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Introduction

Computers have taken an important role in society; we use them to provide for our livelihood, criti-
cal infrastructure runs on embedded systems and we share our most important and intimate secrets
using computers. This requires a large amount of trust in such systems, trust in aspects like reliabil-
ity and integrity. The reality today is that many systems are eventually compromised. Widely used
encryption software is compromised and security vulnerabilities are found in hardware. If comput-
ers and embedded systems are such important systems, is it right to put a huge amount of trust in
them?

It is not necessarily bad when a trusted governing body has a lot of power. This means that
when this body is inherently good, it can do a lot of good and prevent bad actions from its sub-
jects. However, when this body becomes corrupt, either through own mistakes or an external factor,
this power becomes a liability. The same applies to a governing body within an Operating System
(OS). This body is called the kernel. Because the kernel has a lot of influence in a system, malicious
parties often try to infiltrate the kernel. In common operating systems, when a kernel is corrupted
and/or infiltrated, attackers have full control over all memory. Most efforts are to protect the kernel
from external influences, but perhaps we should strive to strip the powers of the kernel to the bare
minimum. In that way, when there is a hostile take-over, the information in the system could still
be secure.

The Open Source OS Framework Genode has already started at an attempt to make the ker-
nels influence smaller [24]. The main goal of this Operating System is to make the required trust
as small as possible. Genode does this by dividing the Operating System into small components.
After initialisation, the kernel only serves the purposes of messenger between components and as a
scheduler of tasks. Aside from the kernel, components only need to trust other components that are
truly necessary for that component. This compartmentalising and the small kernel are the reasons
that we will be working with Genode in the course of this thesis when investigating how the power
of the kernel can be reduced even more.

1.1. Problem definition
As mentioned above, most endeavours have been put into increasing the security instead of de-

creasing the impact of a breach in the outer wall. In the event of such a breach, the kernel is one of
the critical systems that is exposed. This leads us to the following question:

Can we reduce the amount of privileges of the kernel in a performance efficient manner?

To answer this question we introduce three sub-questions which we will subsequently deal with.



2 1. Introduction

» "What vectors are there to attack a kernel?" Attackers have a long-standing tradition of bypass-
ing most defences that have been proposed. In order to know which privileges are instrumen-
tal in attacks, we should look at the state of attacks and defences that are currently known.

* "How can we reduce the number of privileges of the kernel?" Reducing privileges of a kernel
seems an idealistic goal. We should investigate whether there is a viable option to accomplish
this goal.

» "What is a performance efficient manner to implement such a restriction?" Most defences have
an overhead in terms of computation time, memory bandwidth, area or power. That is why
we should analyse the found defence, if such is found in the second research question, and
map current bottlenecks.

1.2. Methodology

To investigate the aforementioned set of questions, a number of actions are established. The sub-
questions were introduced in order to reach a conclusion regarding the main question. This section
lays out the actions needed to answer the sub-questions.

» "What vectors are there to attack a kernel?" This question will be approached with a literature
study into the different attack vectors that exist on software. These vectors will be grouped in
terms of method, the desired end result of the attack and defence category.

* "How can we reduce the number of privileges of the kernel?" In order to provide this question
with an answer, a defence category will be selected from the literature study. Subsequently,
we will develop and implement a defence within this category, which will also be tailored to
fit the existing infrastructure.

» "Whatis a performance efficient manner to implement such a restriction?" To answer this ques-
tion, we will review the proposed system found and developed in the previous actions. This
review will focus on performance bottlenecks and suggest improvements on the developed
defence. These improvements will be verified through a combination of simulation and ac-
tual implementation.

1.3. Thesis outline

The rest of the paper is structured as follows. First, in Chapter 2, the background of this thesis is
laid out. This comprises of the existing infrastructure in which this thesis takes place and existing
attacks and defences. Next, in Chapter 3 a defence is proposed. In Chapter 3.5 the proposed system
will be reviewed and improved upon. Thereafter, in chapter 2?2 the results will be presented. Finally,
this thesis will be concluded in Chapter 5.



Background

Before answering the first sub-question by providing an overview of possible attacks, defences and
goals, we will sketch the foundation of security in OS and focus on the OS used in this research. As
mentioned, the reason for choosing Genode as an OS was that the developers have already created
a smaller kernel than usual. Further reasons will also be mentioned in the coming section.

2.1. Foundations of Security in Operating Systems

2.1.1. Origin

One of the first OS that needed some form of security can be attributed the Compatible Time-
Sharing System (CTSS) that was created by researchers at Massachusetts Institute of Technology
(MIT) [14]. This system enabled the usage of one machine by multiple users and therefore needed
separation between users. MIT continued this project with the Multics system, which is a heavy
influence in today’s operating systems. Multics was designed to be more secure than other OS at
that time. Security rings, virtual memory, Access Control Lists (ACL) and other protection features
that can still be found today were implemented in Multics [47]. Researchers of MIT also introduced
security concepts such as capabilities [20], a concept of unforgeable tokens on which Section 2.1.3
will expand.

As stated above, security features of Multics can be found in current OS, for example, UNIX. This
is not surprising as UNIX is a descendant of Multics. But unlike Multics, UNIX is not designed with
security in mind. In a secure system, all security policies must still work when everything outside
of the Trusted Code Base (TCB) is malicious. UNIX does not adhere to this specification. There are
attempts to increase the security of UNIX, for example with the module Security-Enhanced Linux
(SELinux).

One aspect of security design that this chapter also will show, is that whenever someone makes
a secure system, finding flaws in those systems is as important as the design itself. As finding flaws
enables better designs. This also can be seen in an analysis of the Multics system [34]. This analysis
of flaws in Multics sparked new security measures in both software and hardware aspects. The
old kernel of Multics was too large to be able to verify its correctness. That is why they adopted a
simplified and smaller kernel [48].

2.1.2. Microkernels

As shown with the Multics system, the more simple and small a kernel is, the more a kernel can be
better understood and is less likely to have bugs. That is the underlying philosophy with microker-
nels. As the name suggests, a microkernel is a smaller than average kernel. Microkernels move every
non-critical traditional OS service, such as the file system, outside of the kernel.

Also, Tanenbaum [56] underlines that while monolithic kernels are typically faster, microker-
nels are more reliable. The reasoning for this is that the code size of a kernel such as Linux is 4000
times larger compared to a microkernel. This increases the number of bugs and exploitable objects
significantly. Secondly, with such a large code size there is nobody that can comprehend such a

3



4 2. Background

large system, which makes bug fixing more difficult. Third, a modern OS does not have isolation
between components in the kernel. This makes that bugs (and possible malicious code) can have
more impact.

The RC 4000 Multiprogramming System is the first notable attempt to create such a microkernel,
although the reasoning behind this system was more on flexibility than on reliability or security [28].
For the same reason, the OS Hydra was built, but it did feature a capability-based protection [39].

The Mach microkernel is also a notable and a much-researched microkernel. The microkernel
was built to be a replacement of the monolithic BSD OS. Mach is in terms of security features not
much different from UNIX, except that the TCB has become much smaller with the Mach kernel.
Mach also inspired a range of derivatives of Mach, the most notable derivatives for our research are
so-called security kernels.

Security kernels are kernels with specific focus on security. The goal of these kernels is to achieve
a level of integrity and implement a security policy with assurances. The assurances are provided
by a combination of compile-time and run-time verification. The reference monitor is an impor-
tant component of a security kernel. The reference monitor performs run-time verification of the
enforcement of the security policy. As with the microkernels, in order to properly verify the TCB, the
kernel and other components in the TCB needs to be as simple and small as possible.

Research in Microkernels stagnated around 2000s because of the slow performance compared to
monolithic kernels. That is why some research focused on the bottlenecks of microkernels. Liedtke,
for example, found that a large bottleneck is Inter Process Communication (IPC) and created the L4
microkernel to mitigate some of these bottlenecks. However, monolithic kernels such as Linux or
Windows are currently more popular.

2.1.3. Capabilities

A capability is an unforgeable pair made up of an object identifier and a set of authorised operations
on that object [20]. The object identifier points to a single unique object inside the system. The
referred object can be virtual such as a file or array but also physical such as memory or a debugging
port. Each process holds a set of capabilities and that set dictates the access to other processes in
the system. Such a set of capabilities that a process has is called a protection domain.

Capabilities provide a mechanism that is suitable to make small components instead of large
monolithic programs. This is because capabilities provide protection per protection domain instead
of per user. This has the advantage that similar to microkernels, small components can be better
understood and therefore contain fewer faults.

As shown before, capabilities are not a new concept and are embedded in the very first gen-
erations of OS’s. However, in common OS security based on Access Control Lists are prevalent.
Drawbacks in capability-based systems can explain the reasoning for choosing for Access Control
Lists. One of the advantages of a capability-based system is the fine-grained segmentation and iso-
lation of programs. However, there is overhead in switching and transferring information between
protection domains. More segments equal more overhead.

There is still active research in capability-based systems. CHERI is a current research project
from the University of Cambridge. They revisit hardware-based capability systems and combine
them with a RISC Instruction Set Architecture (ISA). They focus on creating a low overhead system
for fine-grained memory and pointer protection and also on reducing the overhead of compart-
mentalisation.

2.1.4. Genode

The Genode OS Framework strives to create a modular OS in which the kernel is reduced to only the
truly necessary. Because of the combination of a microkernel with capability-based security, this
results in an OS that is intrinsic more secure than current modern OS (e.g. Linux or Windows).



2.2. Attacks and defences 5

The most recent generation of microkernels (OLK4, SeL4) stems from the L4 microkernel family.
Genode is a framework that builds on those microkernels.

Genode implements the mentioned capability-based security with so-called capability lists. These
are lists of capabilities that are maintained inside the kernel. The components themselves get a ca-
pability reference from the kernel that is context dependent for a specific component. This fulfils
the unforgeable requirement of capabilities, as only the kernel has the ability to create or grant ca-
pabilities. When a component does not have a certain capability, the component cannot create a
valid reference on its own.

That the kernel keeps all capabilities has an impact on sharing capabilities, as those need to
be shared with the help of the kernel. Components can not simply pass capabilities without the
knowledge of the kernel. When a component has a capability, it also gets the right to delegate this
capability to other processes.

As the kernel keeps all capabilities and passes all communication, the kernel has a key role in
the integrity of the OS. Should the kernel be overtaken or maliciously tweaked, the whole security
will be void.

2.2. Attacks and defences

It is important to know what types of attacks there exist in order to observe common pitfalls in
the security of operating systems. This research will focus on attacks on low-level programming
languages such as C, C++ and assembly. Those programming languages are commonly used in op-
erating systems, Linux is mostly programmed in C, Windows is programmed in a combination of C,
C++ and C#. For interfacing with the underlying hardware, some assembly is also required.

Another reason for the focus on low-level languages is that for the purposes of this literature
study, Genode is also composed of low-level languages (C++, assembly). The goal of this study is to
map different attack vectors on operating systems and listing possible defences.

2.2.1. Attack methods

As stated previously, the focus is on attacks on low-level programming languages such as C, C++ and
assembly. According to [23] there are four types of attacks on low-level languages that are represen-
tative of all attacks on low-level languages. Those are stack-based buffer overflows, heap-based
buffer overflows, jump-to-libc attacks, and data-only attacks. They discard "format-string attacks"
as a viable option because they are simple to eliminate. However, [12] estimates that there are over
1,000 format string vulnerabilities in the packages of the Linux distribution Debian which makes
the problem more widespread than initially thought. The last type that was dismissed was integer
overflow, which exists, but as an attack which leads to the other four types. Slightly ambiguous is
the distinction between the buffer overflows and the jump-to-libc / Return-Oriented Programming
(ROP) attack as an overflow exploit or other pointer corruption exploit is needed to perform such an
attack.

Figure 2.1 provides an overview of the types of attacks and the flow between attacks and goals. In
this figure, green blocks represent bugs or entry points, orange blocks are needed permissions and
blue blocks represent end goals or exploits. Attacks start with a form of user input which exploits a
bug in the system. Integer overflow, string formatting, stack and heap overflow are all dependent on
bugs in a system. [29] estimates that there are 3-6 bugs per thousand lines of code of well-written
software. This means that bugs are likely to exist in most software. Exploits also have an average
lifetime of 6.9 years ([4]) which can make the reward for finding an exploit great. After the initial
exploit, several methods can be applied to achieve an attackers goal. These exploits and methods
will be explained in the subsequent sections.
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User input Integer overflow

A h 4 v
String formatting Stack overflow Heap overflow
A v
Read memory Change memory

v

Jump-to-libc ROP Code injection Data-only

Output information

Figure 2.1: Attack structure on low-level languages

Buffer overflow

A buffer overflow happens when a program writes to an address on the current stack or heap outside
the intended range. A buffer overflow usually happens by writing to an unchecked buffer. Exploits
can leverage this to write to the stack and to divert the current control flow. Examples of things that
can be overwritten is a local variable or a return address. Figure 2.2 illustrates a simple example. The
figure on the left would be the memory map in normal operation, while on the right the memory
map after a successful buffer overflow. The attacker has not only written to the buffer region but has
also overwritten the return address of the current function. This enables the attacker to redirect the
current control flow. If the attacker sets the return address to the address of the buffer, the attacker
can inject and run arbitrary code.

Both Stack and Heap overflows are types of buffer overflows, the difference is the location of the
overflow region. Because the stack and heap are used differently, the exploitation of the overflow is
also different. The example described above is a stack overflow because the return address is located
on the stack. The information that is stored on the heap are data structures, these structures can
combine data buffers and function pointers. When a buffer in the heap overflows, the subsequent
function pointer can be overwritten.

Buffer errors vulnerabilities in software is a large problem. According to the US National Vulner-
ability Database (NVD), buffer errors are the most found type of vulnerability [2].

Return-to-libc

Asitis possible to overwrite addresses, a way to exploit a buffer overflow is to divert the control flow
to existing functions. The most used target for this is libc, which is a code library that among other
things contains system calls. By chaining such calls, it is possible to further exploit the system. An
example of a convenient function in libc for attackers is strcpy() which copies a string to another
location. That way you could copy the buffer to another location where code can run and execute it.
The first documented exploit of a return-to-libc attack is attributed to [21]. The attack return-to-libc
was born because simple overflow exploits are reasonably easy to defend against. Such a simple
defence is to prevent the execution of code from the stack. Attackers still can overwrite addresses
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Stack Stack

Return address Address of sp

Buffer Code of attacker
Sp — sp —

Code Code

Figure 2.2: Buffer overflow attack

trough the original buffer overflow but the defence decreases the usefulness of the exploit as the
attacker can not directly inject code.

ROP

ROP generalises the Return-to-libc attack by using small excerpts from existing programs and not
needinglibc or any other default library. Instead of using whole functions, it tries to find small pieces
of code that end in a return instruction. The return instruction makes it possible to chain the small
pieces of code. The small excerpts are called gadgets and if there are enough of them it is possible
that the set is Turing complete. This makes it possible for an attacker to execute arbitrary code. The
first occurrence of ROP was introduced by [50] on the x86 architecture. This attack soon expanded
to other architectures [9, 25]. While most exploits depend on the refurn instruction, return-oriented
programming also is possible without such instructions [11].

Integer overflow

An integer overflow exists after a computation of which the end result is outside the representable
range of the result type. When this is not properly handled, this can lead to unintended behaviour.
An example of such an attack is CVE-2002-0639 [15] which uses an integer overflow as a step to cre-
ate a buffer overflow and therefore can write to memory. The authors of [22] remark that intentional
integer overflows are more common than previously believed. This makes detecting unintentional
overflows harder.

Non-Control Data Attack

Unlike most attacks that focus on subverting the control flow, non-Control-Data Attacks changes
memory that is not directly related to the control flow. The authors of [13] show that such attacks
are realistic and most defences are useless against such attacks. They present examples of attacks
that, while not diverting control flow, can achieve higher privileges trough existing exploits.

2.2.2. Attacks on kernels
As stated before, the kernel has one of the most important roles in an OS. The kernel is hence also
a wanted target in cyber attacks. Attacks that focuses on kernels to subvert the control or data flow
of the kernel. An attack on a kernel that replaces some of the control flow of the kernel is called a
rootkit. Because rootkits enable the full control of the system, the goals of rootkits are wide-ranging.
The goals include privilege escalation (e.g. backdoors) and collecting sensitive information such as
documents or encryption keys.

Next to rootkits, there are also exploitable bugs or design flaws in kernels that do not subvert
the normal control flow. These usually revolve around privilege escalation. An example of such an
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exploit is called 'dirty cow’ which uses a race condition found inside the Linux kernel to achieve
write access to otherwise read-only memory/[1].

The confused deputy problem is also an example of the usage such a design flaw. It is often
explained with an example of a program that provides compilation as a service. The clients provide
names of input and output files, and the server compiles the input and writes to the output. The
server stores billing information in a file named BILL, as the service is pay-per-use. When a client
supplies 'BILL as output file name, the server overwrites the billing information. This occurs even
when the clients have no access to the file BILL, this takes advantage of the permissions that the
server has. The problem lies that the server uses its own permissions to open the files of clients.

The attacks mentioned in section 2.2.1 are all leveraged in taking control of the kernel. [19]
describes a kernel attack in the Android OS. This attack uses a heap overflow present in Android as
an initial attack and exploits the bug with a ROP attack.

2.2.3. Available defences

Now that we have an understanding of the types of attacks that can be initiated, a defence must
be found to combat these attacks. The research field of computer defences is large, even with the
specific focus on defences that apply to low-level programming languages.

An overview of the steps an attacker makes and the defences thereof can be seen in Figure 2.3.
Each container represents an defence and each inner box represents a step of an attack. As can be
seen, there are a lot of defences available, each with its own advantages and caveats. We will expand
on the different categories of defences in the following sections.

v

Supply format string

Buffer overflow

safe library

Safe programming language

Write to pointer
outside intended
buffer

Bounds checking —
Stack canaries

Change non-control Modify return

Insert code
data address

ASLR — ISR —
Pointer encryption Executable space
protection

Use modified return
address

Use non-control

data

Address outside

Shadow stack process

DFI

Process isolation

Jump to modified
return address

(GEI=
Process replication

Figure 2.3: Attack steps and defence structure on low-level languages
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Address Space Layout Randomization (ASLR)

ASLR The authors of [57] strife to make the finding of functions and gadgets needed by ROP im-
probable by randomising the address space of processes. Each time a program is loaded, various
sections will be placed somewhere different trough the use of virtual memory. The pages of virtual
memory are usually 4Kb sized, and therefore a maximum of 20bit that can be used for ASLR. The
authors of [51] show that ASLR is ineffective on 32 bit systems and can be beaten in an average of
216 seconds. There are also more fine-grained types of randomisation that not only randomises the
memory address, but also the relative distance between objects and therefore making it harder to
find objects and functions [6]. But also 64 bit systems and more fine-grained ASLR are not safe [53].
Attackers can recover gadgets dynamically and on-the-fly; Attackers are therefore not bound to the
static locations of gadgets or functions.

Stack canaries

Stack canaries are values that are written on the stack and are validated before any jump in the code.
If such a value is overwritten an exception is raised and is handled by the OS. This is a method to
detect an overflow and prevent that the address in the stack is followed. If an attacker can read the
canary value this method is broken. Stackguard[16] is an example of such a defence. Aside from the
stack, canaries are also used to protect other locations such as the heap [46].

Instruction Set Randomization

The randomisation or encryption of the used instruction set is called Instruction Set Randomization
(ISR). This defence prevents attackers from inserting valid code in the memory. [35] uses a simple
XOR with a key to encrypt instructions. While cheap on hardware, XOR provides no diffusion. This
means that specific bit can be targeted, such as the opcode, which makes retrieving the key more
feasible [55]. More secure encryption processes can be used such as AES, but also increases the
overhead. A variant that is similar to ISR is to encrypt pointers [18]. This should prevent the attacker
to select a viable address to jump to. Because pointers are widely used, the overhead is still large but
can be less then ISR. These schemes also have the drawback that it depends on a secret value (key)
that may leak at some point. While ISR only prevents code injection attacks, encrypting pointers
can also prevent ROP and return-to-libc attacks.

Executable space protection

Executable space protection aims to prevent the execution of code from the stack. Write XOR Exe-
cute (WeX) is an implementation thereof [58]. It divides memory pages into either executable data
or writeable data but not both. But because code first needs to be loaded into those pages, this
option can be turned off at any time by the kernel. This is a simple protection that has made its
way into almost every architecture (Intel, AMD, RISC-V, ARM, Transmeta, VIA, SPARC). While it can
provide a protection against the code injection attack, it does not provide any protection against a
Return-to-libc or ROP attack. This is because a ROP attack uses existing code to execute the payload.

Control Flow Integrity

Control Flow Integrity (CFI) makes sure that the control flow of the programs that are running are
within a valid path. This method is first suggested by [3]. The idea is that a compromised program
can be detected because it results in an abnormal control flow. CFI usually has two components,
one component analyses the program on valid execution traces and composes a Control Flow Graph
(CFQG). This analysis can be static, dynamic or a combination thereof. The other component inspects
that the current control flow is valid. While an ideal implementation of CFI would stop all known
ROP attacks, creating such an ideal CFl is infeasible. This is because creating a complete and precise
CFG is difficult and when having a complete CFG there is a performance overhead that can not be
ignored. When strafing from the ideal implementation towards the more practical CFI defences, the
security that such a practical method delivers is less and some ROP attacks are still feasible. [26]
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Data Flow Integrity

Similarly to CFI that focuses on the control flow, Data Flow Integrity (DFI) focuses on the data flow of
a program. This is a valid mitigation technique because buffer overflows and ROP depends on data
being changed by the attacker. This method can also defend against Non-Control data attacks e.g.
attacks that do not divert from the normal control flow. A basic form of DFI is also called dynamic
taint analysis. Dynamic taint analysis taints incoming input and prevents the usage of input in
control-flow instructions. [10] was the first to fully implement DF]I, the overhead of their method in
terms of executing time is 2.5 times.

Library replacements

As mentioned in Section 2.2.1, string format vulnerabilities occur with certain functions that use
a format string. A defence for such vulnerabilities would be to add certain checks to prevent the
misuse of such functions. Some methods change the semantics in order to make a distinction be-
tween safe and unsafe data [42]. Functions can then require that the format strings must be safe
data. This gives the programmer tools to make string vulnerabilities less likely. The downside of this
approach is that the code needs to be rewritten or converted because of the change in semantics.
Also, bugs are less likely but will depend on the skill of the programmer and therefore the bugs can
still persist. Other methods keep the default semantic but make the exploitation harder. [17] counts
the arguments of the function at compile-time, which makes it harder because most exploits de-
pend on supplying more format specifiers than arguments. FormatShield [38] works by identifying
exploitable function calls and restricting those calls by forbidding format specifiers.

Language-based security

Safe programming languages impose security by providing memory, type and thread safety. This
should make a buffer overflow exploit impossible as programs are guaranteed to only access mem-
ory locations that they are permitted. Language-based security builds on proven constructs which
prevent overflows and other bugs. Cyclone [32] is an example of such a safe programming lan-
guage. Cyclone combines static analysis during compile-time and run-time checks to ensure mem-
ory bounds. They estimate that about 10% of the code of common C programs needs to be changed
to conform to cyclone. The average performance overhead is 1.4 [62]. CCured is also a so-called safe
dialect of C. Unlike Cyclone, CCured is backwards compatible with C. They use annotations and type
interference to separate pointers into several safety levels. The average performance overhead is 4.7
[62]. While language-based security is a good solution to combat the mentioned vulnerabilities,
it is not always feasible to write all code of applications, dependencies and OS in a safe language
[30]. If only the user programs are written in a safe language, the used libraries and the OS are still
unsafe.[45]

Process isolation

Most OS’s apply some sort of process isolation. This defence aims to prevent processes from read-
ing and interfering with each other. The defence is usually implemented through hardware mecha-
nisms that are supported by the Memory Management Unit (MMU). These mechanisms are mem-
ory segmentation, page mapping, and differentiated user and kernel instructions. Virtual addresses,
aside from their practical use, is such a mechanism. Because switching between address spaces in-
cur a non-negligible overhead, fine-grained isolation can lead to a too expensive protection [31].
The authors of [30] combine traditional process isolation and Language-based security to reduce
the overhead of address switching. They created a safe programming language, added verification
tools to aid the programmer to create safe programs and created an OS to make the traditional
mechanisms more flexible.
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Bounds checking

Bound checkers protect against buffer overflows by checking all pointers to ensure that they do not
write or read outside their allotted memory. This method uses the information about the bounds
of pointers during compile time and stores this metadata. This can either happen by appending
pointers with metadata, so-called fat-pointers, or by creating a table of the metadata and perform
a look-up during the usage of the pointer. Some methods use a table to store object information in
a separate table and infer the bounds information from that table. The first method to implement
such a defence is [37]. This is later refined by [33] by storing object information in a separate ta-
ble and thereby creating a more inter-operability with non-safe libraries. Because of the slowdown
for [37] and [33] is around 5-6 times, this defence is also implemented in hardware by [52]. By im-
plementing a write-only checking policy and compiler optimizations they achieve a slowdown of
around 5%. These defences are applicable to the stack and heap overflows because these attacks
rely on pointers that go out of their intended bounds.

Information replication

Information replication is focused on replicating the information that is vital for the control flow. A
basic example is to copy all data related to control-flow to a different memory location (preferable
outside user-accessible memory). When control data is used, the copies are compared, when they
are different an unauthorised change is made. This is called a shadow stack [59]. Some methods
make changes during the compilation [59], others make changes in hardware to reduce the over-
head in terms of execution time [60]. Replication can also be applied to processes. This works by in-
troducing a diversity between two (or more) duplicates and comparing the output of the duplicates
[8]. While the former can only prevent stack overflows, process replication can provide a defence to
all mentioned attacks. The defence of process replication does depend on the amount and type of
diversification.

2.2.4. Defences on kernels

Like the attacks, most defences can also be applied to kernels. The authors of [44] for example argues
that most rootkits subvert the control flow and therefore a form of CFI needs to be implemented.
This proposed state-based CFI periodically verifies if the kernel is in a valid state, instead of real-
time CFI, to decrease the performance strain.

Non-control data attacks must be defended according to [61]. They first determine that the
ability to change these non-control data can lead to serious security problems. To combat this
they opted for an information replication method by running multiple virtual machines and cross-
checking anomalous changes.

As data from user-space must be considered unsafe data, hardware techniques are developed to
disable execution from user-space, which is called Supervisor Mode Execution Prevention (SMEP).
The variant in which access is prevented is called Supervisor Mode Access Prevention (SMAP). Also,
most modern kernels employ some form of kernel ASLR. The authors of [27] show that those systems
can be subverted and proposes a stronger kernel isolation to combat side channel attacks.

2.3. Discussion and Conclusion

In order to choose a defence to be implemented, we need to take alook at the privileges it can restrict
and if it is viable to implement such a defence in the current context. Safe libraries mostly defend
against format strings, and therefore, will not amount to an effective defence. Safe programming is
promising, but costly in terms of time needed to convert an OS to a safe language. Stack canaries,
ASLR, ISR, pointer encryption all implement a probabilistic defence and therefore not limit any priv-
ileges. Process replication depends on diversification, a microkernel is per definition small in terms
of code, therefore also the diversification will be small. Bounds checking, shadow stacks, CFI, DFI,
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Process isolation and executable space protection all limit the kernel in some sense and are viable
to implement. Our focus will continue on Process isolation, as that is most compatible with the
extensive compartmentalising that Genode does.

When looking ahead to the next sub-question "How can we reduce the number of privileges of the
kernel?" we can conclude that one the fitting category defences for this question is process isolation.
This is because the defence limits the freedom of processes and the kernel.



Kernel isolation

3.1. Privileges of a kernel

A kernel without privileges seems paradoxical. The reason for a kernel to exist is to have a section
of software that has access to the inner most resources and from there can orchestrate all user pro-
cesses and resources. So when you strip a kernel of privileges, what would remain of the kernel? And
moreover, what privileges can be stripped from the kernel, while it still has its tasks to perform? To
answer these questions we first need to know the inner workings of a kernel, what privileges it has
and what privileges it really needs to perform its tasks. Only when these questions are answered,
the problem of stripping the kernel to a bare minimum can be dealt with. So what does a kernel do?

A kernel consists of everything except user applications in a monolithic based OS. Examples of
responsibilities that fall under such a monolithic kernel are File Systems, Device Drivers and Vir-
tual Memory Management. So this monolithic kernel generally carries most responsibilities. Be-
sides the monolithic kernel, there is also a version of the kernel that is called the microkernel. This
is a stripped version of the kernel, in the sense that a microkernel-based in an OS is smaller and
performs responsibilities by separating processes in user-space. It is therefore sensible to describe
the microkernel and its responsibilities further when looking for the basic privileges a kernel might
need.

The three responsibilities that these kernels have, are Initialisation, IPC and Scheduling. Deal-
ing with all three of these tasks would be preferable, but would also make it too extensive for this
research. Consequently, we had to select a responsibility of the kernel to focus our efforts on when
minimising the privileges of a kernel. In making this selection we kept in mind that memory access
is imperative for all attacks, as discussed in Chapter 2. That already narrows the choice down to
Initialisation and IPC. Because Initialisation is only performed once during start-up and IPC has a
critical role in a microkernel, we decided to put our focus on the IPC. Therefore we will leave a de-
tailed description of Initialisation and Scheduling behind and expand on the purpose of IPC in the
microkernel.

3.1.1.1IPC

IPC is a fundamental mechanism in the contemporary OS. It is used for a wide range of functions.
These functions include, but are not limited to, exchanging data between processes, synchronisa-
tion, access to timers and exceptions. The more an OS is split into components, the more data
needs to be exchanged through IPC. This is a reason why monolithic kernels are generally faster as
explained in Chapter 2. It also means that a lot of effort needs to go to the performance of IPC when
creating a microkernel.

Liedtke investigated the bottlenecks of a second-generation microkernel and confirms this. He
came to the conclusion that the most important points when designing a microkernel is IPC per-
formance [40] and platform dependent optimisations [41]. Improving IPC speed can be done by
preventing superfluous copy actions and minimising memory usage, for example by using register
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to pass small amounts of data. The platform dependent optimisations mostly focus on reducing
cache misses and TLB misses.

3.2. Implementation specific details

In order to understand the upcoming design for memory protection that will be presented further
in this chapter, the details of the implementation of IPC and other important details of Genode will
be discussed.

3.2.1. Tasks

The task structure is a key aspect of Genode. All tasks can create other tasks, but the relationship
between these tasks is a parent-child relation. This means two things; first, the parent’s resources
must be shared with all children. This includes during start-up but also during the whole lifetime
of the child. Second, the parent has the ability to stop its children. When a parent creates a child, it
will allocate a part of its own memory to the child. This means effectively that no memory will be
used without explicit allocation.

3.2.2. Capabilities

As mentioned in Section 2.1.4 one of the fundamental architecture design elements of Genode is
security based on capabilities. In Genode, a capability is an unambiguous reference to a Remote
Procedure call (RPC) object. Calling a RPC object enables the communication between compo-
nents.

Each component of Genode has its own protection domain. Each capability has significance
in only one protection domain. As Section 2.1.4 explained, capabilities are kept by the kernel in
capability lists. The kernel 'translates’ the capabilities or references between protection domains.
The usage of capability lists inside the kernel also gives the kernel the task of creating and deleting
the capabilities.

Capabilities can be delegated to other protection domains. A capability thus can be seen as a
right to access the RPC object. This delegation of a capability can also only be performed by the
kernel. Figure 3.1 [24] shows the relation between capabilities, kernel, protection domains and the
RPC object. The circle represents a capability in hands of a protection domain. As can be seen, the
kernel translates the capability and maps it to an object identity.

Protection domain

RPC object A H3)

/7

Object
identity
A

Figure 3.1: Relation between capabilities and the kernel
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3.2.3. UTCB
The communication between the processes is done with User-Level Thread-Control Blocks (UTCB).
A UTCB is a small (preferably the size of one virtual page) memory region which is always mapped.
All information pertaining to the IPC is stored inside this block. The structure of a UTCB can be seen
in Figure 3.2. It is the task of the kernel to translate the given capabilities to the side of the receiver.
Until now in this chapter, we have taken a more detailed look into the (micro)kernel, the IPC
amongst its other responsibilities and the implementation of the IPC within Genode. Now that
some background knowledge is sketched about the inner workings of the IPC within Genode, we
can focus on the main goal of this chapter and this thesis; our design for the memory protection. In
the next section our design for the kernel separation will be discussed.

0 15 31 47 63

Capability count Data size

Exception code Header

Destination Capability 1 Capability 2 Capability 3

Capability 4

Data (up to a combined total of 4KB)

Figure 3.2: Structure of a UTCB

3.3. Memory Isolation

Preventing access to parts of memory is critical in creating a safe system. The goal of most attacks
on the kernel is to execute arbitrary code in the privileged mode of the kernel, as stated in Chapter
2. To examine how we can achieve a large degree of memory isolation while keeping reasonable
performance we will design a kernel isolation mechanism.

The goal of the design is to prevent the supervisor mode a.k.a. the kernel from accessing and
executing user memory. The design is twofold; the first section separates the memory that the kernel
uses from the memory that the user uses. The purpose of the second part is to make sure that
the kernel does not need user memory access (hardware IPC). The two parts will be discussed and
explained separately because the approach to the designs is different.

3.3.1. Memory Tagging

To separate user and kernel memory and making sure the kernel cannot read or execute from user
memory is the first objective of the design. We will presume that the kernel can function with only
system calls as a means of communication. This means that all RAM memory only is accessed by
either a user process or a kernel process and not both.

Some current kernel and user memory separation are Intel’s SMAP/SMEP, ARM’s PXN and the
RISCV PUM (Protect user Memory) bit. These protections all work essentially the same and focus on
virtual memory pages that are marked as user or kernel. A current flaw in this design is that kernel
pages can be mapped to the same physical address. An example of this is the ret2dir attacks [36]
which takes advantage of a direct mapping of the user space inside the kernel. This suggests that a



16 3. Kernel isolation

more rigid approach is needed in order to prevent such attacks.

Another separation technique is called Memory Tagging (or tainting/colouring), which works as
follows:

» With every n bits of memory, a tag of m bits is kept.
* Everyload and or store this tag is adjusted if necessary.

* The tag cannot be viewed by software, only checked.

Memory tagging is a versatile technique and can be used to implement a wide range of defence
schemes. CFI, DFI and process isolation can all be implemented with memory tagging.

Memory tagging can be implemented in software by a so-called 'shadow memory) this is a
scheme used for example by [49]. With shadow memory, load and store instructions are augmented
by extra load instructions that load a separate part of memory which contains the tags. This scheme,
however, is not fast. The author of [49] talks about an average slowdown of 75%. This is in contrast
to hardware, an example of such a scheme is implemented by [5]. They saw an average slowdown
of 8.4%. While these implementations cannot be directly compared, the contrast of performance
results is large enough to justify doing memory tagging in hardware.

3.3.2. Implementation details

One challenge that arises is in order to track physical memory to virtual entities (user and kernel
processes), some relation must exist. Another challenge is to handle the creation and destruction of
virtual memory and to translate that to physical memory with accompanying tags.

The physical difference between memory accesses of the kernel and that of an user process is
the privilege level in which the CPU is currently in. The used ISA RISC-V CPU supports 3 privilege
levels, User, Supervisor and Machine. The bootloader runs in Machine mode, the kernel runs in
supervisor mode and all other code runs in User mode.

Tagging mechanisms

Virtual memory must correspond with the related tags in physical memory, even during the allo-
cation and destruction of memory blocks. This relation must be kept, even when the system is
compromised. This can be achieved by implementing the mechanism in a self-regulating manner
in hardware.

The mechanism of creating tags is as follows, when accessing a memory location the request
is combined with the privilege level. The tag corresponding with the memory location is retrieved.
When the tag is empty or uninitialised, the privilege level is inserted into the tag. This tag will persist
until the memory location is cleared.

Clearing memory locations can be detected through a string of incoming memory accesses.
When a memory location is being written with zero’s, the tag will be set to uninitialised. This has
an added advantage that no undiscarded data can be read by both parties. Checking tags can be
performed when the tag is retrieved, by comparing this with the privilege level.

Overhead
As Genode allocates memory with a granularity of 4KB, we will store a tag for every 4KB. The size of
the tag depends on the number of states a tag can have. As we want to make a split between kernel
and user space, there are at least two states. In the beginning, the memory is uninitialised and
has no state. To be able to allocate memory dynamically, there is a third state added, uninitialised.
This means we will keep a tag of 2 bits per every 4KB, this gives a small storage overhead of 1/2048
(0.0005%).

We will split the main memory into a section for tags and a section for common usage. An alter-
native is to use a separate memory, but this will decrease the flexibility of the tagging mechanism.
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3.3.3. Memory tagging architecture

The proposed memory tagging architecture can be seen in Figure 3.5. The implementation is cen-
tred around the Memory Management Unit. The orange blocks are hardware entities that are added
to the existing grey hardware entities. The MMU is responsible for checking the tag and sending a
trap to the processor if necessary.

Data + Tag

Data request
I
. MMU Tag merger
™ ——
1 Instruction request
Trap Data Request
Tag Cache Data Cache Instruction Cache
Processor
Appication
Tag Memory Memory

Figure 3.3: Proposed memory tagging architecture

3.4. Hardware IPC

Many operating systems that have a focus on security provide a way for processes to communicate
in a secure way. TyTAN [7] for example uses a separate user process that translates and copies IPC
between processes.

The kernel of Genode needs, like most 1.4 microkernels, alow amount of access to user memory.
With Genode this is limited to one page that is used for IPC. They have chosen this to keep the cost
of an IPC low as one page fits in one Translation Look-aside Buffer (TLB) entry. For IPC Genode
translates the capabilities on that memory page and copies it to the corresponding user process.
This process can be seen in Figure 3.4a.

3.4.1. Hardware IPC architecture

In order to remove user memory access, the IPC needs to happen on another communication chan-
nel. There are at least two solutions that work, one is a user process that is responsible for copying
the data of the IPC. This would result in an extra context switch and would not be compatible with
the current structure of Genode. The second option is to create an hardware based IPC channel.
This creates the advantage that the IPC happens within a controlled but static environment.

The new algorithm that is implemented can be seen in Figure 3.4b. As seen, the translation of
capabilities still happens in the Kernel, but the kernel can only read the corresponding capabilities
of an UTCB.

The total proposed architecture can be seen in Figure 3.5. The implementation is centred around
the Memory Management Unit. The green blocks are hardware entities that are added to the exist-
ing gray hardware entities. The IPC is implemented as a io device which is only addressable by the
kernel.
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Process Kernel Hardware Process Kernel Hardware
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™) Initiate IPC g
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Figure 3.4: Comparison between the old and new IPC algorithms
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Figure 3.5: Proposed architecture
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3.5. Performance

As mentioned before, one of Liedtke’s first design rules for his new microkernel was 'IPC perfor-
mance is the Master’. This is why we dedicated this last section to the increase in performance of
the IPC. There are several ways to increase the performance of an OS. This chapter will mostly focus
on several caches such as the TLB. The sections will each describe a possible change to the design
and describe how this can affect the performance. We will propose improvements and the results
will be discussed in the following chapter.

3.5.1.TLB
The Translation Look-aside Buffer (TLB) is a cache that buffers part of the page-table entries. This
reduces the workload of the MMU considerably. An average miss rate of a TLB is around the 0.01 -
1% [43]. When looking at section 4, 76.3% of the static time in an IPC is when translating addresses.
After most IPC, a context switch happens, and the new processes can properly revive the com-
munication. When a context switch happens, the page table is changed and all TLB caches are
flushed. This is important for choosing between a separate TLB or combining the entries with an
existing TLB. As the entries of an IPC are mostly made just before a context switch, it makes sense
to combine the new TLB with an existing TLB.

3.5.2. Tag cache
As instruction and data information are buffered inside a cache, the tags can also be cached. The
current architecture has a cache of one level. The tag cache can be added in two ways.

* A separate cache that buffers the tags independently from the other caches (Figure 3.6a).
* A combined cache that appends the tags to the data and instruction caches (Figure 3.6b).

Many proposed memory tagging system employ one of these structures [5, 63], sometimes even
both [54]. A memory tagging system without a tag cache will most likely be slow. This is because for
all memory requests the tagging system will create an extra separate memory request.

» Tag manager

Tag manager

¥ ¥

ICache DCache

©wo >
wo>-H

ICache Tag Cache DCache

» Memory -~

(a) Combined cache A

(b) Separate cache

Figure 3.6: Architecture of combined and separate tag caches
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3.6. Conclusion

We found an answer on the sub-question "How can we reduce the number of privileges of the ker-
nel?". We showed that it is possible to give the Kernel fewer privileges through a combination of
memory tagging and changes to the kernel. If it is needed to increase performance, caching will be
a suitable option.



Results

In this chapter, the results of the design described in Chapter 3 are presented. Section 4.2 will de-
scribe the results of the hardware IPC that is made. Next, Section 4.3 will outline the results of the
memory tagging implementation. Finally, Section 4.4 will present the results of implementing a
cache to the memory tagging design.

4.1. Experimental set-up

The focus of all measurements that were done is on performance in time. Another aspect that will
be measured is the area of the design. Other aspects, such as power consumption have not been
considered.

In order to verify the correctness and perform timing measurements tests included in Genode
are being used, more specific, the test_log and test_init are used. The accompanying processor is
a classic RISC 5 stage pipeline processor based on the RISC-V ISA. The processor does not support
stage forwarding and has a Harvard architecture that splits instruction and data memory.

The experiment is done on a Cyclone V GX Starter Kit, this development board has a Cyclone V
GX 5CGXFC5C6F27C7N FPGA and contains 4Gb of LPDDR2 RAM. The design is written in VHDL
and synthesised with Intel Quartus Prime 17.1.

The TLB and Tag Cache will be simulated with a cache model written in Python. All memory
requests are captured from the original system and replicated in Python. Also, to determine a max-
imum bound on the improvement that can be reached with caches, a fully mapped cache is imple-
mented in the FPGA.

4.2, Hardware IPC

The processor and all peripherals run on a frequency of 50 Mhz. The valid working of the IPC (and
more aspects of Genode) can be verified through the supplied tests of the OS. The execution times
of the old and new IPC can be seen in Table 4.1. The average speedup is 1.03, a small increase. When
looking at the average time of an IPC (see Table 4.2), the decrease is almost fourfold.

Test | oldIPC | newIPC
test_log | 3.17s 3.08s
test_init | 2.4s 2.32s

Table 4.1: Execution time comparison

In order to see where the speedup comes from, we will split the execution time of the new IPC
into the actions that are performed. Also, the time of an IPC is influenced by the amount of data that
needs to be copied, thus we will also group the execution times by data copied. Table 4.3 shows the
number of cycles needed to perform the sub-actions. Remarkable is the number of cycles needed
for translating the source and destination address, this sums to a large amount of time (a total of
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Test | oldIPC | newIPC

test_log
test_init

Table 4.2: IPC time comparison

19.9us

4.93us

21.4us | 5.01us

76.3%). Figure 4.1 shows some insight into the time it takes to copy memory. The software copy is
most likely faster because of the data cache that is included in the system. There is also a limited
amount of coping data in the test_log and test_init programs.

Next to execution times, area is also an important metric for physical designs. The fabric of the
FPGA consists of adaptive logic modules (ALM’s) which is a 8-input fracturable look-up table (LUT)
with two adders and two registers. An ALM can implement a 6-input LUT but also two 4-input LUT’s
and other combinations. The area of the IPC module consist of 870 ALM’s, this is 4.9% of the total

17956 ALM’s that are in use.

Action

Cy

cles percentage

Write to registers

Translate source address

2

Translate destination address | 89

Read first header line

Read second header line

Read register
Write to registers
Write headers
Read register

Table 4.3: Cycles that separate IPC actions take

40

0.8
37.6
38.5
7.0
7.0
1.3
0.8
3.9
1.3

Cycles

101

—=— Hardware
Software

Figure 4.1: Cycles it takes to copy data from IPC

4.3. Memory tagging

16

Bytes

24 32

Memory tagging can not be tested without the new IPC in combination with Genode because the
new IPC is needed for the valid execution of Genode. That is why the memory tagging is tested
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in conjunction with the new IPC. The execution times can be seen in Figure 4.2. As stated before,
area is also an important metric for physical designs. The area of the tagging module consist of 234
ALMs, this is 1.3% of the total 17956 ALM’s that are in use. This excludes the area needed for the
caching of tags.

old IPC [T13.17 B

newIPC [ 13.08 =

new IPC + Memory tagging - |15.39

new IPC + MT + Full Cache 4‘.24 -

0 5 10 15 20
Execution time in Seconds

Figure 4.2: Comparison of execution times

4.4. Tag cache and TLB

The Tag cache is simulated with both the combined and separate version as described in Section
4.1. As can be seen, it already makes sense to make a cache of 1KiB as this has a hit-rate of 62.2 %.
In order to view the topmost speed that can be achieved, a fully-mapped cache was implemented
in the design. The results are shown in Figure 4.2. A significant speed-up compared to memory
tagging without cache (3.6x), and a overhead of 26% compared to the original version.
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Figure 4.3: Hitrate of tag-cache

4.5. Conclusion

As stated before in Section 3, IPC has a large role in a microkernel. The speedup in execution time of
the IPC and memory tagging are respectively, 1.03 and 0.2. The memory tagging is a large overhead
and will make the total system less usable. By implementing a tag cache, this overhead can be
decreased to an overhead of 26 percent.
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Figure 4.4: Hitrate of TLB from IPC requests



Conclusion

5.1. Summary

In Chapter 2 we layed-out possible attacks and defences on low-level programming languages. We
concluded that one the fitting category defences for this question is process isolation. This is because
the defence limits the freedom of processes and the kernel.

Chapter 3 showed that it is possible to give the Kernel less privileges trough a combination of
memory tagging and changes to the kernel.

IPC has large role in a microkernel. The increase in execution time of the IPC in combination
with the memory tagging is 500 percent. This is a large overhead and will make the total system less
usable. Therefore we presented in section 3.5 methods to speed up the proposed design.

These methods prove to be effective, as we see a high hit-rate with the tag cache. The minimal
slowdown is 26% with a fully mapped cache. This ultimately makes the proposed system both viable
and have a low performance overhead.

5.2. Main contributions

We started with the following research question: Can we reduce the amount of privileges of the ker-
nel in a performance efficient manner?.To answer this question we introduced three sub-questions
which we have subsequently dealt with.

* "What vectors are there to attack a kernel?" This question was approached with a literature
study into the different attack vectors that exist on software. This resulted in a overview of
possible attack vectors and defences thereof.

* "How can we reduce the number of privileges of the kernel?" We developed and implemented
a kernel isolation defence, which ultimately lowered the amount of privileges of a kernel.

» "What is a performance efficient manner to implement such a restriction?" We have reviewed
the proposed system found and developed in the previous actions. This resulted in possible
enhancements and delivered promising results.

5.3. Future work

Memory tagging is a widely used technique to implement a variety of defence mechanisms. An in-
depth survey of those defences would be interesting as well as investigating possibilities to combine
several defences with one system. This would increase the usability of a general memory tagging
unit and would further justify the implementation in common hardware.
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