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We introduce a new estimate of the exponent of a distribution whose tail
varies regularly at infinity. This estimate is expressed as the convolution of a
kernel with the logarithm of the quantile function, and includes as particular

_ cases the estimates introduced by Hill and by De Haan.

Under very weak conditions, we prove asymptotic normality, consistency

and discuss the optimal choices of the kernel and of the bandwidth parameter.

1. Introduction and results. Let X;, X,, --- be independent positive
random variables with common distribution function F. We assume that 1 — F
is regularly varying of order —a in the upper tail, or equivalently that, for any
A>0,

limyo (1 — F(tN))/(1 — F(t)) = X%

In the following, we shall study two nonparametric estimates d, and a, of a,
based on the order statistics X;, < -+ < X, of Xj, ---, X,,. We first select a
nonnegative nonincreasing kernel {K(u), u > 0} which satisfies the condition

f K(u) du = 1.
0

Next, we choose a bandwidth parameter A = A, > 0. Our first estimate is

1/A -1 /A
ap = Ay = (J; {log*@.(1 — U)\)}d{uK(U)}) (J; K(v) dv),

where {@.(s), 0 < s < 1} is the empirical quantile function, defined for n = 1 by
Quis)=X,, if (k—1)/n<s=(k/n), 1<k=n, and log*x=Ilog(xV1).

If we make the assumption that K(-) is right continuous, routine manipula-
tions show that a, can be written in the following equivalent form:

. . -1 /A
n J J
A = Qpp = <Z,~=1 Y K<H>{log+Xn'_j+1,,, - Iog+Xn_,-,,.}) (J; K(v) dv),

where we shall put by convention X;, = 1.
We will also consider the following modified version of a, in which the scale
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term has been corrected for finite samples:

. - -1 .
s _ n J o L oo
Gn = Gnp = <Zf=1 s K(;X>{10g+xn—j+l,n - 10g+Xn—.i,n}) <Ef=1 ~ K(ﬁ))‘

There has been considerable recent interest in the problem of estimating a,
starting with the pioneering work of Hill (1975) who introduced the estimate

én,k = ((1/k) Z]lg=1 10g+ n—j+in — log+Xn—k,n)_1-

Another estimate was proposed by De Haan (1981) and studied further by De
Haan and Resnick (1980):

dn,k = ((1/10g k)(10g+Xn,n - 10g+X —k+1,n))_1-

These estimates are both special cases of a, (or d,) corresponding, respectively,
to K(u) = ljo<u<y and H(u) = u™1jo<y<1, and X = k/n.

The asymptotic normality of d,, was established by Hall (1982) under the
assumptions that, for some positive constants C and b,

1-F@)=Ct™1 + 0(t™®)) as t-— .

Davis and Resnick (1984), S. Csérgd and Mason (1984), and Haeusler and
Teugels (1984) have also discussed the asymptotic normality of the Hill estimate.
Related work on the subject is to be found in Teugels (1981, 1982) and De Meyer
and Teugels (1982), Gawronski and Stadtmiiller (1984), Hall and Welsh (1984,
1985), and Welsh (1984).

Because of Mandelbrot’s stimulating hypotheses on various speculative prices
and related economic quantities (refer to Mandelbrot, 1963), the closely related
problem of estimating the characteristic exponent a € (0, 2] of a stable law has
received enormous interest (for an extensive survey see S. Csérgd, 1984; and
DuMouchel, 1983). DuMouchel (1983) has shown that even slight changes in the
middle of a stable distribution may yield nonrobust properties of the maximal
likelihood and related estimators based on the whole sample, and suggests to “let
the tails speak for themselves.” This is exactly our point in this paper (see
Example B below).

Before stating our results, it is useful to give some explanation about the
structure of the above estimates. It can be proved (see Hall, 1978; Weissman,
1978), that, for any fixed k = 1, as n — o,

{IOg Xn—j+1 - lOg Xn—j,m 1 Sj = k} - {wj/ja’ 1 Sj = k}y

where the {w;, 1 < j < k} are independent exponential random variables with
mean one.

It follows that, for a fixed k = 1, 4, is asymptotically the maximum likelihood
estimate of a based on {X,_js1,,, 1 < j < k}, corresponding to the reciprocal of
the mean of the random variables {w;/a, 1 <j < k}. Likewise De Haan’s estimate
corresponds to the inverse of the sum of the {w;/ja, 1 < j < k} divided by its
expectation.

One cannot achieve consistency without letting k = k, tend to infinity. If this
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is not the case, the optimal character of Hill’s estimate is not justified any more
by the preceding arguments. We shall discuss this point later.

On the other hand, the justification of the construction of a, will follow from
the consistency of the empirical quantile function @,(s) as an estimator of the
quantile function

Q(s) = F'(s) = inf{x; F(x) =5, 0 <s < 1}.

It is well known (see, e.g., De Haan, 1970) that 1 — F' is regularly varying of
order —a in the upper tail if and only if (1 — s) is regularly varying of order
—1/a at 0. By Karamata’s theorem (see, e.g., Seneta, 1975), this is equivalent to
the existence of functions c(s) and b(s), such that ¢(s) — ¢ as s — 0 and
b(s) — 0 as s — 0, and that

Q) Q(l —s) = s‘l/"c(s)exp(f !’_(uﬁl du), 0<s<l.

For suitable K’s, it will be seen that, as A — 0, we have

1/x
j; {log Q(1 — vA)} dfvK(v)} — 1/a.

It follows that it is reasonable to hope that the same occurs when @ is replaced
by @, with additional conditions on the rate of convergence of A = A, to zero.
The main problems to be solved are then the following:

1. Prove the consistency of a,,.
2. Obtain asymptotic normality of a,.
3. Choose the optimal kernel K and bandwidth A.

We shall give answers to these questions in the sequel. To begin with, we shall
make the following basic assumptions on K(-).

(H1) K(u)=0for0 < u< o,

(H2) K(.) is nonincreasing and right continuous on (0, ).
(H3) [§ K(¢)dt=1.

(H4) [§ v K(v) dv < .

We shall require these conditions for asymptotic normality of a,,. It is therefore
not surprising that De Haan’s estimate has a kernel which does not satisfy (H4),
since his estimator has a limiting extreme value distribution (see De Haan and
Resnick, 1980). In addition, we may use at times the assumptions:

(H5) There exists a A < o such that K(u) = 0 for u > A.

(H6) There exists a A < o such that dK(u)/du = k(u) is defined for u > A
and such that lim,.u*?k(u) = 0.

(H?) [§ K*u)du=1.

Next, we shall assume:

(D1) (i) 1— Fisregularly varying of order —a in the upper tail, or equivalently,
there exists b(s) and c¢(s) such that ¢(s) — ¢ € (0, ©) and b(s) — 0
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as s — 0, such that the representation given in (Q) above holds; and
without loss of generality that

(i) Q(0) = inf{x; F(x) > 0} = 1.

(D2) (i) In the representation for @(1 — s) given in (Q), one has either (H5)

is satisfied and c¢(s) = ¢ (constant) for 0 < s < ¢ for some ¢ > 0; or
¢(s) = ¢ (constant) for 0 <s < 1.

(ii) One has either (H6) is satisfied; or the function {b(u), 0 < u < 1}
may be chosen such that b(-) is bounded on (0, 1).

Condition (D2)(i) is equivalent to assuming that log @(1 — s) is absolutely
continuous (at least) in a right neighborhood of zero. It implies that b(u)/u is
then uniquely defined a.e. in this neighborhood.

The condition that c¢(s) = ¢ (constant) is implied by the following condition
on F (see Lemma 6 in the sequel):

(D2’) There exists an x, = 0 such that dF(x)/dx = f(x) exists and f(x) > 0
for all x = xo. Furthermore,

limexf(x)/(1 — F(x)) = a.
If (D2’) holds, we may take b(-) as
b(1 — F(x)) = ((1 — F(x))/xf(x)) — 1/a, x = x,.
We shall reduce the proofs to the following case which implies (D2)(i):
(D3) There exists a function b(«) on (0, 1) such that b(u) - 0asu | 0, and

Q(l —s) = s‘l/“exp(f b—(;jl du>, 0<s=<l.

Before giving our main results, let us remark that the necessity of (D1) for the
consistency of a, has been proved in the case of Hill’s estimate by Mason (1982a)
In addition, for Hill’s estimate, if one requires the asymptotic normality of G,z
as k — o and k/n — 0, one has to impose regularity conditions on @(1 — s) in
the neighborhood of zero, as shown in Davis and Resnick (1984) and more
generally by S. Csorgé and Mason (1984). It turns out that the simplest such
regularity condition is (D2)(i).

We shall prove the following theorems:

THEOREM 1. Let (H1-2-3-4) and (D1) be satisfied. Then, as A\ = A\, — 0 and
n\, — ®, we have .
a, —p Q, dn —p Q.

In addition, let (D2) be satisfied. Set, for A > 0,

1/x 1/
Brn = Bnnr = <:J; b(\W)K(v) dv}/j; K(v) dv.

Then, we have, as A = N\, — 0 and n\, — o,

(i) VX (@, — G,) = 0p(1), 8, — 0, and
(i) {VnMa} {J§ K*(v) dv}™"%(a, — a/(1 + aB.)) —u N(0, 1).
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THEOREM 2. Let (H1-2-3-4) and (D1-2) be satisfied. Then, in order that
there exists a nonrandom sequence C, such that C,(a, — a) converges weakly
toward a limiting N(0, 1) distribution for some sequence A\ = N\, — 0 with
n\, —> %, it is necessary and sufficient that

1/x
(C1) limy e V7A B, = limye VA f b(\)K(v) dv = 0.
0

If this condition is satisfied, then, as \ = A\, — 0 and n)\, — o, we have

= ~1/2
@ {J; K*(v) dv}> (a, — a) —, N(0, 1).

THEOREM 3. Let (H1-2-3-4) and (D1-2) be satisfied. Assume further that
(C2) limy e VRN B, = .
Then, we have, as A = A, — 0 and n\, — o,
a, — a = —a*8,(1 + op(1)).

REMARK 1. Let a, be the estimate corresponding to a kernel K and to a
bandwidth A. If we replace K(t) by uK(ut) and X\ by Au for some p > 0, then a,
remains unchanged while [§ K*(v) dv becomes u[§ K%(v) dv. It follows that, as
far as we are concerned with efficiency criterion related to the variance of the
limiting distribution of a,, we can assume that (H7) holds.

REMARK 2. It can be seen (see, e.g., Mason, 1982b, Section 4) that (H1-2-3-
4) imply

(H4') J5 KX u) du < o.
On the other hand, (H1-2-3-4") do not imply (H4).

The only real superiority of Hill’s estimate follows from:

THEOREM 4. Let (H1-2-3-4-5-7) be satisfied. Then, the minimum possible
value A for which K(u) = 0 for u > A is A = 1, and the unique possible kernel
which satisfies these conditions is K(u) = 1p<u<1j (corresponding to Hill’s estimate).

In other words, if we let, as in Hill’s definition, A = k/n, for a given asymptotic
variance, Hill’s estimate uses the minimum possible number k of upper order
statistics of the sample.

A logical criterion for an optimal choice of A = A, and K is that which
minimizes the expected mean square error of 1/a,. For this, we note that Theorem
1(ii) can be put equivalently as

3 -1/2
avn\ {j; K%(v) dv} <al - % - B,,) —, N0, 1).

n
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Thus, it follows that a reasonable method of optimization consists in minimizing
© 1/A 2
M@, \, K) = 1 f K*(v) dv + {f b(AW)K(v) dv} .
n\ Jo 0

In this sum, the first term corresponds to the limiting variance of 1/a,, while
the second corresponds to the limiting square of the bias.

We present in the following some results corresponding to the optimal choices
of A = A\, and K for the model introduced by Hall (1982), assuming that

(D4) 1— F(x) = Cix™®1 + Cox7%(1 + 0(1))} as x-— o,

where C; # 0, C; # 0, a > 0 and b > 0 are constants.

This models covers a wide range of distributions. For instance, all nonnormal
stable and all Frechet &, distributions belong to this family. Routine computa-
tions as in Hall (1982) show that (D4) is equivalent to

(D4") Q1 — s) = s7Y°Dy{1 + Dys*(1 + 0(1))} as s— 0,
where D, = C¥¢, D, = C5/(aC%°) and « = b/a.
We shall prove the following result:

THEOREM 5. Let (H1-2-3-4-5) and (D-1-2-4) be satisfied. Then, there exists
a A; > 0, depending upon F only, such that the following choice of \:

) 1 I~ © -2 1/(2a+1)
A=A = {— (2a3D§)'1<f K*(v) dv)(f v*K(v) dv) }
n 0 )

realizes
M(n, 3, K) ~ infoen,M(n, v, K) as n— .
We have then, as n — «,
M(n, A,, K) ~ n~2/@a+1(943D2)1/2atD)

1 0 2a/(2a+1) S 2/(2a+1)
-<1 + ——)(f Kv) dv) <f v*K(v) dv) )

2a/\Jo o

Furthermore, the optimal choice of K given by

. o+ 1\(2a + 1\ (22 + 2\

K@) = K.@) = < " ><2a n 2) ,{<2a + 1) - }
20 + 2
200+ 1

, K.(v) =0 otherwise,

if 0<v<

is such that, as n — o,
M(n, A, K.)

~ inf{M(n, v, K); 0 <wv < Ay, f K@) dv = f K%(v) dv = 1}.
0 0
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REMARK 3. The choice A = )\, in Theorem 5 is such that

0 1/2
Iimn,,ws/;z—kﬁ,,=—(2a)_l/2( f K2%(v) dv) )
0

Hence, this optimal choice does not yield for vni(a, — a) a limiting centered
normal distribution.

REMARK 4. For Hall’s model, we get asymptotic centered normal limiting
distributions for vnX(a, — a) if and only if A, = o(n~¥®*9). The “if” part has
been proved by Hall (1982) in the special case of the Hill estimator (a different
proof is given later by S. Csorgé and Mason, 1984), and we see that his condition
is sharp.

REMARK 5. The results of this paper can be extended without difficulty to
the case where K(-) is a function of bounded variation on any interval (e, f),
0 <e<f< o It suffices to consider K as K, — K; where both K; and K; are
nonincreasing functions. In so doing, we may gain asymptotic efficiency. The
price to be paid, however, is that it may be possible to obtain negative estimates
of the index a when the sample size is small.

REMARK 6. Theorem 5 is a justification in itself for the introduction of kernel
estimates of a. For Hall’s family of tail behaviors of 1 — F, it shows that Hill’s
estimate is far from being optimal. The optimal kernels correspond to intuition
in the sense that they give more weight to the upper order statistics.

ExXAMPLES. In general, when a = b/a = 1 in (D4’), then the optimal kernel
is
Kiw) =% (%—-v), 0<v<4%.

Since
f vKi(v) dv = é,
0 9

the corresponding optimal bandwidth would be
An = (1/n'7)(81a%C3/32C3)",

depending, of course, on unknown parameters.

(a) In the case of the Frechet extreme value distribution ®,(x) = ™", x > 0,
we have « = 1, C; = 1 and C; = %. In practice, one would use the optimal kernel
K, () and the bandwidth A\, = 4%/3(81/8)/3n /3, where d, is some initial consistent
estimate of a.

(b) Let F(x) = F,z.(x) be the distribution function of the stable distribution
with location zero, scale parameter v > 0, skewness parameter —1 < 8 < 1, and
characteristic exponent 0 < a < 2. This means that the characteristic function
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of Fis

exp{—y | t|*(1 — i 8 sgn(t)tan(ra/2))}, a+#1,

exp{—y | t| (1 + i(2/7)8 sgn(t)log|t|)}, a=1,

(refer to Hall (1981) to avoid any sign problem). Excluding the case 8 = —1 and
the Cauchy distribution (a = 1, 8 = 0), making the obvious transformation for

scale and integrating the well-known expansions for the density given in Skoro-
hod (1954), for 1 — F one obtains (D4) with b = a (so that again « = 1) and

Cl = Cl (a7 ﬁ’ 7) = (Ta)_l’yl_(l/a)Al (a’ ﬂ)

Ca,B,7 (t) =

and
C2 = CZ(ay :3’ 7) = 7A2(a’ :3)/2A1(a’ 6)’

where A;(a, 8) and A.(a, 3) are some nonzero constants depending on a and 8.
(In the Cauchy case, A;(1, 0) =0, but (D4) holds with C; =1, C; = 3x) L a=1
and b = 2. If 8 = —1, then (D4) holds for F(—x) instead of 1 — F(x) with the
same C;, C; and b = a.)

Suppose first that 8 = 1, i.e, that the distribution is completely asymmetric
and skewed to the right. (If ¢ < 1, then this distribution is concentrated on
[0, ©).) In this case,

2 1/2
Ai(a, 1) = ’P(a + 1)(1 + tan®*(wa/2))"* sin 7a, a # 1,

2 a=1,
and
—% I'(2a + 1)(1 + tan’*(xa/2)sin 27a, a # 1,
As(a, 1) = i
_8 e~'t? log t dt, a=1
]

Our estimator of a is a,, basAed on the observations which are not less than
one and on the optimal kernel K, (-). The optimal bandwidth would be

1 < 8141(a, 1)

n n1/3

>

1/3 1
8r2y*A3(a, 1)) = o Ve ),

and again in practice one would perhaps use A, = V(d,, ¥.)n"3, where d, and
¥. are some consistent initial estimates of a and v obtained by any of the many
procedures described by DuMouchel (1983) and S. Csorgd (1984).

Adaption of this method in the nonasymmetric case (|8| < 1) will be

considered elsewhere.
(¢) Consider the generalized Pareto family

1—-F(x)=(1+ x/(as))™®, x>0,
put forward by DuMouchel (1983), where ¢ > 0 and we assume that a > 0.
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Elementary calculus gives that 1 — F(x) satisfies (D4) and (D4’) with b = 1,
C, = (as)?, Cy = —a%¢, D, = ao, D, = —1. Since a = a™!, here the optimal
kernel also depends on the index a.

(d) Throughout the examples above, we have seen that the optimal kernel
and bandwidth may eventually depend on some parameters of the distribution,
including the tail index a itself. We propose for practical purposes to construct
pseudo-optimal estimates where these parameters are replaced by preliminary
estimations. This idea has proved itself successful in the field of density estima-
tion, under the name of the “semi-parametric method” (see, e.g., Devroye and
Penrod, 1984, Section 2.1). We do not offer here consistency results for these
modified estimates, which will be discussed elsewhere.

2. Proof of the theorems. A rough outline of the proof is as follows. Let
us make a heuristic calculus by assuming that @ is differentiable and by putting
@:(1—s)=Q(1 —s) + n7B,(1 — 5)Q’(1 — 5) + (SET),,

where, for each n = 1, B, is a Brownian bridge and (SET) stands for “small error
term.”
Then, by taking logarithms, we get

log Q.(1 —s) =log Q(1 —s) + n™"?B,(1 - s)(Q'(1 — 5)/Q(1L — 5)) + (SET),.
Next, we note that, as s — 0,

Q'(1 - s)/Q(1 — s) = —(1/as)(1 + o(1)).
By integrating with respect to d{vK(v)}, this leads to the expansion

1/A
An = f {log Qn(l - UA)} d{UK(U)} = Anl + An2 + An3,
0
where

1/A
Ay = j; {log (1 — vA)} d{vK(v)} is a bias term,

1A _
A = —f B.4 ~vd) d{vK(v)} is a random term,
0 avavn .

and
A3 = (SET); = A, — A,; — A,» is an error term.

In the proof, we shall have to evaluate successively each of these terms. The
results we seek will be obtained by showing that, as A — 0 and n\ — o, 4,3 is
asymptotically negligible with respect to A,; and A,.. '

The rest of this paper is organized as follows. In Section 2.1 we establish
preliminary lemmas and study A,;. In Section 2.2 we treat the random term A,..
In Section 2.3 we deal with the error term A,3. Finally in Section 2.4 we discuss
the optimal choices of K and \.



KERNEL ESTIMATES OF TAIL INDEX OF A DISTRIBUTION 1059

2.1 Preliminaries—the bias term.

LEMMA 1. Let K satisfy (H1-2-3-4). Then we have
(1) Ku)=o0w"?) as u—0;

(ii) Ku)=ow™ as u-— o,

PROOF. (i) We have uK*(u) < [§ K*(v) dv—0asu— 0.
(ii) Likewise (u/2)K(u) < [t/ K(v) dv — 0 as u — .

LEMMA 2. Let K satisfy (H1-2-3-4). Then

(i) J; d{vK(v)} = 0, J; vdK(@) = —J; K@) dv = -1,

and for any A > 0
1/A 1/A
(i1) f (log vA) d{vK(v)} = —f K(v) dv.
0 V]
PRrROOF. (i) For 0 < a < b < «, we have
b
f d{vK(v)} = bK(b) —aK(a) -0 as a—0 and b — «, by Lemma 1.
Likewise
b b
f vdK(v) = bK(b) — aK(a) — f Kwv)dv——-1 as a—0 and b—om.
(ii) By Lemma 1 and integrating by parts, we have

1/A 1/A 1/A
J; (logv)\)d{vK(v)}=[(logvA)vK(v)]é/*—Jo‘ K(v)dv=—J; K(v) dv.

The next lemmas correspond to the study of the bias term A,;.

LEMMA 3. Let K satisfy (H1-2-3-4) and Q satisfy (D3). Then:

1/x

1/A 1 1/A
Ay = f {log Q(1 — vA)} d{vK(v)} = EJ; K@) dv + j; b(O\W)K(v) dv.
0
Furthermore, if A\ — 0, then

/A 1/A
f Kw)dv—1 and f b(A\w)K(v) dv — 0.
0 0

ProOF. By (D3), we have
1
___b(u) du,
u

VA

log @(1 — vA) = —% log vA +
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and hence, by Lemma 2(ii),

1/A 1/x 1
A,y = 1 f K(v) dv + f {f blu) du} d{vK(v)}.
a vJo 0 DA u

For 0 <a < 1/\, we have

/A 1 1 1/A
f { f o du} oK ()] = —aK (@) f gy f bOWK(v) dv.

Since b(u) — 0 as u — 0, we have, as a — 0, for a fixed A,
aK(a) f bw) du = 0(a"?K(a)) = o(1).
This proves the first assertion of Lemma 3.
Next, we have evidently
1/A 0
limy_,o f K() dv = f K@) dv=1.
0 0

For the last term, and for any given ¢ > 0, we choose § > 0 such that
|b(u)| = e for 0 < u < 4. This gives

00 1/A
<e¢ f K(v) dv + ’ f b(W)K(v) dv
0 8/A

1/x
J; b(\)K(v) dv

Next, & being fixed, we use the bound

i s (8\ T dv
U bOW)K(v) dv s—K(—)f 160)| 50 as A—0,
3/A A A s )

by Lemma 1.

This completes the proof of Lemma 3.

LEMMA 4. Let (H1-2-3-4) be satisfied. Then, as A — 0 and n\ — %, we have

\/_{ZJI—K<> f K(u)du}—»O

ProOOF. Since K is nonincreasing, we have

1/ 1 . 1/nA (n+1)/nA
0=< f K@) dv — 3, — K(L) < K@) dv + f K@) dv
0 ni ni 0 1/

1/nA
K<1> K@) do =22 1 o((m) ),
n)\ 0

hence the result.
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REMARK 7. Assuming that, as A\ — 0 and n\ - », a, —p a, Lemma 4 proves
that vnX (a, — a,) —p 0.

We shall now discuss the Karamata type representation of @(1 — s) given in
(Q). We first note that this representation is not unique since we may add to
b(-) any function b,(-) such that b,(s) - 0 as s — 0 and [§ b,(u)/u du = ¢, to
obtain another representation of the same kind.

Next, using the fact that log Q(1 — s) is nonincreasing and assuming that
Q(0) = 1, we can see that log ¢(-) is of bounded variation. This implies the
existence of the following representation:

Ql —s) = s'“"exp(f dM(u)),

where dM(-) is a Radon measure. If we denote the Lebesgue decomposition of
dM by dM(u) = m(u) du + dMy(u) + dM,(u), where dM, is the discrete
component of dM and dM, is the singular component of dM, then we must have

1 1
f dMy(u) and f dM,(u) finite,
0 0

and

1
mu) = £:) + my(u) with f my(u) du finite.
0
It is not difficult to see that these conditions are sufficient under weak

additional restrictions to give the following lemma:

LEMMA 5. Q(1 — s) is regularly varying of order —1/a at 0, and Q(0) = 1, if
and only if there exists a discrete measure My, a singular measure M, and a
measurable function m on (0, 1), such that

(i) Mg=0,M,;=0,m(u) = —-1/au, 0<u<l.
(i) [ dMgy(u), [§ dM(u) and [§ um(u) du are finite.
(iii) For any 0 <s <1, [i m(u) du is finite.
(iv) There exists a function b(u) such that b(u) — 0 as u — 0 and that

f (m(u) - M) du is finite.
0 u

Q1 —s) = s'”"eip(f {dM4(u) + dM,(u) + m(u) du}).

(v) We have

PROOF. Straightforward.

It follows from Lemma 5 that if m(-) satisfies (i-ii-iii) and, in addition, is
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such that
lim,_oum(u) = 0,

then we may take in (iv) b(u) = um(u) to obtain a @(1 — s) which is a regularly
varying function of order —1/a. In particular, we have:

LEMMA 6. Let F(-) be such that, for some xo, there exists a density f(x) =
dF(x)/dx > 0 for x = x. Assume, in addition, that

lim, .xf(x)/(1 — F(x)) = a € (0, «).
Then there exists an sy, 0 < so < 1 such that, for any 0 < s < s,, we have

So
Q1 —s) = Q1 — so)(s/sor““exp( b du),

where b(-) is defined for x = xo by
b(1 — F(x)) = (1 — F(x))/xf(x)) — (1/a).

Proor. By direct integration, we get, for x = x,,

1-Fx)=(1- F(xo))(x/xo)‘“exp<f fittl dt),
where
e(t) = (Hf@)/(1 - F(t))) — a.
Hence 1 — F is regularly varying of order —a. The result now follows by
inverting 1 — F.

REMARK 8. The function b(u), 0 < u = 1 — F(x,) defined in Lemma 6 is
scale free in the sense that it does not change if one replaces F(x) by F(px), for
any p > 0.

LEMMA 7. Let K satisfy (H1-2-3-4) and let Q satisfy (D1). Then, we have

1/A
A, = J; {log Q(1 — vA)} d{vK(v)} = 1/a as X — 0.

Proor. By Lemma 5, we may assume that

QU —s) = s"”"c(s)exp(f % du),

where c(s) — ¢ € (0, =) and b(s) — 0 as s — 0, and where
0 < inf2oc(s) = sup,=oc(s) < o,
By Lemma 2 and Lemma 3, the proof can be accomplished by showing that
limy o {3 {log c(WA)}K(v) dv = [ {log ¢}K(v) dv,
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and that

1/A o
lim,_,o f {log c(v\)}v dK(v) = f {log clv dK(v),
0 0
which follow from Lebesgue’s theorem and from Lemma 2.

2.2 The random term. In this paragraph we determine the limiting distri-
bution of

/A
B.(1 — vA
A= —J; LT\/;I.) d{vK(v)}, as X —0,

where B, () is a Brownian bridge. We first note that A, is equal in distribution
to a 'n"V%(Cy — D,), where

1/
C, = W( )\)

d{vK(v)}, Dx—f W) d{vK(v)},

and {W(u), u = 0} is a Wiener process. We get easily from Lemma 1
D, = WQ{(I/MK@A/X)} = 0p(1) as A — 0.

For the first term, we need the following lemma:

LEMMA 8. Let K satisfy (H1-2-3-4). Then, for any A\ > 0,

/A
C, = W(v>\)

d{vK(v)}

follows a N(0, ¢%) distribution, where
2 /A
A=+ [T o w

Proor. Choose any 0 < § < 1 and consider the random variable

1/x
no) = ) T k),
/A

Evidently v,(6) is well defined as a Gaussian random variable with expectation
zero and whose variance may be computed by integration by parts from

soion- [ fer) [ =224 )

giving, after some routine calculus,
1\ 1 (1N s (s 1 (6\Js (o
E(+3(0)) = {X K<X>} - Z{X K(QHX K<x>} + {X K(X> {X K<X>}
8 b
) L ik

1
dt
2
P CESE
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If we let 8 — 0, using Lemma 1, it can be seen easily that

1./1\]? 1™
lim; ,0E(v3(8)) = {X K(X)} + XJ; K?(v) dv.

It follows that C, is well defined as the limit in expected mean square of v, (5)
as 6 — 0, hence the result.
A direct consequence of Lemma 8 is the result we seek:

LEMMA 9. Let K satisfy (H1-2-3-4). Then, as A\ — 0 and n\ — o,

1/x 00
VA, = — f B.a - wvd) d{vK)} - N(O, a2 f K*(v) dv).
0 av\/x 0

Proor. We let A — 0 in Lemma 8 and use Lemma 1.

2.3 The error term. The main tool we shall make use of in this section is a
recent result of M. Csorgd, S. Csérgo, Horvath and Mason [Cs-Cs-H-M] (1984),
where a probability space (2, A, P) is constructed carrying a sequence U, Us,

- of independent random variables uniformly distributed on (0, 1) and a
sequence of Brownian bridges {B.(s), 0 < s < 1}, which has, among others, the
following property.

Let Uy, < --- < U,, denote the order statistics of U, - - -, U, and define the
uniform quantile function U,(s) as

Un(s)= Uk’" if (k_l)/n<ssk/n’ k=1’ ..., n,
and
U.(0) = 0.

LEMMA 10. On the probability space of Cs-Cs-H-M (1984), for any 0 < v < 4,
we have, as n — ©,

Supl/(n+1)sssl| ‘/;l'(l - 8= Un(l - S)) - Bn(]- - S) |/5—”+1/2 = Op(n_”).

Proor. This is an easy consequence of Corollary 2.1, page 24, of Cs-Cs-H-
M (1984).

We shall assume in the sequel that the uniform (0, 1) random variables U,
U,, --- and the Brownian bridges B,(:), n = 1, 2, ..., are defined on the
probability space of Lemma 10 and that, without loss of generality, we have

Xn = Q(Un)’ Qn(]- - S) = Q(Un(l - S)): 0 <s= 1’ n= 1’ 2& Ct .

We shall assume in the sequel (unless otherwise specified) that (D3) holds.
This is because we see from the above representation for §, and from the sum
representation of our estimator a, in the introduction that either asymptotically
(the first case in (D2)(i)) or always (the second case in (D2)(i)) the logarithms
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of ¢(s) = ¢ in (Q) cancel. Therefore we may assume without loss of generality

that (D3) holds. Our aim is to evaluate the limiting behavior as A — 0 and nA —
o of the integral

1/A
J; An(vN) dfvK(v)},

where
An(s) = A (s) + AP (s) = log Q.(1 — 5) — log Q(1 — 5),
AR (s) = —(1/a){log(1 — U,(1 — s)) — log s},
and
Af:")(s)=j~s Mdu, O0<s=1.
1-U,(1-s) U
Let
T, = Vn\ J‘l/k {A,,(UA) - M} d{vK(v)}.
0 avavn
We intend in the following to show that, as A — 0 and n\ — o,

n= OP(I)-
For this, we shall split T, into three parts:
T.=R,+ R,+ R,

where
A B.(1 — v\)
R, = vn: {A,,(ux) - ——~}> divK )},
1/(Mn+1)) avAvn
1/(A(n+1))
R, = \/ﬁf An(M) dvK(v)},
0
and

1/(M(n+1)}
Ba(1 — v\)
R} = —nx f === QK ()},
" donn CEW)

We first consider R} and R}.

LEMMA 11. Let K satisfy (H1-2-3-4), and assume that (D3) holds. Then, as
A — 0 and n\ — o, we have R}, = op(1) and R = op(1).

PrROOF. a) For0<v=1/(A(n+ 1)), @.(1 —v\)=Q(U,,) and

(2
A"(UA) = - i log(l - Un,n) + % log N + J:_U _b(lf) du.
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Next, we have, for any x,
lim, o P(=log(l — U,,) —logln + 1) < x) =e™*".

It follows that, as n\ — « and n — o,

1/(\Mn+1))
vnx fo {~log(1 — U,,) — log(n + 1)} d{vK()}

1/(A(n+1))
= vnX 0p(1) f d{vK(v)} = 0p(1) by Lemma 1.
0
In the remaining term, we have by (ii) of Lemma 2
1/(AM(n+1)) J_>\ 1/(A(n+1))
Jnx f % log(wA(n + 1)) d{K(v)} = — % K@) dv,
0 0

which by Lemma 1 equals 0(1) as nA — oo,
Finally, we consider

1/(A{n+1)) VA
mf {f bw) du} d{vK(v)}
0 1-U u

1 1 1/(n+1) b(u) fl/()\(n+1)) }
= Vm {(n ¥ DA K((n n 1)7\) J: 0. uw ®T U b(AW)K() dv,

after integrating by parts. By Lemma 1, we have, as A — 0 and n\ — o,

1/(A(n+1))
NI f b(Av)K(v) dv — 0.
0

Finally, we have to deal with the term

Jnx 1 J’ VoD b (w)
(n + 1)\ K((n + 1)>\> Uy, U du.

If we use the fact that b(u) — 0 as u — 0 and that, for any x > 0,
lim, o P((n + 1)1 — U,,) > x) = 7%
we get evidently, as n — o,

1/(n+1)
J: % du = op(1)log((n + 1)(1 — U,,)) = op(1).

~Upn

Finally, using again Lemma 1, we have, as A — 0 and n\ — o,

Vnx 1
(n + 1)\ K((n + 1)7\) —0.

This proves that R/ = 0p(1), as claimed.
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b) We first note that, if {W(u), u = 0} is a Wiener process, then R/ is equal
in distribution to R}, — R},, where
) N[V )

=" ) Ton d{vK(v)},

and

, _ YA 1 1
Ty W(l){(n + 1A K((n + 1)>\)}'

By Lemma 1, R}; = 0p(1) as A — 0 and n\ — o,
Next, using Lemma 8, we get

, _2{ 1 \ 1 fl/()\(n+1)) \
no —d N<O’ 1+ Da K ((n + 1)7\) * K*w) dv})

=o0p(l) as A— 0 and n\ — o,

This completes the proof of Lemma 11.

Lemma 11 shows that, as A\ — 0 and n\ — o, T, — R,, = 0p(1). Let us now
split R, into RY + R?, where

1/A —_
RY = Vnx {Aﬁ,"(w\) - M} d{vK(v)},
1/(Mn+1)) avAvn
and
1/x
R?® = Vnx AP ()\) dvK©)).
1/(\(n+1))

We shall first concentrate on RY" and use the Taylor expansion of AY:

AP(s) = —(1/a){log(1 — Un(1 — s)) — log s}
=—(1/as){1 — s — Us(1 — s)} + ({1 — s — Ua(1 — 5)}%/2a02(s)),

where

min{s, 1 — U,(1 — s)} < 6,(s) < max{s, 1 — U,(1 — s)}.

(%EMMA 12. Let K satisfy (H1-2-3-4). Then, as A — 0 and n\ — «, we have
R = 0p(1).

ProOOF. The proof will be made in seven steps.
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STEP 1. Let 0 < v < % be given. We consider, for du = K(v) dv or du =
— vdK(v),

1/

1 1 B.(1-u)\)
vnx Sl-un-U(1—-wv\) ——-=—"2 1 g
" Yo+ | @ ( ( 2 UA avn vA w)
\/’X 1/A
== |«/E(1—ux—Un(l—ux))—Bn(1—u>\)|M
a Jioam+) VA
| VR(1 —s — U,(1 — 5)) — B.(1 —s)| VA
= SUP1/(n+1)=s=1 ey “l;“

1/A
. J: (VN) V2 du(v).

/(Mn+1))

By Lemma 10, this expression is, as n — o,

A1/2 1/ 1/A
0p 2 [ o) datw) = Opttmr) v dp(v) = I,
1

a /(Mn+1)) 1/(A(n+1))

StEP 2. Take du(v) = K(v) dv. For any 6 > 0, we have

'] 00
f v V2K(v) dv < {Supo<s=s Vs K(s)} v du,
1

/(Mn+1)) 1/(M(n+1))

Hence, by taking the corresponding part of I, we get
3

Op((nA\)™) v VK (v) dv < {supo<,<s Vs K(s)}0p(1),

1/(M(n+1))

where the Op(1) is independent of 6.

StEP 3. Take du(v) = —v dK(v). For any 6 > 0, we get likewise

']
f vV —p dK(v)}

/(Mn+1))

= J: v ™+2—dK (v))

/(Mn+1))

v—1/ 1
= (AMn + 1)) 2K<(n FETTY

+ (l - V>{supo<ss,s~/§ K(s)} v dv
2 1/(x(n+1))
= {supo<s=s Vs K(s)}O((n))").

By taking the corresponding part of I, we get in the same manner
8

Op((nX)™) v™"V*{—v dK(v)} = {supo<s=s V5 K(s)}Op(1),

1/(A(n+1))

where the Op(1) is independent of .
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STEP 4. It is easy to see now that Lemma 1 in combination with Steps 2 and
3 allows us to choose for any ¢ > 0 a 6 > 0 such that

8

P(I Op((nA)™) v du(v)| > e> <e

1/(x(n+1))

for all n sufficiently large, where du = K(v) or du = —vdK(v).
Let us choose é > 0 and consider the remaining part of I,,, namely

1/x ()
Op((nk)‘”)J; v‘”“/zdu(v)501o((n>\)‘”)f‘s v V2 du(v).

Since for either du = K(v) dv or du = —v dK(v), we have

f vV2 du(v) < o,
8

it follows that the above expression is 0p(1) as n\ — . Thus, we see that, as
A — 0 and nA — «, we have for du = K(v) dv or du = —v dK(v)

/A 1 1 B.(1 — vX)
Jnx 2 (1 —ovx = U,(1 —vr)) N ol du(v) = op(1).

1/(A(n+1))

STEP 5. It remains to study the term

J = ax [ |1 —ox = U1 — vd) |2
" 2a Jyone) 82 (v\)

du(v),

where du = K(v) dv or du = —v dK(v).
Here, we shall need the following lemma:

LEMMA 13. For any p > 1, let A, (p) be the event A,(p) = {s/p = 1 —
U,(1 —5)=<ps, 1/(n+ 1) <s=<1}. Then

lim, 4o {lim inf, .« P(A,(p))} = 1.

ProoF. The proof follows easily from the inequalities in Remark 1 of Wellner
(1978).

Proor oF LEMMA 12 (continued). Let us chose by Lemma 13 an n, and a
p > 1 such that, for n = ny, we have P(A,(p)) > 1 — ¢, ¢ > 0 being fixed in
advance.

This being the case, we have

s/p < ba(s) < ps,

and hence

_ ()Y f”‘ p21 = oA — U,(1 — v\) |2
1,

M= /n+1) (oN)? du(v) = Ju(p).
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We shall now make use of the following lemma:

LEMMA 14. For any 0 < v < Y, we have, as n — o,

SUP1/mn=s=1(n’|1 — s — Up(1 — ) |/s'™*) = Op(1).
Proor. It follows from Theorem 2.1 of Mason (1983).

PrOOF .OF LEMMA 12 (continued). We choose » in Lemma 14 such that
Y4 < v < Vs, This gives, as n — o,

1/x

Jn(p) = Op((nA)V2>) v du(v).

1/(A(n+1))

STEP 6. In the expression above, put %2 —2r = —v, noting that 0 < v < 1%,
We get
1/2
Jn(p) = Op((nA)™) v du(v),
1/(Mn+1))
in which we recognize the same expression which has been evaluated in Steps 2,
3 and 4. The same proofs show that, as A — 0 and n — o, we have J,(p) = 0p(1).

STEP 7. We may now choose p arbitrarily large to let P(A,(p)) increase to 1.
This suffices to show that J, = 0p(1) as A — 0 and n\ — .

If we put together the preceding results, we have proved that R = 0p(1). The
proof of Lemma 12 is now complete.

Up to now, we have proved that T, — R® = 0p(1).

In the sequel, we shall assume that b(u) is defined for all u, with b(u) = 0 for
u < 0 or u> 1. If we use the assumption that b(u) — 0 as u — 0, then we see
that there exists a 6 > 0 such that b(-) is bounded on the interval (0, 25). Put

bk(s) = sup{|b(u)|; min(s, 1 — U,(1 — s)) < u < max(s, 1 — U,(1 — s))}.

By Glivenko-Cantelli, with probability one, there exists an no such that, for
n = ny, by (s) is bounded for 0 < s < §. This gives

| A2(s) ] = b2(s) | log(1 = Un(1 — 5)) — log s|.
Consider now
/A

L, = vnx | A2 (UN) | dr(v),

1/(A(n+1))
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where du = K(v) dv or du = —v dK(v). We have, by the triangular inequality,
L, = Vnx {SUP1/(n+1)=s=sb7 (5)}

fl/)\
1/(A(n+1))

log(1 — U,(1 — vA)) — log vA

B,.(1 — vA)
-2l 20 g
vAvn w )
" | Ba(1 = o)) |
+ vn\ br(v\) —————du(v) =L, + L.
1/(A(n+1) vAvn

In the proof of Lemma 12, we have shown that, as A\ — 0 and n\ — o,
L; = {supy/m+1)=s=sb7 (8)}op(1) = 0p(1).

Next, if we take expectations, we have in L/,

1/

N5 M du(v) = 0P<Jﬁ

1/(\(n+1)) UA

]

(uA)~V2 du(v))
1/(A(n+1))

= OP(J; vV2 du(v)) = Op(1).

It follows that, as A — 0 and n\ — oo,
Ly, = {8UP1/(n+1)=s=sbn (s)}Op(1).

Since b(u) — 0 as u — 0, it follows that, by choosing é > 0 arbitrarily small,
we may make

8/A
vna | AP (v)) |du(v) as small as desired.

1/(A(n+1))

Let us assume from now on that 6 > 0 is fixed, and consider the remaining
terms

1/ 1/A VA b(s)
|~/ﬁf AP M) duv) | = ’ mf {f ——ds} du(v)
8/A 8/\ 1

=U,(1-vA) §

b

where du = K(v) dv or du = —v dK(v).
By Kolmogorov-Smirnov, with probability increasing to one as ¢ increases to
infinity, we can give an upper bound of this integral by

1/A vA+c/vn | b (s) |
M, = mf {f =l ds} du(v).
8/A vA—c/Vn E]

Let us assume that ¢ > 0 is fixed.
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(a) Let du = K(v) dv. We have

— 2eVi f { f ) | S}K<2)éli
20/ u—c/vn S AA

u+h
< 287 V3{sups<u<; (u/N) V2K (u/)\)} J; {Elﬁf Mds} du,

u—h S
where h = ¢/ Vn.
We shall make use of the following lemma.

LEMMA 15. Let ¢ = 0 be integrable on (A — h, B + h), where 0 < h <
(B— A)/2 < . Then we have

B [ uth B+h
f {—— f o(s) ds} du < f ¢(u) du.
4 |2h Ju-n A-h

PrROOF. By integration by parts.
Applying Lemma 15 we get for n = 4c¢?/82,

166s) 1

M, < 2c6'l/2{sup5/xsusl/)\\/—d K(u)} f ds=0(1) as A— 0.
8/2

(b) Let du = —v dK(v), h = ¢/vn, and consider

_ ' 1f“*h|b(s)| }u u
Mn——2C\/XJ; {% - Tds XdK<X>

If we assume that, for some A = 0, dK(u) = k(u) du for u = A, and if, in
addition, we have

lim,yott®2k(u) = 0,

then we can use the same argument as in (a), replacing K(u) by uk(u), to show
that M,, = o(1).
If we assume that b(-) is bounded on (0, 1), then we have directly

M, = 0<f>\f v dK(v)) =0(1) as A —0.
a/n
Since T, = v¥nAA,s, we have just proved, the following lemma:

LEMMA 16. Let K satisfy (H1-2-3-4), and assume that (D1-2-3) are satisfied.
Then, as A — 0 and n\ — «, we have

\/ﬁ Ans = Op(l).

PrOOF OF THEOREM 1. According to the explanations given shortly after
Lemma 10, if (H1-2-3-4) and (D1-2) are satisfied, then it follows from Lemma
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7, Lemma 9 and Lemma 16 that, as A — 0 and nA — o,
oo -1/2
avn) {f K?*(v) dv} (az' — a™ = B,) —uw N(0, 1).
0
Since evidently this implies that a, —p a, we have

- ~1/2
%/:—L__A- {‘I(: KZ(U) dl)} (a - Qp — aanﬁn) —w N(O’ 1)’

or equivalently

Jnx f‘” -2 a
— { A K%(v) dv} (a,. -1 aB") —, N(0, 1),

which is the desired statement (ii) of the theorem. Statement (i) follows by the
last statement of Lemma 3 and by Remark 7.

Next, we have to show that if we assume only (D1), we have still a, —p a if
A — 0 and n\ — . A close look at the arguments developed from Lemma 7 to
Lemma 16 shows that this will follows from:

LEMMA 17. Under the conditions of Lemma 7, we have, as A\ — 0 and
nix — oo,

/A
J; {log c(v\) — log c(1 — U,(1 — vA))} d{vK(v)} = op(1).

PrOOF. The proof of Lemma 17 is identical to the proof of Lemma 7 by
Glivenko-Cantelli.

PROOF OF THEOREM 2 AND THEOREM 3. By Theorem 1(ii), we have

b —-1/2
—@ {J; K?(v) dv}> (an — a + a28.(1 + 0(1))) =, N(0, 1).

a
The results follow directly.
2.4 Optimal choices of K and \. We shall assume in the sequel that (D4)

holds and use the notations D; = C¥?, D, = C,/(aC%®), a = b/a, for which
namely,

Q1 — s) = s7V°Dy{1 + Dys*(1 + 0(1))} as s— 0.
LEMMA 18. Let (D1-4) hold, and assume that, for 0 < s < so,

Q(l—s) = S“/“eXP< ﬂ:—) du).



1074 CSORGO, DEHEUVELS AND MASON

Then we have

1 s
log D, = é(ui) du and f %u) du = —D;s*(1 + 0(1)) as s — 0.
0 V]

PROOF. We have for 0 < s < s,

1
b(:)' du = log D; + log(1 + D2s*(1 + o(1))),

8

hence, for s — 0, we get

1
f é—(—lﬂdu=logD1
o u

and
*b(u)
. du = log(l + Dss*(1 + 0(1))) ~ Dys* as s — 0.
0
Let us now consider a kernel K which satisfies (H1-2-3-4-5) which imply

that, for some A < o, K(t) = 0 for t > A. Let us also assume that b(¢t) = 0 for
t = 1. We have then

o 00 2
M(n, \, K) = 1 f K%v) dv + {f b(z\w)K(v) dv} .
n\ Jo ()
We shall make use of the following lemma:

LEMMA 19. Let K satisfy (H1-2-3-4-5) and assume that (D1-4) hold. Then
we have, as A — 0,

ﬁ)\ = £ b()\U)K(U) dv = —aDz{J; UaK(v) dv]f)\a(l + 0(1))

PrROOF. There exists a A\ such that, for 0 < A < Ay, we have

oo [0 [upfu
e [0 L),

On integrating by parts, we get ,

Bt =- fo " { fo s % duHKG) %‘f + dK(%)}.

It follows evidently from Lemma 18 that, as A — 0,

M s\ds Moo s '
/3{‘=D2{J; S“K<X>7}(1+0(1))+D2{J; s“de<X>}(1+0(1))
AA s dS o0
=—aD2{J; s“K<X>7}(1+0(1))=—aD2{J; v“K(v)dv}A“(1+o(1)),

after integrating by parts.
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PROOF OF THEOREM 5. Under the hypotheses of Theorem 5 (we may again
assume without loss of generality that (D3) is satisfied, as noted after Lemma

10), we have, using Lemma 19, as A — 0,

M@, \, K) = %J; K%(v) dv + AZ“(aDz)Z{J; v*K(v) dv}> 1+ o(1)).

Let A = )\, be the value of A which minimizes

] Lf K*v) dv + )\2"(aD2)2{f vK(v) dv}.
ni Jo ()}

We have evidently

o0 1/{2a+1) o0 —2/(2a+1)
A =n"Y@019,3D2) "”"‘""“’(f K*(v) dv) (f v°K(v) dv) —0
0 0

as n-— oo,

It follows that there exists a A, > 0 such that, as n — o,
M(n, An, K) ~ infocrsa, M(n, \, K).
This proves the first part of Theorem 5.

We now seek a kernel K(-) which minimizes

f v°K(v) dv,
0

when K satisfies the constraints K = 0, [§ K(s) ds = 1, and [§ K*s) ds =

Constant.
It is straightforward to see that the optimal kernel must be of the form

K(s) =A — Bs*, 0<s< (A/B)Y~

We can then chose the normalizing constants to get

f K(s) ds = f K%s) ds = 1.
0 0

This gives finally K(s) = y{A* — 5%}, 0 < s < A, K(s) = 0 otherwise, where
a+1| [2a+ 1] 2a + 2
7_{ « }{2a+2]ﬁ and A_20z+1'

This completes the proof of Theorem 5.
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