eigenvalue and its corresponding
eigenvector of Φ̃T

b Φ̃b, sorted in decreasing order of the eigenvalues. Since
(Φ̃bΦ̃

T
b )(Φ̃bẽi) = λ̃i(Φ̃bẽi), ṽi = Φ̃bẽi is an eigenvector of S̃b. In order to

remove the null space of S̃b, we only use its first m (≤ C − 1) eigenvectors:
Ṽ = [ṽ1, · · · , ṽm] = Φ̃bẼm with Ẽm = [ẽ1, · · · , ẽm], whose corresponding
eigenvalues are greater than 0. It is not difficult to see that ṼT S̃bṼ = Λ̃b,
with Λ̃b = diag[λ̃2

1, · · · , λ̃2
m], an (m × m) diagonal matrix.

4.3 Eigen-analysis of S̃w in the Feature Space F

Let Ũ = ṼΛ̃
−1/2
b , each column vector of which lies in the feature space F.

Projecting both S̃b and S̃w into the subspace spanned by Ũ, it can be easily
seen that ŨT S̃bŨ = I, an (m × m) identity matrix, while ŨT S̃wŨ can be
expanded as:

ŨT S̃wŨ = (ẼmΛ̃
−1/2
b )T (Φ̃T

b S̃wΦ̃b)(ẼmΛ̃
−1/2
b ) (12)



Using the kernel matrix K, a closed form expression of Φ̃T
b S̃wΦ̃b can be ob-

tained as follows [11],

Φ̃T
b S̃wΦ̃b = 1

N2 B · (AT
NC · K̂ · ANC − 1

N (AT
NC · K̂ · 1NC)−

1
N (1T

NC · K̂ · ANC) + 1
N2 (1T

NC · K̂ · 1NC)) · B (13)

where K̂ = K · (I − W) · K, W = diag [w1, · · · , wc] is an N × N block
diagonal matrix, and wi is a Ci × Ci matrix with terms all equal to: 1

Ci
.

We proceed by diagonalizing ŨT S̃wŨ, a tractable matrix with size m×m.
Let p̃i be the i-th eigenvector of ŨT S̃wŨ, where i = 1, · · · ,m, sorted in
increasing order of its corresponding eigenvalue λ̃′

i. In the set of ordered
eigenvectors, those corresponding to the smallest eigenvalues minimize the
denominator of Eq.7, and should be considered the most discriminative fea-
tures. Let P̃M = [p̃1, · · · , p̃M ] and Λ̃w = diag[λ̃′

1, · · · , λ̃′
M ] be the selected

M(≤ m) eigenvectors and their corresponding eigenvalues, respectively. Then,
the sought solution can be derived through Γ̃ = ŨP̃M (ηI + Λ̃w)−1/2, which
is a set of optimal nonlinear discriminant feature bases.

4.4 Dimensionality Reduction and Feature Extraction

For any input pattern z, its projection into the subspace spanned by the set
of feature bases, Γ̃ , derived in Section 4.3, can be computed by

y = Γ̃T φ(z) =
(
Ẽm · Λ̃−1/2

b · P̃M · (ηI + Λ̃w)−1/2
)T (

Φ̃T
b φ(z)

)
(14)

where Φ̃T
b φ(z) =

[ ˜̄φ1 · · · ˜̄φc

]T
φ(z). We introduce an (N ×1) kernel vector,

ν(φ(z)) =
[
φT

11φ(z) φT
12φ(z) · · · φT

c(cc−1)φ(z) φT
ccc

φ(z)
]T

, (15)

which is obtained by dot products of φ(z) and each mapped training sample
φ(zij) in F. Reformulating Eq.14 by using the kernel vector, we obtain

y = Θ · ν(φ(z)) (16)

where

Θ =
1√
N

(
Ẽm · Λ̃−1/2

b · P̃M · (ηI + Λ̃w)−1/2
)T

· B ·
(
AT

NC − 1
N

1T
NC

)
(17)

is an (M × N) matrix that can be computed off-line. Thus, through Eq.16,
a low-dimensional nonlinear representation (y) of z with enhanced discrimi-
nant power has been introduced. The detailed steps to implement the R-KDA
method are summarized in Fig.3.



Input: A training set Z with C classes: Z = {Zi}C
i=1, each class containing

Zi = {zij}Ci
j=1 examples, and the regularization parameter η.

Output: The matrix Θ; For an input example z, its R-KDA based feature
representation y.

Algorithm:
Step 1. Compute the kernel matrix K using Eq.10.

Step 2. Compute Φ̃T
b Φ̃b using Eq.11, and find Ẽm and Λ̃b from Φ̃T

b Φ̃b

in the way shown in Section 4.2.

Step 3. Compute ŨT S̃wŨ using Eq.12 and Eq.13, and find P̃M and Λ̃w

from ŨT S̃wŨ in the way depicted in Section 4.3;
Step 4. Compute Θ using Eq.17.
Step 5. Compute the kernel vector of the input z, ν(φ(z)), using Eq.15.
Step 6. The optimal nonlinear discriminant feature representation of z

can be obtained by y = Θ · ν(φ(z)).

Fig. 3. R-KDA pseudo-code implementation (Matlab code is available by contacting
the authors).

5 Comments

In this section ,we discuss the main properties and advantages of the proposed
R-KDA method.

Firstly, R-KDA effectively deals with the SSS problem in the high-
dimensional feature space by employing the regularized Fisher’s criterion and
the D-LDA subspace technique. It can be seen that R-KDA reduces to kernel
YD-LDA and kernel JD-LDA (also called KDDA [11]) when η = 0 and η = 1,
respectively. Varying the values of η within [0, 1] leads to a set of interme-
diate kernel D-LDA variants between kernel YD-LDA and KDDA. Since the
subspace spanned by Ψ̃ may contain the intersection space (A′∩B), it is pos-
sible that there exist zero or very small eigenvalues in Λ̃w, which have been
shown to be high variance for estimation in the SSS environments [7]. As a
result, any bias arising from the eigenvectors corresponding to these eigenval-
ues is dramatically exaggerated due to the normalization process (P̃M Λ̃

−1/2
w ).

Against the effect, the introduction of the regularization helps to decrease the
importance of these highly unstable eigenvectors, thereby reducing the overall
variance. Also, there may exist the zero eigenvalues in Λ̃w, which are used as
divisors in YD-LDA due to η = 0. However, it is not difficult to see that the
problem can be avoided in the R-KDA solution, Ψ̃ = ŨP̃M (ηI + Λ̃w)−1/2,
simply by setting the parameter η > 0. In this way, R-KDA can exactly ex-
tract the optimal discriminant features from both inside and outside of S̃w’s
null space, while avoiding the risk of experiencing high variance in estimating
the scatter matrices at the same time. This point makes R-KDA significantly



different from existing nonlinear discriminant analysis methods such as GDA
in the SSS situations.

In GDA, to remove the null space of S̃w, it is required to compute
the pseudo inverse of the kernel matrix K, which could be extremely ill-
conditioned when certain kernels or kernel parameters are used. Pseudo inver-
sion is based on inversion of the nonzero eigenvalues. Due to round-off errors,
it is not easy to identify the true null eigenvalues. As a result, numerical sta-
bility problems often occur [22]. However, it can be seen from the derivation
of R-KDA that such problems are avoided in R-KDA. The improvement can
be observed also in experimental results reported in Figs.8-9:Left.

In GDA, both the two eigen-decompositions of S̃b and S̃w have to be
implemented in the feature space F. In contrast with this, it can be seen
from Section 4.3 that the eigen-decomposition of S̃w is replaced by that of
ŨT S̃wŨ, which is an (m × m) matrix with m ≤ C − 1. Also, it should be
noted at this point that it generally requires much more computational costs
to implement an eigen-decomposition for S̃w than S̃b, due to C � N in
most cases. Therefore, based on the two factors, it is not difficult to see that
the computational complexity of R-KDA is significantly reduced compared to
GDA. This point is demonstrated by the face recognition experiment reported
in Section 6.2, where R-KDA is approximately 20 times faster than GDA.

6 Experimental Results

Two sets of experiments are included here to illustrate the effectiveness of the
R-KDA method in different learning scenarios. The first experiment is con-
ducted on Fisher’s iris data [6] to assess the performance of R-KDA in tradi-
tional large-sample-size situations. Then, R-KDA is applied to face recognition
tasks in the second experiment, where various SSS settings are introduced.
In addition to R-KDA, other two kernel-based feature extraction methods,
KPCA and GDA, are implemented to provide a comparison of performance,
in terms of classification error and computational cost.

6.1 Fisher’s Iris Data

The iris flower data set originally comes from Fisher’s work [6]. The set con-
sists of N = 150 iris specimens of C = 3 species (classes). Each specimen
is represented by a four-dimensional vector, describing four parameters, sepal
length/width and petal length/width. Among the three classes, one is linearly
separable from the other two, while the latter are not linearly separable from
each other. Due to J(= 4) � N , there is no SSS problem introduced in this
case, and thus we set η = 0.001 for R-KDA.

Firstly, it is of interest to observe how R-KDA linearizes and simplifies the
complicated data distribution as GDA did in [2]. To this end, four types of
feature bases are generalized from the iris set by utilizing the LDA, KPCA,



R-KDA and GDA algorithms, respectively. These feature bases form four sub-
spaces, accordingly. Then, all the examples are projected to the four subspaces.
For each example, its projections in the first two most significant feature
bases of each subspace are visualized in Fig.4. As analyzed in Section 2.3,
the PCA-based features are optimized with focus on object reconstruction.
Not surprisingly, it can be seen from Fig.4 that the subjects are not separable
in the KPCA subspace, even with the introduction of nonlinear kernel. Un-
like the PCA approaches, LDA optimizes the feature representation based on
separability criteria. However, subject to the limitation of linearity, the two
non-separable classes remain non-separable in the LDA subspace. In contrast
to this, we can see the linearization property in the R-KDA and GDA sub-
spaces, where all of classes are well linearly separable when a RBF kernel with
appropriate parameters is used.

Fig. 4. Iris data are project to four feature spaces obtained by LDA, KPCA, R-
KDA and GDA respectively. LDA is derived from R-KDA by using a polynomial
kernel with degree one, while all other three kernel methods use a RBF kernel.



Also, we examine the classification error rate (CER) of the three kernel
feature extraction algorithms compared here with the so-called “leave one out”
test method. Following the recommendation in [2], a RBF kernel with σ2 = 0.7
is used for all these algorithms in this experiment. The CERs obtained by GDA
and R-KDA are only 7.33% and 6% respectively, while the CER of KPCA with
the same feature number (M = 2) to the formers goes up to 20%. The two
experiments conducted on the iris data indicate that the performance of R-
KDA is comparable to that of GDA in the large-sample-size learning scenarios,
although the former is designed specifically to address the SSS problem.

6.2 Face Recognition

Face Recognition Evaluation Design

Face recognition is one of current most challenging applications in the pattern
recognition literature [4,23,30,31,35]. In this work, the algorithms are evalu-
ated with two widely used face databases, UMIST [8] and FERET [19]. The
UMIST repository is a multi-view database, consisting of 575 images of 20
people, each covering a wide range of poses from profile to frontal views [8].
The FERET database has been considered current most comprehensive and
representative face database [19, 20]. For the convenience of preprocessing,
we only choose a medium-size subset of the database. The subset consists of
1147 images of 120 people, each one having at least 6 samples so that we can
generalize a set of SSS learning tasks. These images cover a wide range of
variations in illumination and facial expression/details with pose angles less
than 30 degrees. Figs.5-6 depict some examples from the two databases. For
computational convenience, each image is represented as a column vector of
length J = 10304 for UMIST and J = 17154 for FERET.

Fig. 5. Some samples of four people come from the UMIST database.

The SSS problem is defined in terms of the number of available training
samples per subject, L. Thus the value of L has a significant influence on



Fig. 6. Some samples of eight people come from the normalized FERET database.

the required strength of regularization. To study the sensitivity of the per-
formance, in terms of correct recognition rate (CRR), to L, five tests were
performed with various L values ranging from L = 2 to L = 6. For a particu-
lar L, any database evaluated here is randomly partitioned into two subsets: a
training set and a test set. The training set is composed of (L×C) samples: L
images per person were randomly chosen. The remaining (N −L×C) images
were used to form the test set. There is no overlapping between the two sub-
sets. To enhance the accuracy of the assessment, five runs of such a partition
were executed, and all the results reported below have been averaged over the
five runs.

CRRs with Varying Regularization Parameter

In this experiment, we examine the performance of R-KDA with varying reg-
ularization parameter values in different SSS scenarios, L = 2 ∼ 4. For sim-
plicity, R-KDA is only tested with a linear polynomial kernel in the FERET
subset. Fig.7 depicts the obtained CRRs as a function of (M,η), where M is
the number of feature vectors used.

The parameter η controls the strength of regularization, which balances
the tradeoff between variance and bias in the estimation for the zero or small
eigenvalues of the within-class scatter matrix. Varying the η values within
[0, 1] leads to a set of intermediate kernel D-LDA variants between kernel
YD-LDA and KDDA. In theory, kernel YD-LDA with no bias introduced
should be the best performer among these variants if sufficient training sam-
ples are available. It can be observed at this point from Fig.7 that the CRR
peaks gradually moved from the right side toward the left side (η = 0) that is
the case of kernel YD-LDA as L increases. Small values of η have been good
enough for the regularization requirement in many cases (L ≥ 4) as shown
in Fig.7. However, it also can be seen that kernel YD-LDA performed poorly
when L = 2, 3. This should be attributed to the high variance in the estimate
of S̃w due to insufficient training samples. In these cases, even ŨT S̃wŨ is



Fig. 7. CRRs(M, η) obtained by R-KDA with a linear polynomial kernel.

singular or close to singular, and the resulting effect is to dramatically ex-
aggerate the importance associated with the eigenvectors corresponding to
the smallest eigenvalues. Against the effect, the introduction of regularization
helps to decrease the larger eigenvalues and increase the smaller ones, thereby
counteracting for some extent the bias. This is also why KDDA outperforms
kernel YD-LDA when L is small.

Performance Comparison with KPCA and GDA

This experiment compares the performance of the R-KDA algorithms, in terms
of the CRR and the computational cost, to the KPCA and GDA algorithms.
For simplicity, only the RBF kernel is tested in this work, and the classification
is performed with the nearest neighbor rule.

Tables 2-3 depict a quantitative comparison of the best CRRs with cor-
responding parameter values (σ2∗,M∗), found by the three methods in the
UMIST and FERET databases, each one having introduced five SSS cases
from L = 2 to L = 6. In addition to σ2 and M , R-KDA’s performance is



Table 2. Comparison of the best found CRRs (%) with corresponding parameter
values in the UMIST database.

Methods KPCA GDA R-KDA
CRR σ2∗ M∗ CRR σ∗ M∗ CRR σ∗ M∗ η

L = 2 57.91 2.11 × 107 34 62.92 1.34 × 108 19 66.73 1.5 × 108 14 1.0

L = 3 69.67 5.33 × 107 58 76.00 3.72 × 107 18 80.97 1.5 × 108 14 0.001

L = 4 78.02 6.94 × 107 78 84.20 5.33 × 107 19 89.17 1.5 × 108 11 0.001

L = 5 84.67 2.11 × 107 95 90.32 5.33 × 107 19 93.01 1.34 × 108 13 0.001

L = 6 87.91 6.94 × 107 119 92.97 6.94 × 107 19 95.30 1.5 × 108 14 0.001

Table 3. Comparison of the best found CRRs (%) with corresponding parameter
values in the FERET database.

Methods KPCA GDA R-KDA
CRR σ2∗ M∗ CRR σ∗ M∗ CRR σ∗ M∗ η

L = 2 60.93 2.34 × 105 238 71.18 2.68 × 104 118 73.38 3.0 × 105 102 1.0

L = 3 67.32 7.44 × 103 358 80.58 2.68 × 104 118 85.51 3.0 × 105 106 0.001

L = 4 71.39 2.34 × 105 468 85.07 2.68 × 104 118 88.34 3.0 × 105 108 0.001

L = 5 75.32 2.03 × 104 590 88.48 2.68 × 104 118 91.96 2.34 × 105 104 0.001

L = 6 77.85 2.03 × 104 716 90.21 2.03 × 104 118 92.74 3.0 × 105 110 0.001

affected by the regularization parameter, η. Considering the high computa-
tional cost of searching the best η∗, we simply set η = 1.0 for the L = 2 cases
and η = 0.001 for other cases based on the observation and analysis of the
results in Section 6.2. Also, the CRRs as a function of σ2 and M respectively
in several representative UMIST cases are shown in Figs.8-9. From these re-
sults, it can be seen that R-KDA is the top performer in all the experimental
cases. On average, R-KDA leads KPCA and GDA up to 9.4% and 3.8% in the
UMIST database, and 15.8% and 3.3% in the FERET database. It should be
also noted that Figs.8-9:Left reveal the numerical stability problems existing
in practical implementations of GDA. Comparing GDA to R-KDA, we can
see that the later is more stable and predictable, resulting in a cost-effective
determination of parameter values during the training phase.

In addition to the CRR, it is of interest to compare the performance with
respect to the computational complexity. For each of the methods evaluated
here, the simulation process consists of 1) a training stage that includes all
operations performed in the training set; 2) a test stage for the CRR deter-
mination. The computational times consumed by these methods with the pa-
rameter configuration depicted in Tables 2-3 are reported in Table 4. Ttrn and
Ttst are the amounts of time spent on training and testing respectively. The
simulation studies reported in this work were implemented on a personal com-
puter system equipped with a 2.0GHz Intel Pentium 4 processor and 1.0 GB
RAM. All programs are written in Matlab v6.5 and executed in MS Windows



Fig. 8. A comparison of CRRs based on the RBF kernel function in the UMIST
cases of L = 2 ∼ 3. Left: CRRs as a function of σ2 with the best found M∗. Right:
CRRs as a function of M with the best found σ2∗.

2000. For the convenience of comparison, we introduce a quantitative statis-
tic in Table 5 regarding the computational time of KPCA or GDA over that
of R-KDA, ξtrn(·) = Ttrn(·)/Ttrn(R-KDA) and ξtst(·) = Ttst(·)/Ttst(R-KDA).
As analyzed in Section 5, the computational cost of R-KDA should be less
than that of GDA. It can be observed clearly at this point from Table 5 that
R-KDA is approximately 20 times faster than GDA in both the training and
test phases. Moreover, R-KDA is more than 3 times in training and 4 times in
testing faster than KPCA. The higher computational complexity of KPCA is
due to the significantly larger feature number used, M∗ as shown in Tables 2-
3. The advantage of R-KDA in computation is particularly important for the
practical face recognition tasks, where algorithms are often required to deal
with huge scale databases.



Fig. 9. A comparison of CRRs based on the RBF kernel function in the UMIST
cases of L = 4 ∼ 5. Left: CRRs as a function of σ2 with the best found M∗. Right:
CRRs as a function of M with the best found σ2∗.

Table 4. A comparison of computational times, Ttrn + Ttst (Seconds).

DBS Methods L = 2 L = 3 L = 4 L = 5 L = 6

KPCA 0.8+11.3 2.1+12.0 4.5+16.9 7.3+25.2 8.5+19.5
UMIST GDA 6.2+44.9 14.2+65.1 25.7+83.9 40.7+101.1 55.9+109.0

R-KDA 0.3+2.2 0.7+3.2 1.2+4.0 2.0+4.7 2.8+5.4

KPCA 76+203 134+205 320+323 375+254 526+245
FERET GDA 392+750 905+1014 1641+1156 2662+1198 3861+1121

R-KDA 19+38 42+50 76+58 117+57 170+57

7 Conclusion

Due to the extremely high dimensionality of the kernel feature spaces, the
SSS problem is often encountered when traditional kernel discriminant anal-



Table 5. A comparison of the computational time of KPCA or GDA over that of
R-KDA, ξtrn + ξtst.

DBS Methods L = 2 L = 3 L = 4 L = 5 L = 6 Aver.

UMIST KPCA 2.6+5.1 2.9+3.8 3.6+4.2 3.8+5.4 3.0+3.6 3.2+4.4
GDA 19.4+20.2 20.0+20.4 20.6+21.1 20.8+21.5 20.1+20.0 20.2+20.6

FERET KPCA 4.0+5.3 3.2+4.1 4.2+5.5 3.2+4.4 3.1+4.3 3.5+4.7
GDA 20.8+19.6 21.5+20.2 21.6+19.8 22.7+20.9 22.7+19.6 21.9+20.0

ysis methods are applied to many practical tasks such as face recognition.
To address the problem, a regularized kernel discriminant analysis method is
introduced in this chapter. The proposed method is based a novel regularized
Fisher’s discriminant criterion, which is particularly robust against the SSS
problem compared to the original one used in traditional linear/kernel discrim-
inant analysis methods. It has been also shown that a series of traditional LDA
variants and their kernel versions including the recently introduced YD-LDA,
JD-LDA and KDDA can be derived from the proposed framework by adjust-
ing the regularization and kernel parameters. Experimental results obtained
in the face recognition tasks indicate that the CRR performance of the pro-
posed R-KDA algorithm is overall superior to those obtained by the KPCA
or GDA approaches in various SSS situations. Also, the R-KDA method has
significantly less computational complexity than the GDA method. This point
has been demonstrated in the face recognition experiments, where R-KDA is
approximately 20 times faster than GDA in both the training and test phases.

In conclusion, the R-KDA algorithm provides a general pattern recogni-
tion framework for nonlinear feature extraction from high-dimensional input
patterns in the SSS situations. We expect that in addition to face recognition,
R-KDA will provide excellent performance in applications where classifica-
tion tasks are routinely performed, such as content-based image indexing and
retrieval, video and audio classification.
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18. Müller, K. R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B. (2001) An in-
troduction to kernel-based learning algorithms. IEEE Transactions on Neural
Networks, 12(2):181–201, March.

19. Phillips, P. J., Moon, H., Rizvi, S. A., Rauss, P. J. (2000) The FERET evaluation
methodology for face-recognition algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(10):1090–1104.



20. Phillips, P. J., Wechsler, H., Huang, J., Rauss, P. (1998) The FERET database
and evaluation procedure for face recognition algorithms. Image and Vision
Computing J, 16(5):295–306.

21. Raudys, S. J., Jain, A. K. (1991) Small sample size effects in statistical pattern
recognition: Recommendations for practitioners. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(3):252–264.

22. Ruiz, A., Teruel, P. L. de. (2001) Nonlinear kernel-based statistical pattern
analysis. IEEE Transactions on Neural Networks, 12(1):16–32, January.

23. Samal, A., Iyengar, P. A. (1992) Automatic recognition and analysis of human
faces and facial expressions: A survey. Pattern Recognition, 25:65–77.

24. Schölkopf, B. (1997) Support Vector Learning. Oldenbourg-Verlag, Munich,
Germany.

25. Schölkopf, B., Burges, C., Smola, A. J. (1999) Advances in Kernel Methods -
Support Vector Learning. MIT Press, Cambridge, MA.

26. Schölkopf, B., Smola, A., Müller, K. R. (1999) Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computation, 10:1299–1319.

27. Schölkopf, B., Smola, A. J. (2001) Learning with Kernels. MA: MIT Press,
Cambridge.

28. Smola, A. J., Schölkopf, B., Müller, K. R. (1998) The connection between
regularization operators and support vector kernels. Neural Networks, 11:637–
649.

29. Swets, D. L., Weng, J. (1996) Using discriminant eigenfeatures for image
retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18:831–836.

30. Turk, M. (2001) A random walk through eigenspace. IEICE Trans. Inf. & Syst.,
E84-D(12):1586–1695, December.

31. Valentin, D., Alice, H. A., Toole, J. O., Cottrell, G. W. (1994) Connectionist
models of face processing: A survey. Pattern Recognition, 27(9):1209–1230.

32. Vapnik, V. N. (1995) The Nature of Statistical Learning Theory. Springer-
Verlag, New York.

33. Wald, P., Kronmal, R. (1977) Discriminant functions when covariance are un-
equal and sample sizes are moderate. Biometrics, 33:479–484.

34. Yu, H., Yang, J. (2001) A direct LDA algorithm for high-dimensional data -
with application to face recognition. Pattern Recognition, 34:2067–2070.

35. Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A. (2003) Face recognition: A
literature survey. ACM Computing Surveys, 35(4):399–458, December.

36. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.-R. (2000)
Engineering support vector machine kernels that recognize translation initiation
sites in dna. Bioinformatics, 16:799–807.


