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ABSTRACT The multi-modal or multi-view integration of data has generated a wide range of applicability
in pattern extraction, clustering, and data interpretation. Recently, variants of the Non-negative Matrix
Factorization (NMF) such as joint NMF (jNMF) have allowed not only to integrate data from different
sources but also have facilitated the incorporation of prior knowledge such as the interactions between
variables from different sources. However, in both NMF and jNMF the factorization is carried out as a linear
system, which does not identify non-linear patterns that are present in most real-world data. Therefore, we
propose a new variant of jNMF called Kernel jNMF. This new method incorporates the factorization of
the original matrices into a high-dimensional space. Applying our method on synthetic data and biological
cancer data, we found that the method performed better in clustering and interpretation compared to the
jNMF methods.

INDEX TERMS Data integration, kernel, joint matrix factorization, cancer.

I. INTRODUCTION

I
NTEGRATION data from different sources has become
an area of intense research. In health applications, for ex-

ample, high-throughput omics technologies provide a wealth
of information related to different types of molecular entities
(e.g., DNAs, RNAs, proteins) about cells and organisms. The
integration of this vast information for multiple individuals,
such as those stored in The Cancer Genome Atlas (TCGA)
[1] and The Cancer Cell Line Encyclopedia (CCLE) [2]
projects, allows the identification of associations between
different sources, and to find groups of related molecules
across different layers of information. In addition, the use
of machine learning methods to integrate these data opens
a diverse field of possibilities to improve the discovery of
patterns embedded in the original data [3], [4].

Among the strategies for multi-view integration of data,
three main groups stand out (early, intermediate, and late
integration), which are based on dimension reduction and
ensemble methods. In early integration, the matrices are
concatenated to make feature selection or decomposed in
principal components (PC) to create new variables that can
be used as input in some machine learning models. In in-
termediate integration, the data are initially processed indi-
vidually, for example, using kernel functions to extract non-

linear patterns of the data and use these patterns as input
in an ensemble model. Finally, late integration consists of
integrating ensemble models, where individual models are
generated for each input and then the results are integrated
into a final model by voting or averaging strategies [5].

As in conventional machine learning, multi-view data
integration can be classified as supervised or unsupervised
methods.

Among the unsupervised methods based on the Non-
negative Matrix Factorization (NMF) technique, the join
NMF (jNMF) is the benchmark for intermediate integration
[6]. While in the NMF a matrix X is linearly factorized
into two low-rank matrices (i.e., a base matrix W and a
coefficient matrix H), in the jNMF this process is done si-
multaneously for different input matrices X1, . . . ,XM . The
resulting factorized matrices correspond to a common base
matrix W and as many coefficient matrices as the number
of input matrices. The advantage of jNMF over NMF is
that it allows finding the common centroids for all samples
in the base matrix, whereas the clusters and co-clusters
assignments in the coefficient matrix favor the interpretation
of embedded patterns [7]. Some extensions of jNMF may
help interpretation of clusters such as integrative Orthogonal
NMF (iONMF) that uses an orthogonal-regularized penalty
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to avoid non-overlapping features within clusters providing
interpretable models [8].

Despite the versatility and wide range of applications of
these methods, both NMF and jNMF are linear models,
where the data observed are decomposed in linear com-
binations of columns of W and rows of H. However, in
many cases, it is expected that the relations between basis
vectors are non-linear given the nature of the data [9], [10].
A possible approach to find these relations is to map the
observations (xi) into a higher dimensional space where
more meaningful associations may be found. To perform this
step, it is possible to use a mapping function (φ(.)) into a
high-dimensional space that is not explicitly known but is
provided with a scalar product expressed as a kernel function
(K(xi, xj) = φT (xi)φ(xj)). In this new space, we can ap-
ply the NMF method and achieve a better pattern separation.
This approach was used in NMF [11] by comparing two NMF
based on kernel functions: the Polynomial NMF (PNMF) and
the Gaussian nmNMF (GNMF), where the classification task
accuracy performed better in GNMF than PNMF.

In this article, we propose an extension of the jNMF
framework for multi-view data integration based on kernels.
This implementation, called Kernel joint NMF (KjNMF),
was tested on simulated data and observational data from
the TCGA project. In both types of data, we incorporated
sparsity and prior knowledge constraints to improve cluster
identification. In addition, several methods of normalization
of the W and HI matrices were tested to improve clustering.
We found that, compared with the standard jNMF method
and iONMF methods, KjNMF performs better by increasing
the cluster quality and, thus, leading to a more accurate
interpretation and identification of real clusters.

In this research, we use the following notations:
1) Input non-negative matrices are denoted by bold capital

letters, e.g., X. As several matrices contain data on
the same samples from different sources (M ), the sub-
index I is added to indicate the particular source XI

where I = 1, . . . ,M . Each matrix has dimensions of
n samples per pi variables.

2) Low-rank matrices are also defined by bold capital
letters (A, W or H), but their dimensions will depend
on the rank (k) that is determined beforehand.

3) In the NMF methods, W is the basis matrix, and H

is the coefficient matrix. In the convex-NMF methods,
W is a linear combination of columns of X (xi) and
rows of A (aji), a matrix of weights.

4) ΘI and RIJ are sparse matrices that relate the asso-
ciation that exist between variables of the input XI

matrices. ΘI relates the variables of XI , whereas RIJ

relates the variables of XI and XJ .
5) A kernel is a function that, for all pairs of points xi and

xj ∈ X, satisfies K(xi, xj) = 〈φ(xi), φ(xj)〉 where φ
is a mapping function from X to an feature space F ,
i.e., φ : x 7−→ φ(x) ∈ F .

6) The φ function maps a column of XI to the feature
space. So the mapping of the complete matrix is de-

fined by Φ(XI).
7) The hyperparameters are defined as lowercase Greek

letters (λ, γ, and ω).
8) ρ corresponds to the cophenetic coefficient and AUC

to the Area Under the Curve.

II. RELATED WORK

NMF has proved to be useful on a wide range of applications
in pattern identification and classification. However, there are
still very complex structures of real-world data that may need
methods beyond the standard linear Euclidean formulation to
be discovered. The use of non-linear approaches can increase
the performance of NMF results [10]. The natural alternative
to include non-linearity in the factorization is to map the ob-
servations to a higher dimensional space or "feature space",
where the clusters or patterns are better defined and, there-
fore, the method of separation is feasible. The common way
is to formulate the NMF optimization problem in terms of the
dot product (XT

X) to incorporate kernel functions, such as
Gaussian or polynomial, to do the mapping. A convex-NMF
has been proposed in [9], which postulates W as a weighted
of columns in X, i.e., wi =

∑m
j=1Ajixi. Because of this,

convex-NMF is established in the form ‖X −XAH‖2, and
the update rules depend on X

T
X.

In recent years, several attempts to kernelize NMF have
generated variants that showed high efficiency in clustering
and pattern recognition. A method using the semi-NMF
strategy was proposed to incorporate the kernel function
[12]. This method showed that the discrimination of captured
information worked better than the standard NMF method.
Other approaches, such as online Kernel NMF (OKNMF),
are based on the convex-NMF method with a set of con-
straints to determine the number of the basis of the feature
space [13]. In general, this method performed well and was
computationally efficient. A flexible kernel NMF (KNMF)
method has also been proposed [11], which presents a general
formulation of Gaussian kernel function implementation in
NMF.

To allow the integration of data that measures the same set
of objects from different approaches or views, there are some
processes of data integration that enable NMF. The jNMF
method, for instance, has been proposed to standardize the
use of NMF into multi-view data [6]. This procedure adapts
the two low-rank non-negative matrices obtained in NMF: the
basis matrix W and the coefficient matrix H, into a common
basis matrix W for the multiple views, but maintains the
coefficient matrix HI for each type of view. The goal is to
detect a common pattern for all individuals while maintaining
the specific patterns of each view. In this framework, the use
of constraints in the form of prior knowledge can increase
the performance of clustering by relating features through the
within-relationship matrix ΘI and the between-relationship
matrix RIJ [6]. ΘI constraint identifies if there is an existing
relationship between feature i and feature j in the same
view matrix. RIJ constraints identifies if there is an existing
relationship between feature i in matrix I and feature j in
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matrix J . This prior information is included in the framework
as constraints in the loss function.

In addition, given that these methods may present a non-
unique solution, it has been recommended to normalize the
matrices obtained during the convergence process. As stated
in [14], the normalization over the matrices could affect the
efficiency in the NMF cluster allocation process, because nor-
malizing the matrices alleviates the uncertainties of pattern
detection by reducing variations in the data or the need for
some initial conditions.

III. METHODS OF JOINT FACTORIZATION OF

NON-NEGATIVE MATRICES: JNMF AND KJNMF

A. JOINT NON-NEGATIVE MATRIX FACTORIZATION

The jNMF method integrates data which consist of n individ-
uals from whom pi variables have been measured from each
different source, forming a matrix XI for I = 1, . . . ,M .
This method was adapted by extending the concept of single
matrix factorization (X) to a multiple types of matrices (XI )
[6]. Therefore, jNMF factorizes problem (1) the input matri-
ces XI ∈ R

n×pi into a low-rank matrices: a common basis
matrix W ∈ R

n×k and coefficient matrices HI ∈ R
k×pi for

each type of data source available, where k is the range of
factorization that usually is much less than each pi. Matrices
HI and W correspond to the solution of the minimization
problem:

M
∑

I=1

‖XI −WHI‖
2
F . (1)

with respect to W and each HI . Furthermore, prior knowl-
edge can be incorporated in the jNMF problem as constraints
by using the matrices RIJ ∈ R

pi×pj and Θ ∈ R
pi×pi which

contains the relations between and within the variables of the
different data sources. This not only helps to reduce the insta-
bility of the estimation due to the non-uniqueness of the NMF
solution but also to the formation of meaningful clusters. In
the case of omic data, for instance, RIJ could express if a
specific gene from XI is related to a specific miRNA from
XJ , i.e., variables from different sources are being related.
Similarly, the ΘI matrix contains information about possible
relations between variables of the same data source, for
example, protein-protein interaction and metabolic pathways
relate gene interactions. The superscript (t), i.e., Θ(t)

I can
be used when several type Θ restrictions are used on the
same matrix XI . In both types of restrictions, the matrices are
binary coded, taking a value of 1 when there is a relationship
and a value of 0 otherwise. These matrices are included
in the jNMF optimization problem as constraints as well
as regularization terms to favors the correct clustering. The
estimation results as in (2).

W,HI, I=1,2,...,M
F (W ;HI) =

∑

I

‖XI −WHI‖
2
F + γ1‖W‖

2
F + γ2(

∑

I

∑

j

‖hj‖
2
1)

−λ1
∑

I

∑

t

Tr(HIΘ
(t)
I H

T
I )− λ2

∑

I 6=J

Tr(HIRIJH
T
I )

subject to W ≥ 0,HI ≥ 0 .

(2)

Another variant of jNMF corresponds to the incorporation
of orthogonality constraints which forces the basis vectors
to be orthogonal and prevents overlapping of features within
the clusters [8]. This generates more interpretable models
by better discriminating the features. The orthogonality of
the columns of HI is controlling by the incorporation of the
hyperparameter α. The objective function (3) is minimized to
obtain W and HI matrices.

M
∑

I=1

(‖XI −WHI‖
2
F + α‖HT

I HI − I)
2
F . (3)

B. KERNEL JOINT NON-NEGATIVE MATRIX

FACTORIZATION (KJNMF)

Given the non-linear structure of real-world data, the kernel-
based methods make use of a function φ, that maps the
original observations (columns) of X = [x1, . . . , xp] to
a higher dimensional space or feature space (F ) to obtain
the mapping Φ(X) = [φ(x1), . . . , φ(xp)]. The goal of this
mapping is to find a way to linearize non-linear relationships
in the feature space. The feature space is a vector space that
works with finite or infinite dimensions, which must have the
properties of being separable and complete. Its inner product
exists for any pair of points (φ(xi) and φ(xj)). When the
mapping function (φ) is applied to X, the coordinates of the
observations in this feature space are in general unknown.
However, it is possible to calculate their pairwise inner
product which is a metric, that defines the distance between
pairs of points. In other words, this process creates a distance
between observations in F where they seek relationships that
can be represented linearly. If the optimization problem is
defined using the inner product of the observations in the
feature space, then a kernel function is easily applicable
without the need to specify the φ function.

To modify the objective function of (2) in terms of the
inner product of the input matrices XI , we consider the
approach based on the convex-NMF method [9], which
proposes that the centroids obtained in W are a convex
combination of the observations (columns), i.e., W = XA.
This strategy has several advantages: (i) it is possible to
impose non-negativity and sparsity constraints on AI ; (ii) it
generates a sparse and interpretable solution since it allows
to identify how the clusters would be composed; (iii) the
matrix X can have negative values; and (iv) the objective
function remains in terms of the kernel function [9], [15]. In
our case, we formulated the basis matrix W as Φ(XI)AI .
It is important to note that in the original jNMF problem
there is a single W that allows the integration of the samples
based on the information in each input matrix. This can be
understood as follows: given the information provided by the
input matrices, the low-rank matrix W contains the centroids
of the samples that gather all this information. For this reason,
we introduced a fourth term that allows us to approximate a
single W∗, where all products Φ(XI)AI are similar between
them. This approach was used in the jNMF implementation
of [16]. In this implementation the low-rank matrix W
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can be different for each factorization, then the researchers
normalized W and calculated a distance measure between
each of the W obtained, i.e.,

∑M
I=1,I 6=J λ‖WI −WJ‖

2
F

where λ is a parameter to force the similarity between these
matrices. Therefore, we proposed the fourth term in (4) with
the parameter ω to control this matrix similarity.

In order to control control on sparsity and scale of low-
rank matrices [6], we introduced two additional terms: a fifth
term to control the scale of AI and a sixth term to induce
the matrices HI to be sparse. These terms control cluster
formation and pattern detection. The parameter γ1 controls
the degree of growth of AI and γ2 controls the required
sparsity as we shown in (4).

A graphical structure of the KjNMF method is shown in
Fig. 1 and the formulation of the objective function is as in
(4).

AI,HI, I=1,2,...,M
F (AI ;HI) =

∑

I

‖φ(XI)− φ(XI)AIHI‖
2
F

−λ1
∑

I

∑

t

Tr(HIΘ
(t)
I H

T
I )− λ2

∑

I 6=J

Tr(HIRIJH
T
I )

+ω
∑

I 6=J

‖φ(XI)AI − φ(XJ)AJ‖
2
F + γ1

∑

I

‖AI‖
2
F + γ2(

∑

I

∑

j

‖hj‖
2
1)

subject to AI ≥ 0,HI ≥ 0 .

(4)

IV. FACTORIZATION ALGORITHM

The common method to solve the optimization problem in
jNMF and NMF methods is the multiplicative update rule
(MUR). Although diverse variants have been generated to
reduce computational resources, MUR keeps being a com-
petitive algorithm with good performance [6], [17]. Our
algorithm works in a similar way to the multiplicative rule
of jNMF or NMF. Thus, since the optimization problem is
not convex, we initially fix the matrix AI and update the
matrix HI , and then we fix the latter (HI ) and update the
former (AI ). To find the multiplicative rules in our KjNMF
context, we derived the objective function defined in (4) and
use an approach based on [11] to generate MUR in this
kernel problem. As we have mentioned, the base matrix in
KjNMF is a linear combination of the mapped data using the
φ function, so our objective function can be expressed as (5).

F (A1, . . . , AM ;H1, . . . , HM ) =

M
∑

I=1

Tr(KI −KIAIHI −H
T
I A

T
I KI +HT

I A
T
I KIAIHI)

+γ1

M
∑

I=1

Tr(AT
I AI) + γ2

M
∑

I=1

Tr(HT
I ejxjHI)

−λ1

M
∑

I=1

∑

t

Tr(HIΘ
(t)
I HT

I )− λ2

M
∑

I=1,I 6=J

Tr(HIRIJH
T
J )

+ω
M
∑

I=1

Tr(AT
I KIAI −A

T
I KIJAJ −A

T
JKJIAI +AT

JKJAJ).

(5)

where KI = Φ(XI)
TΦ(XI) is the kernel matrix within data

in matrix XI , and KIJ = Φ(XI)
TΦ(XJ) is the cross-kernel

matrices XI and XJ . It is important to mention that the
kernels are created on the columns and, therefore, a kernel
of the type KI will have dimensions of pI × pI .

The Lagrange function L associated with the minimization
problem in (4) is L(AI ,HI) = F +

∑

I Tr(ΨIA
T
I ) +

∑

I Tr(ΦIH
T
I ), where ΨI = [ψI

ij ] and ΦI = [φIij ] are the
parameters from the non-negativity constrains. The partial
derivatives of L with respect to AI and HI are respectively:

∂L

∂AI

= −2KIH
T
I + 2KIAIHIH

T
I + γ1Tr(A

T
I AI)

+2ω(N − 1)KIAI − 2ω
∑

J 6=I

KIJAJ +ΨI .
(6)

∂L

∂HI

= −2AT
I KI + 2AT

I KIAIHI + γ22ejxjHI

−λ1
∑

t

HI(Θ
(t)
I + (Θ

(t)
I )T )− λ2

∑

I 6=J

HJR
T
IJ +ΦI .

(7)

From the Karush-Kuhn-Tucker conditions φIij (AI)ij = 0

and ψI
ij (HI)ij = 0, we calculated the update rule for (AI)ij

and (HI)ij :

(AI)
t+1
ij ← (AI)

t
ij

[KIH
T
I +ω

∑
J 6=I

KIJAJ ]ij

[KIAIHIH
T
I
+γ1AI+ω(N−1)KIAI ]ij

. (8)

(HI)
t+1
ij ← (HI)

t
ij

[AT
I KI+

λ1
2

∑
t
HI(Θ

(t)+(Θ
(t)
I

)T )+
λ2
2

∑
I 6=J

HJR
T
IJ ]ij

[AT
I
KIAIHI+γ2ej×jHI ]ij

. (9)

For a complete convergence analysis of the multiplicative
algorithm check Supplementary Section S1.

Although NMF methods are non-deterministic polynomial-
time (NP-problem), and it is difficult to find a global opti-
mum, it is feasible to identify a local optimum [18]. There-
fore, we define a stopping criterion that evaluates the relative
difference between two consecutive iterations of the objective
function (F ) assessed at iteration t, and t+ 1. The algorithm
stops when reach a threshold τ , i.e., Ft−Ft+1/F0−Ft+1 ≤ τ ; in
our case, the stopping threshold was set to 10−6.

The multiplicative rules were implemented in an iterative
process as described in Algorithm 1.

V. HYPERPARAMETER SELECTION

For both jNMF and KjNMF, the best set of hyperparameters
(λ1, λ2, γ1,γ2, ω, and k) are selected according to metrics that
evaluate the performance of these methods. These metrics
were chosen to measure the stability of the clusters when the
algorithm is running (Section V-A) and when the clusters are
evaluated with a test dataset (Section V-B). In addition, for
biological data, it is expected that the clusters will have an
interpretation according to the disease or biological process
under study (Section V-C). The scale for these metrics is
between 0 and 1, with 1 being the best-expected result. For
the iONMF method, we evaluated the range (k) and the
orthogonality hyperparameter (α). We used the same set of
metrics to select the best set of hyperparameters.
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FIGURE 1: Hypothetical case of multi-view integration using KjNMF. Three input matrices are mapped using the function φ to a feature
space. Additionally, ΘI and RIJ constraints are added and the joint factorization is performed on the feature space. The resulting low-rank
matrices are AI and HI for each input matrix. The product φ(XI)AI is penalized to be similar among the different inputs.

Algorithm 1 Gaussian Join Non-Negative Matrix Factoriza-
tion (KjNMF)

Require: Kernel matrices {KIJ = e−(
‖XIi−XJj‖

2

2σ )}
pi,pj

i,j=1

for all M input matrices; hyperparameters (λ1, λ2, γ1,γ2,
ω, k); normalization method (NM); Θ(t)

I and RIJ con-
straints.

Ensure: Low-dimension matrices: A1,. . . ,AM and
H1,. . . ,HM

for r ← 1 to R do

Initialize A1,. . . ,AM and H1,. . . ,HM

Normalize initialized matrices using NM

Calculate

F (A1, . . . ,AM ,H1, . . . ,HM )1
for t← 1 to tmax do

Fix H1,. . . ,HM , update each matrix AI as

(AI)
t+1
ij ← (AI)

t
ij

[KIH
T
I +ω

∑
J 6=I

KIJAJ ]ij

[KIAIHIH
T
I
+γ1AI+ω(N−1)KIAI ]ij

Fix A1,. . . ,AM , update each matrix HI as

(HI)
t+1
ij ← (HI)

t
ij

[AT
I KI+

λ1
2

∑
t
HI(Θ

(t)+(Θ
(t)
I

)T )+
λ2
2

∑
I 6=J

HJR
T
IJ ]ij

[AT
I
KIAIHI+γ2ej×jHI ]ij

Normalize A1,. . . ,AM and H1,. . . ,HM as NM

Calculate

F (A1, . . . ,AM ,H1, . . . ,HM )t+1

if
Ft−Ft+1

F1−Ft+1
≤ τ then

break
else

t = t+ 1
end if

end for

end for

A. CLUSTER STABILITY

The cluster stability measure depends on the connectivity
and the consensus matrices. There are as the connectivity
matrices as many types of data sources M in the model. For
each type of data source, the connectivity matrix C(nI×nI)

I

is a squared matrix which indicates if a pair of samples p1
and p2 of the same type of data source I belongs to the same
cluster, i.e., CI [p1][p2] = 1, 0 otherwise [19]. Then, there is
the consensus matrix Ĉni×ni that measures the proportion of
times that the samples p1 and p2 are allocated at the same
clusters. The closer Ĉ[p1][p2] is to 0 or to 1, the more stable
the allocation process are for this two samples. Associated to
the consensus matrix, the Cophenetic coefficient (ρ) can be
defined. Accordingly to [20], ρ is calculated as:

ρ(ĈI) =
1
n2
I

∑nI

i

∑nI

j 4[ĈI [ti][tj ]−
1
2 ]

2 ∀M = 1, . . . I.

(10)
The larger ρ the better because the structure of the clusters

across iterations remain similar [20].

B. AUC ON TESTING DATA

We calculated Area Under Curve (AUC) to investigate the
accuracy of identifying embedded patterns by comparing
training and testing coefficient matrices. We used a similar
approach to the one stated in [6], i.e., to extend the jNMF
method to the prediction form. In this procedure, we split
the data into train and test datasets. Firstly, we trained the
model to find the optimal base and coefficient matrices
((Φ(XI)AI)

Train and H
Train
I ). Secondly, we set the base

matrix ((Φ(XI)AI)
Train) obtained from the train and up-

date the test coefficient matrices (HTest
I ) until reach the

threshold (Section IV). Thirdly, we guarantee perfect match-
ing for the rows of HTrain

I and H
test
I by using the strategy

proposed by [6], i.e., we used the Hungarian algorithm which
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selects what row of HTest
I corresponds to one row of HTrain

I .
Finally, the AUC was calculated for each data source. In this
way, we expected to find the same compartmentalization of
the variables independently of the origin of the samples.

C. BIOLOGICAL RELEVANCE MEASURE

A gene enrichment analysis was performed using the clus-
terProfiler v.3.14.3 package [21]. This analysis was done
for each cluster to determine associations with ontological
groups, metabolic, and signaling pathways. In addition, we
used OmicsNet [22] and Ingenuity Pathway Analysis [23] to
interpret clusters of different molecules (co-clusters).

We used this information to calculate the number of
molecules used on average across all omics, the number of
genes included in an enriched term on average across all
terms (GeneRatio average), and the ratio of enriched terms
that were detected in the clusters. As a final metric, we
calculated an average between ρ, AUC, GeneRatio average,
and the ratio of captured terms as a metric for selecting suit-
able hyperparameter sets. We call this metric a "performance
score", which is acceptable when near to one.

VI. CLUSTER MEMBERSHIP ASSIGNMENT

As mentioned in [9] and [16], the values in the rows of the
coefficient matrices (HI ∈ R

k×vi ) could be interpreted as
the degree of belonging to the respective cluster. In NMF,
the clustering membership assignment for a variable v is
as easy as finding the row with the maximum value of the
vth column on the matrix HI . But this assignment rule can
assign different variables to a cluster k, and their assignment
values can vary, so we decided to implement a level of
certainty of the membership assignment to a cluster among
the comparable degrees of the associated samples.

With that in mind, the implemented process defines
whether the pth variable belongs to a cluster kth. In the first
step, we assigned the clusters as usual; finding the row with
the maximum value of each column in the matrix HI (green-
colored cells in Fig. 2). In the second step, we checked if the
value in HI of those samples already assigned to a cluster
kth is at least greater than the first quartile of the value
of belonging to the cluster kth of all the variables. Fig. 2
exemplified these assignments. Briefly, in this example, three
variables (v1, v2 and v4) were assigned to the cluster k3
in the first assignment. By calculating the third quartile of
this vector [0.57,0.96,0.92], which was 0.94, we deallocated
the variable v1 since it has a lower degree of belonging to
the cluster k3 than those that were assigned to that cluster.
In the second assignment, we apply the same strategy for
the second maximum degrees of each column, but taking
the values greater than the third quartile plus 1.5 times the
interquartile range. This was decided because a biomolecule
can participate in several biological processes, so it would be
very restrictive not to allow this inclusion. It is important to
denote that with this new rule for the membership assignment
process, some variables could end up deallocated.

FIGURE 2: Assignment rule for variables to each cluster. Two
assignations are made using the maximum and second maximum
per column, deciding whether it belongs to a cluster when within
these values exceeds a threshold defined by the quartiles (Q). In the
first assignment is used the Q3, in the second assignment is used
Q3 + 1.5 ∗ IQR. The final clusters contain the variables obtained
from the two assignments.

VII. NORMALIZATION OF AI AND HI

The problem of non-uniqueness of the resulting matrices
in NMF methods leads to misinterpretations of the clusters
or patterns. This may be due to noise in the data or the
initial conditions of the algorithm. Several strategies in the
normalization of W or HI during the computation of the
multiplicative rules have been proposed. By exploring how
the normalization of the low-rank matrices affects the NMF
performance, it has been found that the normalization choice
could be used to regulate the non-uniqueness of the NMF
increasing the performance on clustering [14]. The process
of normalization consists of using mapping functions (f(.))
on the columns or rows of the low-rank matrices to obtain
diagonal matrices that multiply each value in the low-rank
matrix. By using this approach it was found that the maxi-
mum norm (‖.‖∞) had the best performance than traditional
normalization methods [14].

We implement different normalization mapping functions
to analyze the variation on the clustering allocation process
due to the normalization method. In [14], the normalization
process divides each column of W by the value of a mapping
function (f(.)) that is applied for every column of W; in the
case of KjNMF, this process is applied to AI .

Accordingly to [14] every normalization method should be
applied as W

′ = WD
−1 and H

′ = DH, where D is a
diagonal matrix of dimension k (the range). The kth value
of the diagonal of D is the result of mapping function (e.g.,
‖.‖∞) applied to the kth column of W (wk). For example,
the D matrix for W is:
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D =

∣

∣

∣

∣

∣

∣

∣

f(w1) 0 0

0
. . . 0

0 0 f(wk)

∣

∣

∣

∣

∣

∣

∣

(11)

There are different ways to find this D matrix. In [14],
for instance, it was used the columns of the W matrix to
be mapped into various norms to find the values of D. The
product WD

−1 means that each value of the diagonal of
D divides each value of the kth column of W, whereas in
the product DH is multiplied by the kth row of H. We
investigated other alternative cases of normalization based on
the original jNMF by [6] and the research of [14]:

1) Adapted Zhang method [6]: they concatenated all the
HI matrices along the common rows (k) and applied
the mapping function f(Hconcat

Iki
) = 1/sum(Hconcat

ki
)

to calculate the kth element of the diagonal of D.
We adapt this normalization method to the KjNMF
as there are multiple AI . Then we implemented the
normalization as A′

I = AID
−1 and H

′
I = DHI .

2) Modified Zhang method [6]: we modified the previous
normalization method by calculating an individual DI

using the same mapping function over each row of
HI . Then we implemented the normalization as A′

I =
AID

−1
I and H

′
I = DIHI .

3) Maximum value per column of AI : [14] used the
mapping function f(Wk) = max(Wk) to calculate
the kth element of the diagonal of D. For KjNMF, we
applied the mapping function over each AI . Then we
implemented the normalization as A′

I = AID
−1
I and

H
′
I = DIHI .

4) l2 norm per column of AI : we implemented a normal-
ization based on the l2 norm. The mapping function
applied is f(AIk) = ‖AIk‖2. The implemented nor-
malization was A′

I = AID
−1
I and H

′
I = DIHI .

5) l1 norm per column of AI : [14] emphasizes in the
use of the l1 norm because it has a probabilistic in-
terpretation. We implemented f(AIk) = ‖AIk‖2 as
the mapping function. The implemented normalization
was A′

I = AID
−1
I and H

′
I = DIHI .

VIII. EXPERIMENTS

We present two evaluation scenarios for the proposed algo-
rithm (KjNMF) and linear methods (jNMF and iONMF). The
first case uses synthetic data defined by isotropic Gaussian
distributions, meaning that, it can be considered as spheres
immersed in others. The second case belongs to the bioinfor-
matics field, where we tested the implementation on cancer
omic data since these type of data contain a non-linear struc-
ture and several patients with different characteristics. In ad-
dition, using biological databases to create prior knowledge
constraints will allow a higher potential to find biomarkers
or biological pathways that are associated with a particular
disease. Fig. 3 shows a graphical representation of these
relations in both synthetic data and TCGA datasets. In each
case, the algorithm was iterated in 3-fold cross-validation, in

which the ρ metric was calculated and the AUC in testing
data were averaged for each repetition. Numeric results for
synthetic and biological datasets are in Supplementary File
1 and File 2, respectively. The convergence time for MUR
was approximately less than a one-half hour using a 2.20GHz
Intel Corei7 processor with 16GB RAM.

(a) (b)
FIGURE 3: Graph representation of the input matrices for the
two cases evaluated. (a) Synthetic data created from an isotropic
Gaussian distribution. Constraints RIJ and ΘI generated as sparse
arrays. (b) Omic profiles for proteins, genes, miRNA, and copy
number variation (CNV) from the TCGA low-grade glioma dataset
(TCGA-LGG). Constraints created according to the information
of several databases for physical interactions, associations, and
molecular relations.

A. SYNTHETIC DATA

We created three data sources with an equal number of sam-
ples n and a different number of variables p (200, 195, and
375). We employed the package Scikit-learn v0.23.2 to gen-
erate a mixture of isotropic Gaussian datasets, which create a
classification dataset of nested concentric multi-dimensional
spheres. For each XI matrix, two isotropic Gaussian datasets
were generated, one with mean 0 and variance 2 and the
other with mean 4 and variance 1. In both cases, 2 classes
were defined, i.e., each observation was assigned to a cluster
(Supplementary Fig. F1). The constraints RIJ and ΘI were
created using a random sparse matrix of 0 and 1.

The hyperparameters were evaluated in a random grid
where λ1, λ2, γ1, γ2 and ω were defined in a range of
[1−8, 1] for the normalization methods 1, 2 and 3, and in
a range of [1−10, 1−7] for the normalization methods 4 and
5 (SectionVII). The hyperparameter values for the normal-
ization methods 4 and 5 were chosen because they use l2
and l1 norm, respectively. Therefore, penalizing with large
values generates low-rank matrices with values at or near
zero, which leads to numerical problems. A total of 300
scenarios were run for all the normalization methods. The
range (k) was evaluated between 5 and 100. For KjNMF, σ,
the hyperparameter of the kernel, was evaluated between 1
and 5.

Fig. 4 shows the behavior of the AUC and ρ in the
different types of normalization methods for iONMF, jNMF,
and KjNMF. We found a similar behavior between all types
of normalization for these methods. In both metrics, KjNMF
performed better than linear methods, where the AUC was
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above 0.9 for KjNMF in most cases, whereas it did not exceed
0.6 for jNMF and iONMF (Supplementary Fig. F2).

(a) (b)
FIGURE 4: Evaluation of (a) ρ and (b) AUC in each type of
normalization method for synthetic data.

In all three algorithms the results of ρ were very close to
each other (ranging between 0.8 and 1.0). In addition, in the
fifth normalization method, we observed that the behavior
of ρ is very stable in both algorithms, although KjNMF
always presents better performance than jNMF and iONMF
methods. These results show that in all cases the clusters
are stable (ρ with high values), i.e., clusters are similar in
each run. However, in the case of KjNMF, the clusters are
similar to each other (AUC ≈ 1) independent of the sample
(train and test), whereas jNMF or iONMF (AUC ≈ 0.6) the
clusters formed will be different for each sample.

B. BIOLOGICAL DATA

We used datasets from TCGA that contains measurements of
gene expression at the level of both transcription (mRNA)
and translation (protein), RNA-based gene regulation (miR-
NAs), and genetic structural variation (CNV) from cancer pa-
tients. Since the number of genes was very high (∼ 20K), we
selected the genes that have been previously associated with
specific cancer by using the MalaCards database (Supple-
mentary Section S2). In addition, we obtained prior knowl-
edge of biological molecule associations or interactions to
create RIJ and ΘI constraints by using publicly available
biological databases (composition of prior knowledge con-
straints in Supplementary Section S3). The databases and
packages used were:

• BioGRID v3.5 [24]: gene-gene associations.
• STRINGdb v9.1 [25]: protein-protein associations.
• KEGG graphite v1.32.0 [26]: gene-gene associations in

metabolic pathways.
• limma v3.42.2 [27]: co-expressed genes.
• miRNet v2.0 [?]: miRNA-gene associations.
• CancerNet [28]: miRNA-miRNA associations.

We compared the performance of the jNMF, iONMF,
and KjNMF algorithms across three TCGA cancer types:
BReast CAncer (BRCA), Low-Grade Glioma (LGG), and
LUng ADenocarcinoma (LUAD). The data were obtained
using the TCGA-Assembler tool [29]. These cancer types
were selected not only because of the dimensionality of

the data and heterogeneity of the disease but also because
of its epidemiology: where breast and lung cancer are the
predominant neoplasms in adults, whereas glioma the most
common solid tumor in children. In addition, we evaluated
LGG as a specific study case for clustering interpretation.

1) Performance of KjNMF on different datasets
We evaluated the performance of the KjNMF using bio-
logical datasets. The RIJ and ΘI constraints were gen-
erated for each of the three TCGA cancer types. The hy-
perparameters γ1, γ2, and ω were evaluated respectively as
[1−6, 1−4, 1−3] for the normalization methods 1, 2, and 3;
and as [1−10, 1−9, 1−7] for the normalization methods 4 and
5. For λ1 and λ2, the values were fitted among [1−10, 1−2].
For the iONMF method, the α hyperparameter were evalu-
ated in the range [1−10, 1].

Considering that different sets of hyperparameters can be
evaluated for all the algorithms, we found that the kernel
implementation is superior to the linear methods. Therefore,
we evaluated normalization methods to identify the range (k)
with good performance of stability (ρ ≈ 1 and AUC ≈ 1)
and biological interpretation (refer to Table 1). The nor-
malization method 4 for KjNMF presented good scores of
these metrics for the three types of cancer evaluated. The
ρ evidenced cluster stability as this value is an average of
the cluster structure of each MUR repeat (greater than 0.90).
Concerning the AUC, when an AUC is close to 1 it means
that the train HI matrix is very similar to the test HI , then
the assignation of variables within the different clusters is
similar. This can be understood because they come from a
common type of cancer and certain molecules will maintain
their relationship independent of the origin of the sample.
Finally, the enrichment ratio (the quantity of clusters enrich-
ment over the range) was above 0.60 in the majority of cases
(refer to Table 1 and Supplementary Fig. F3 and F4). The
other four normalization methods had a good performance
but they were not as consistent as method 4.

2) Effect of prior knowledge and similarity constraints in
KjNMF
We evaluated whether prior knowledge constraints have any
effect on cluster formation. We found that metrics such as the
gene ratio average in KjNMF was 0.45, whereas jNMF was
below 0.25 (p − value < 0.001, unpaired two-samples t-
student test). This suggests that the jNMF method is more un-
stable due to the lack of terms that allows the incorporation of
prior knowledge (Supplementary Fig. F5). On the other hand,
we tested for the omission of the hyperparameter ω which
controls the similarity between the products Φ(XI)AI . We
found a negative effect on the AUC because it dropped to
less than 0.6 (p − value < 0.001, unpaired two-samples t-
student test). These results indicate that the KjNMF method
is still able to cluster the features using the non-linear data
but loses the ability to use predictive cluster identification in
a test dataset. For this reason, it is recommended to include
these constraints.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3096801, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: Metric values for different types of cancer data using the five normalization methods for the factorization algorithm KjNMF and
jNMF. The Biological Terms detected is the ratio between the number of enrichment terms detected over the total enrichment terms.

TCGA K Method
Normalization 1 Normalization 2 Normalization 3 Normalization 4 Normalization 5

ρ AUC Gene ratio
Bio.Terms
detected ρ AUC Gene ratio

Bio.Terms
detected ρ AUC Gene ratio

Bio.Terms
detected ρ AUC Gene ratio

Bio.Terms
detected ρ AUC Gene ratio

Bio.Terms
detected

LUAD
XI ∈ R

310×pi

pi : 1102 miRNA, 2340 gene,
1062 CNV and 240 proteins

30
KjNMF 0.956 0.583 0.185 0.182 0.948 0.576 0.204 0.455 0.938 0.551 0.218 0.273 0.952 0.864 0.439 0.545 0.946 0.549 0.216 0.182
jNMF 0.817 0.59 0.088 0.818 0.838 0.605 0.098 0.636 0.783 0.664 0.177 1 0.846 0.678 0.11 0.636 0.825 0.662 0.118 0.364

iONMF 0.897 0.351 0.115 0.455 0.9 0.355 0.107 0.182 0.838 0.336 0.38 1 0.885 0.34 0.137 0.909 0.857 0.318 0.157 0.909

60
KjNMF 0.975 0.581 0.302 0.818 0.968 0.558 0.456 0.455 0.907 0.578 0.756 0.727 0.981 0.862 0.286 1 0.965 0.578 0.306 0.727
jNMF 0.945 0.64 0.159 0.364 0.938 0.642 0.162 0.273 0.902 0.637 0.228 0.727 0.9 0.686 0.154 0.455 0.922 0.611 0.255 0.273

iONMF 0.926 0.355 0.153 0.909 0.925 0.356 0.156 0.727 0.903 0.301 0.427 0.818 0.925 0.326 0.142 0.909 0.849 0.33 0.264 0.818

90
KjNMF 0.981 0.589 0.481 1 0.974 0.565 0.4 0.818 0.81 0.564 0.456 1 0.987 0.848 0.421 0.818 0.971 0.556 0.509 1
jNMF 0.962 0.646 0.254 0.636 0.955 0.645 0.246 0.364 0.94 0.643 0.585 0.636 0.913 0.691 0.275 0.636 0.923 0.615 0.442 0.909

iONMF 0.941 0.356 0.244 0.545 0.941 0.358 0.202 0.636 0.933 0.325 0.543 0.818 0.94 0.352 0.338 0.545 0.856 0.317 0.576 0.818

LGG
XI ∈ R

427×pi

pi : 508 miRNA, 975 gene,
292 CNV and 219 proteins

30
KjNMF 0.954 0.576 0.254 0.366 0.947 0.614 0.251 0.464 0.889 0.6 0.309 0.627 0.96 0.928 0.227 0.895 0.939 0.628 0.236 0.647
jNMF 0.835 0.599 0.108 0.908 0.85 0.601 0.111 0.908 0.807 0.699 0.112 0.928 0.801 0.7 0.133 0.922 0.786 0.698 0.125 0.941

iONMF 0.863 0.376 0.12 0.889 0.907 0.382 0.118 0.85 0.835 0.371 0.129 0.902 0.888 0.36 0.196 0.935 0.869 0.373 0.113 0.922

60
KjNMF 0.973 0.619 0.513 0.725 0.964 0.582 0.429 0.739 0.937 0.617 0.594 0.745 0.977 0.922 0.335 0.889 0.957 0.581 0.567 0.66
jNMF 0.941 0.633 0.223 0.68 0.936 0.634 0.204 0.444 0.888 0.631 0.423 0.824 0.877 0.737 0.16 0.902 0.925 0.603 0.237 0.68

iONMF 0.91 0.374 0.175 0.935 0.927 0.379 0.162 0.895 0.898 0.34 0.31 0.895 0.912 0.365 0.284 0.954 0.865 0.351 0.245 0.954

90
KjNMF 0.979 0.585 0.676 0.804 0.973 0.626 0.748 0.81 0.964 0.624 0.749 0.85 0.982 0.917 0.539 0.908 0.964 0.622 0.627 0.784
jNMF 0.959 0.639 0.265 0.647 0.948 0.64 0.4 0.817 0.89 0.637 0.509 0.889 0.876 0.739 0.31 0.948 0.931 0.603 0.471 0.765

iONMF 0.893 0.378 0.208 0.935 0.927 0.376 0.192 0.895 0.9 0.36 0.24 0.974 0.915 0.375 0.181 0.961 0.873 0.359 0.229 0.961

BRCA
XI ∈ R

623×pi

pi : 638 miRNA, 533 gene,
155 CNV and 226 proteins

30
KjNMF 0.952 0.646 0.303 0.389 0.946 0.649 0.315 0.442 0.898 0.645 0 0 0.968 0.934 0.366 0.947 0.94 0.595 0.506 0.85
jNMF 0.818 0.605 0.174 0.965 0.864 0.627 0.183 0.982 0.768 0.684 0 0 0.788 0.706 0.168 0.956 0.825 0.662 0.118 0.364

iONMF 0.872 0.361 0.165 0.947 0.891 0.361 0.174 0.947 0.844 0.346 0.206 0.982 0.852 0.354 0.169 0.965 0.812 0.342 0.173 0.973

60
KjNMF 0.972 0.607 0.693 0.894 0.963 0.609 0.55 0.761 0.916 0.652 0.685 0.664 0.981 0.905 0.492 0.947 0.959 0.643 0.726 0.867
jNMF 0.942 0.66 0.376 0.832 0.927 0.661 0.365 0.779 0.902 0.66 0.491 0.947 0.859 0.688 0.246 0.991 0.922 0.611 0.255 0.273

iONMF 0.941 0.356 0.244 0.545 0.941 0.358 0.202 0.636 0.933 0.325 0.543 0.818 0.94 0.352 0.338 0.545 0.856 0.317 0.576 0.818

90
KjNMF 0.976 0.618 0.769 0.965 0.973 0.66 0 0 0.912 0.653 0.797 0.823 0.987 0.897 0.693 0.956 0.962 0.606 0.789 0.956
jNMF 0.959 0.662 0.432 0.894 0.942 0.662 0 0 0.896 0.661 0.677 0.991 0.882 0.69 0.319 0.973 0.923 0.615 0.442 0.909

iONMF 0.923 0.353 0.311 0.982 0.932 0.356 0.269 1 0.913 0.336 0.44 0.965 0.914 0.348 0.356 0.982 0.854 0.335 0.336 0.973

3) Case of study: Low-Grade Glioma

We evaluated the case of LGG, a brain type of cancer, to
assess the knowledge identified by the clusters using the
KjNMF method. We found differences in the number of en-
riched clusters generated by both algorithms. We also noticed
that although the proportion of variables used in KjNMF was
less than in jNMF; with a value close to 0.75 (Fig. 5a and
Supplementary Fig. F6), this did not reduce the number of
enrichment terms found for KjNMF. The Performance Score
(enriched and stable clusters) obtained with KjNMF was
higher or equal in most cases compared to those obtained
with jNMF and iONMF (Fig. 5b and metrics plots of LGG
in Supplementary Fig. F4). This lead to a better distribution
of the groups with a good density of molecules per cluster,
facilitating its biological interpretation. As a consequence,
we found that there are sets of hyperparameters that can
satisfy all evaluation metrics, i.e., finding reliable results for
interpretation.

Although we worked with a small (15) and a large (90)
number of clusters (k), we explored the enrichment of k =
30 since the number of variables included in each module
could be poorly or highly concentrated in k = 90 or k = 15,
respectively. The best results for k = 30 were found in the
normalization method 4 with (refer to Table 1 results in bold)
with the hyperparameters as follows: γ1 = 1 × 10−10, γ2 =
1×10−8, ω = 1×10−10, λ1 = 2×10−9 and λ2 = 2×10−9.
The value of σ, a hyperparameter of kernel function, was 4.

We used clusterProfiler v.3.14.3 package [21] to perform
gene enrichment analysis for each one of the 30 clusters. We
found 196 enriched terms (Supplementary File 4), of which
36 were not identified by jNMF (by using the best set of
hyperparameters used in Table 1). Among the new terms, we
highlight the terms associated with oxidative phosphoryla-
tion, aminoacids metabolism, and glycosphingolipid biosyn-
thesis because this allows us to identify that the clusters
contain information on basic and more complex processes
related to the disease.

A feature of the jNMF methods is that they allow as-
sociation between clusters, i.e., the kth cluster of miRNA,
proteins, and genes can be biologically associated, this is

(a) (b)
FIGURE 5: Evaluation metrics for KjNMF, iONMF and jNMF
using LGG data. (a) the ratio between variables assigned in clusters
and the total variables and (b) Performance score which refers to the
ratio of enrichment terms captured by the clusters over the number
of total terms (using all the genes), the higher the performance.

known as a co-cluster. We investigated whether there was
any relationship between gene/miRNA and gene/protein co-
clusters. In the case of gene/miRNA co-cluster, we explored
the top 5 co-clusters with the most molecules. We used
OmicsNet tool [22] and miRNet v.2.0 [?] to interpret co-
clusters between miRNA and genes. The enriched terms
involved in the co-clusters were related to cancer processes
as presented in Table 2 (Supplementary File 5). For exam-
ple, gene cluster No. 7 and miRNA cluster No. 7 have the
terms Fc epsilon RI signaling pathway and T-Cell activation.
Interestingly, these two pathways are related in the context of
type I hypersensitivity reactions. Briefly, allergens stimulate
T helper type 2 (Th2) cells to secrete interleukin (IL)-4
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FIGURE 6: Enrichment analysis of OmicsNet for three layers.
Highlighted nodes belong to the co-cluster 21 that we selected to an-
alyze. Dark blue-filled nodes correspond to the related biomolecules
in the enriched terms listed above. The size of the nodes is for visual
perspective.

causing B cells to release immunoglobulin (Ig)-E which bind
to the high-affinity FcǫRI of the mast cells which, as a
consequence, release biologically active mediators, causing
mainly an allergic reaction [30], [31]. In cancer, the studies
of atopy as a risk factor for cancer have reached contradictory
results [32], [33]. Therefore, our multi-omic strategy can be
used to explore whether allergic diseases might be associated
with cancer risk.

To interpret a specific co-cluster case for gene/protein and
gene/miRNA, we explored co-cluster No. 21, which contains
157 genes, 54 miRNAs, and 47 proteins. We used OmicsNet
tool [22] to obtain an interaction network between omics.
Then, we used a minimum-network option in OmicsNet tool
[22] because it generates a network with the input molecules
which allows us to identify associations between them. This
network showed a relationship among the molecules of the
three input omics (Fig. 6).

We further inspect gene/protein associations using Inge-
nuity Pathway Analysis (IPA) software [23]. The enrich-
ment analysis for genes/proteins comprises the PI3K/AKT
signaling, Insulin Receptor Signaling, IGF-1 signaling, and
other biological pathways with a p − value lower than
1×10−8 (Supplementary File 6). This cluster grouped genes
and proteins that were associated with tumor cell growth
and survival. Our results, therefore, suggest that our KjNMF
method improves the association in terms of enrichment.
We also highlighted that, even by using a restricted set of
genes, we were able to identify important clusters related
to low-grade glioma, i.e., KjNMF does not create clusters
by randomly assigning genes but rather incorporating all the
information from the omics and previous knowledge.

IX. DISCUSSION

In different areas such as health, bioinformatics, or robotics,
the integration of data from different sources becomes indis-

pensable for decision making. In particular, data integration
becomes increasingly important in biological data science to
reveal new and meaningful insights into the complex patho-
logical processes and disease pathways. Since biological data
represent complex systems, there is a need to developing
strategies that facilitate their understanding. Therefore, we
proposed this methodology of omic data integration through
joint factorization based on kernels.

Here we presented the KjNMF which, is a method that
takes the standard jNMF method based on kernels to perform
the factorization in a high-dimensional feature space. Differ-
ent kernel NMF approaches have been developed and their
advantage over the conventional method has been demon-
strated [10]. However, we went one step further to integrate
prior knowledge and explore the advantages of doing this
integration in a feature space where the non-linearity in the
patterns of the real-world data can be understood by linear
relationships.

By using the Gaussian isotropic distribution to create
synthetic data, we found that our method performs better
than the standard jNMF methods. It has been shown that
by incorporating non-linearity into the linear methods, they
can perform much better with high-dimensional data [34]. To
establish the best performance of KjNMF vs. jNMF methods,
we defined a set of metrics capable of identifying the best set
of hyperparameters. These hyperparameter selection metrics
required the following conditions to be met: high cluster
structure stability (ρ ≈ 1) and high cluster stability on a
train and test dataset (high values ofAUC). KjNMF satisfied
these conditions which are interesting because in the standard
jNMF methods the AUC remained low (≈ 0.60), i.e., the
patterns of the data hardly hold and the interpretation may be
different for these patterns. In both cases, ρ remained above
0.8, which allows us to establish that once the stop threshold
is reached the structure of the clusters remains similar in
each iteration of the algorithm. Therefore, it is clear that the
synthetic data are not suitable for linear methods since they
contain non-linear structures.

In the biological domain, it was found that molecules were
not randomly assigned to a cluster, that is, both methods
jNMF and KjNMF found meaningful clusters. We identify
two advantages of KjNMF over jNMF and iONMF methods:
the enrichment analysis of KjNMF showed new biological
terms that jNMF could not detect, there was also an associ-
ation between co-clusters of different molecules, i.e., the co-
cluster associations are created between common processes
such as immune response processes. This is interesting be-
cause other authors have found no direct relationship between
co-clusters [7]. We can attribute this also to the inclusion
of prior knowledge constraints which narrowed the search
space of feasible solutions, i.e., they force the formation of
these clusters. We incorporated these specific constraints for
each layer, just as the standard jNMF method [6]. These
constraints allow associations between molecules of the same
category (e.g., gene-gene) and between different categories
(e.g., miRNA-protein).
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TABLE 2: Enrichment of miRNA and genes clusters.

Cluster Molecule Enriched term Hits p-value adjusted1

c-7
Gene FcǫRI signaling pathway 14 9.41×10−9

miRNA T-Cell Activation 10 5.93×10−7

c-10
Gene MicroRNAs in cancer 12 3.65×10−3

miRNA Actin Filament Network Formation 6 3.18×10−6

c-14
Gene Renal cell carcinoma 15 9.65×10−9

miRNA Kidney Neoplasms 15 4.35×10−16

c-21
Gene SNARE interactions in vesicular transport 8 1.67×10−4

miRNA Inflammation 20 8.624×10−5

c-30
Gene cGMP-PKG signaling pathway 79 4.02×10−27

miRNA Cholesterol Homeostasis 13 2.24×10−3

1Adjusted p-values were calculated using hypergeometric test.

Along with this, we also explored the normalization meth-
ods during the updating of AI and HI matrices, since these
methods reduce the non-uniqueness problem of NMF meth-
ods [14]. As it was evaluated in [14], the normalization allows
the stability of the obtained clusters avoiding that initial
conditions or noise alter its formation. Methods 1, 2, and 3
are modifications of the original jNMF implementation. We
found that the performance of the jNMF method presented
was lower in the AUC metrics and the information captured
(number of enrichment clusters) than the KjNMF method.
Methods 4 and 5 use l2 and l1 norms, respectively. Specifi-
cally, method 4 was the one that showed the best performance
in all the evaluated scores. The use of the norms (l1 and l2)
allows the resulting matrices to consist only of the relevant
components. Therefore, the noise of the data may influence
the correct formation of the clusters, we recommend the
use of the normalization method 4 since the l2 norm can
reduce many values near zero without loss of information
[35]. The other normalization methods were associated with
a low AUC, so it is likely that the clusters are affected by the
origin or noise of the data (Xtest

I ), as a consequence this may
affect the interpretation of the clusters.

The main limitation of the proposed method is related to
the loss of interpretation of the samples or patients. This is
because in the jNMF the base matrix (W) has a centroid
interpretation where each sample will belong, e.g., clusters
of patients with distinguishable biological characteristics are
generated. The probability of survival, for instance, is sta-
tistically different between the clusters obtained by using
the jNMF methods [36]. In our approach, this is not easily
achieved since this matrix is located in a feature space of
infinite dimensions. Despite this, pre-imaging research based
on different strategies could be explored in the future [37],
even though a disadvantage of using pre-imaging is that the
solution is not unique. However, we believe that the proposed
approach represents an advance in data integration using
kernel-based joint matrix factorization. Thus, our method

applies to other areas and diseases where databases are
currently available.

X. CONCLUSION

A method of integration using joint non-negative matrix
factorization based on kernels (KjNMF) was presented. This
method used the Gaussian kernel, demonstrating its effi-
ciency against the standard jNMF method. The advantages
over the standard jNMF method are: (i) it allows working
with data with non-linear structures, (ii) it allows identifying
associations between variables (interpretable clusters), and
(iii) it shows better stability of the clusters in training and
testing datasets. Besides, novel evaluation mechanisms were
proposed in our method, such as (iv) the incorporation of
prior knowledge in the kernel proposal, (v) the incorpora-
tion of normalization methods to avoid the non-uniqueness
problem, (vi), and the use of metrics to determine a set of
hyperparameters useful in cluster interpretation.

We use synthetic data and biological data to demonstrate
these advantages. In all methods, the KjNMF outperformed
standard jNMF methods concerning cluster stability and
interpretability metrics, i.e., the proposed method allows to
reduce the non-uniqueness problem, facilitating the interpre-
tation by finding new clusters. In addition, we used different
methods to normalize the low-rank matrices. We find that a
good approach to reduce the noise that may be included in the
real-world data is to use the l2 norm. Therefore, our approach
allows understanding complex data that can be integrated by
increasing the value of the interpretation.
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