
Kernel-Kernel Communication
in a Shared-Memory Multiprocessor t

Eliseu M. Chaves, Ir:
Thomas J. LeBlanc

Brian D. Marsh
Michael L. Scott

Computer Science Department
University of Rochester

Rochester, New York 14627
(716) 275-9491

(chaves,le blanc,marsh,scott}@cs.rochester.edu

Abstract

In the standard kernel organization on a shared-memory multiprocessor all processors share
the code and data of the operating system; explicit synchronization is used to control access to
kernel data structures. Distributed-memory multicomputers use an alternative approach, in which
each instance of the kernel performs local operations directly and uses remote invocation to per
form remote operations. Either approach to inter-kernel communication can be used in a NonUni
form Memory Access (NUMA) multiprocessor, although the performance tradeoffs may not be
apparent in advance.

In this paper we compare the use of remote access and remote invocation in the kernel of a
NUMA multiprocessor operating system. We discuss the issues and architectural features that
must be considered when choosing an inter-kernel communication scheme, and describe a series
of experiments on the BBN Butterfly designed to empirically evaluate the tradeoffs between
remote invocation and remote memory access. We conclude that the Butterfly architecture is
biased towards the use of remote invocation for most kernel operations, but that a small set of fre
quently executed operations can benefit from the use of remote access.

1. Introduction
An important consideration in the design of any multiprocessor operating system kernel is

the host architecture, which will often dictate how kernel functionality is distributed among pro
cessors, the form of inter-kernel communication, the layout of kernel data structures, and the need
for synchronization. For example, in uniform memory access (UMA) multiprocessors, it is easy
for all processors to share the code and data of the operating system. Explicit synchronization
can be used to control access to kernel data structures. Both distributed-memory multicomputers
(e.g .. hypercubes and mesh-connected machines) and distributed systems use an alternative
organization, wherein the kernel data is distributed among the processors, each of which executes

t This research was supported by NSF grant no. CCR·9005633, NSF Institutional Infrastructure grant
no. CDA-8822724, a DARPA/NASA Graduate Research Assistantship in Parallel Processing, the Federal
University of Rio de Janeiro, and the Brazilian National Research Council .

• Visiting Scientist on leave from the Universidade Federal do Rio de Janeiro, Brazil.

mls
2nd USENIX Symp. on Experiences with Distributed and Multiprocessor Systems,Atlanta, GA, March 1991, pp. 105–116

a copy of the kernel. Each kernel perfonns operations on local resources directly and uses remote
invocation to request operations on remote resources. Nonpreemption of the kernel (other than
by interrupt handlers) provides implicit synchronization among the kernel threads sharing a pro
cessor.

Although very different, these two organizations each have their advantages. A shared
memory kernel is similar in structure to a uniprocessor kernel, with the exception that access to
kernel data structures requires explicit synchronization. As a result, it is straightforward to port a
uniprocessor implementation to a shared-memory multiprocessor.! Having each processor exe
cute its own operations directly on shared memory is also very efficient. In addition, this kernel
organization simplifies load balancing and global resource management, since all infonnation is
globally accessible to all kernels.

Message-passing (i.e., remote invocation) kernels, on the other hand, are naturally suited to
architectures that don't support shared memory. Each copy of the kernel is able to manage its
own data structures, so the source of errors is localized. The problem of synchronization is
simplified, since all contention for data structures is local, and can be managed using nonpreemp
tion. This kernel organization scales easily, since each additional processor has little impact on
other kernels, other than the support necessary to send invocations to one more kernel.

NonUnifonn Memory Access (NUMA) multiprocessors, such as the BBN Butterfly [2], IBM
8CE [9], and IBM RP3 [lS] have properties in common with both shared-memory multiproces
sors and distributed-memory multicomputers. Since NUMA multiprocessors support both remote
memory access and remote invocation, kernel data can be accessed using either mechanism. The
perfonnance tradeoffs between the use of remote invocation and remote access in the kernel of a
NUMA machine are not well understood, however, and depend both on the specific architecture
and on the overall design of the operating system.

In this paper we explore the tradeoffs between remote access and remote invocation in the
kernel, and the related issues of locality, synchronization, and contention. Our observations
about the tradeoffs are made concrete through a series of experiments comparing the direct and
indirect costs associated with each design decision. We conclude with a summary of the relation
ship between architectural characteristics and kernel organization for NUMA multiprocessors.

2. Kernel-Kernel Communication Options
We consider a machine organization consisting of a collection of nodes, each of which con

tains memory and one or more processors. Each processor can access all the memory on the
machine, but it can access the memory of the local node more quickly than the memory of a
remote node. When a processor at node i begins executing an operation that must access data on
node j, interaction among nodes is required. There are three principal classes of implementation
alternatives:

remote memory access
The operation executes on node i, reading and writing node j's memory as necessary. The
memory at node j may be mapped by node i statically, or it may be mapped on demand.

1 Several versions of Unix have been ported to multiprocessors simply by protecting operating system
data structures with semaphores [3J. An alternative approach is to use a master/slave organization wherein
all kemel calls are executed on a single node; other nodes contain only a trap handler and a remote
invocation mechanism. BBN's nX version of Unix USes this approach, as do the Unix portions of Mach
[IJ, from which nX was derived.

remote invocation
The processor at node i sends a message to a processor at node j, asking it to perform the
operation on its behalf.

bulk data transfer
The kernel moves the data required by the operation from node j to node i, where it is
inspected or modified, and possibly copied back. The kernel programmer may request this
data movement explicitly, or it may be implemented transparently by a lower-level system
using page faults.

In evaluating the tradeoffs between these three options, we distinguish between node locality
and address locality. Address locality captures the traditional notion of spatial locality in sequen
tial programs. We say that a program (e.g. the kernel) displays a high degree of address locality
if most of the memory locations accessed over some moderate span of time lie within a small set
of dense address ranges. Node locality, by contrast, captures the notion of physical locality in a
NUMA multiprocessor. We say that the kemel displays a high degree of node locality if most
operations can be performed primarily using local memory references on some node.

Whatever the mechanism(s) used to communicate between instances of the kernel, perform
ance clearly depends on the ability to maximize node locality. Any operating system that spends
a large fraction of its time on operations that require interaction between nodes is unlikely to per
form well. It seems reasonable to expect, and our experience confirms, that a substantial amount
of node locality can in fact be obtained. This implies that most memory accesses will be local
even when using remote memory accesses for kernel-kernel communication, and that the total
amount of time spent waiting for replies from other processors when using remote invocation will
be small compared to the time spent on other operations.

At the same time, experience with uniprocessor operating systems suggests that it is very
hard to build a kemel with a high degree of address locality. There are several reasons for this
difficulty. Kernels operate on behalf of a potentially large number of user processes, whose
actions are generally unrelated to each other. To the extent that they are related, the most pro
nounced effect is likely not to be continuity of worldng set across context switches, but rather
fragmentation of the worldng set of any particular process, as it incorporates common data struc
tures. Typical kernel construction techniques rely heavily on pointer-based linked data structures,
the pieces of which are often dynamically allocated.

In terms of the communication options listed above, the lack of address locality in the kernel
suggests that data accessed by any particular kernel operation are unlikely to be in physical prox
imity, casting doubt on the utility of bulk data transfer for the implementation of kernel-kernel
communication. Of course, we have not deliberately attempted to organize data structures to
maximize address locality in any of the systems we have built, nor are we aware of any attempts
to do so in other projects. It is therefore possible that the lack of address locality is simply an
artifact of avoidable design decisions. Large parts of the PLATINUM kernel [6] are implemented
on top of a .. coherent memory" system that replicates and migrates data in response to page
faults. Experiments with PLATINUM may eventually lead to a better understanding of the utility of
bulk data transfer in the kernel.

In the remainder of this section, and in the case study that follows, we focus on the choice
between remote memory access and remote invocation. We consider direct, measurable costs of
individual remote operations, indirect costs imposed on local operations, the effects of competi
tion among remote operations for processor and memory cycles, and the extent to which different
communication mechanisms complement or clash with the structural division of labor among
processes in the kernel. mtimately, we argue in favor of a mixture of both mechanisms, since no
one mechanism will be the best choice for all operations.

2.1. Direct Costs of Remote Operations
A reasonable first cut at deciding between remote memory access or remote invocation for a

particular operation can be made on the basis of the latency incurred under the two different
implementations. For example. consider an operation 0 invoked from node i that needs to per
form n memory accesses to a data structure on another node j. We can perform those memory
accesses remotely from node i. or we can perform a remote invocation to node j. where they will
be performed locally. For the sake of simplicity. suppose that 0 must perform a fixed number of
local memory accesses (e.g. to stack variables) and a fixed number of register-register operations
regardless of whether it is executed on node i or on node j. If the remote/local memory access
time ratio is R and the ovemead of a remote invocation is C times the local memory access time.
then it will be cheaper to implement 0 via remote memory access when (R-I)n<C.

The fixed overhead of remote invocation. independent of operation complexity. suggests that
operations requiring a large amount of time should be implemented via remote invocation (all
other things being equal).2 Back of the envelope calculations should suffice in many cases to
evaluate the performance tradeoff. Many operations are simple enough to make a rough guess of
memory access counts possible. and few are critical enough to require a truly definitive answer.
For critical operations. however. experimentation is necessary.

2.2. Indirect Costs for Local Operations
An important factor that we ignored in the above comparison based on latency is that opera

tions will often be organized differently when performed via remote invocation. They may
require context available on the invoking node to be packaged into parameters. They may be
reorganized in order to segregate accesses to data on the invoking processor into code that can be
executed before or after the remote invocation. Most important. pemaps. the use of remote invo
cation for all accesses to a particular data structure may allow that data structure to be imple
mented without explicit synchronization. depending instead on the implicit synchronization avail
able via lack of context-switching as in a uniprocessor kemel. Although preemption is still possi
ble from interrupt handlers. the cost of disabling interrupts is typically much lower than the cost
of explicit synchronization.

Avoiding explicit synchronization can improve the speed not only of the remote operations
but also of the (presumably more frequent) local operations that access the same data structure.
The impact of explicit synchronization on local operations is easy to underestimate. We will see
operations in our case study in which lock acquisition and release account for 49% of the total
execution time (in the absence of contention). This ovemead could probably be reduced by a
coarser granularity of locking. but only with considerable effort: fine-grain locking requires less
thought and allows greater concurrency.

On a machine in which individual nodes are multiprocessors (with parallel execution of one
local copy of the kernel). explicit synchronization may be required for certain data structures
even if remote invocation is always used for operations on those data structures requested by
other nodes. On the other hand. clever use of fetch-and-Cl> operations to create concurrent no-wait
data structures [10.13] may allow explicit synchronization to be omitted even for data structures
whose operations are implemented via remote memory access.

2 We did not include the cost of parameter passing in our simple analysis. Nearly all our kernel
operations take only one parameter. and the reply value is used to signal completion of the operation. so
our assumption of a fixed cost for remote invocation is realistic.

If remote memory accesses are used for many data structures, large portions of the kernel
data space on other processors will need to be mapped into each instance of the kernel. Since vir
tual address space is limited, this mapping may make it difficult to scale the kernel design to very
large machines, particularly if kernel operations must also be able to access the full range of vir
tual addresses in the currently-running user process. Mapping remote kernel data structures on
demand is likely to cost more than sending a request for remote invocation. Mechanisms to
cache information about kernel data structures may be limited in their effectiveness by the lack of
address locality. Systems that map kernel-kernel data into a separate kernel address space [16]
may waste large amounts of time switching back and forth between the kernel-kernel space and
the various user-kernel spaces.

2,3. Competition for Processor and Memory Cycles
Operations that access a central resource must serialize at some level. Operations imple

mented via remote invocation serialize on the processor that executes those operations. Opera
tions implemented via remote memory accesses serialize at the memory. Because an operation
does more than access memory, there is more opportunity with remote memory access for over
lapped computation. Operations implemented via remote memory access may still serialize if
they compete for a common coarse-grain lock, but operations implemented via remote invocation
will serialize even if they have no data in common whatsoever.

If competition for a shared resource is high enough to have a noticeable impact on overall
system throughput it will clearly be desirable to reorganize the kernel to eliminate the bottleneck.
The amount of competition that can occur before inducing a bottleneck may be slightly larger
with remote memory access, because of the ability to overlap computation. Even in the absence
of bottlenecks, we expect that operations on a shared data structure will occasionally conflict in
time. The coarser the granularity of the resulting serialization, the higher the expected variance
in completion time will be. The desire for predictability in kernel operations suggests that opera
tions requiring a large amount of time should be implemented via remote memory access, in
order to serialize at the memory instead of the processor. This suggestion conflicts with the
desire to minimize operation latency, as described above; it may not be possible simultaneously
to minimize latency and variance.

2.4. Compatibility With the Conceptual Model of Kernel Organization
There are two broad classes of kernel organization, which we refer to as the horizontal and

vertical approaches. These alternatives correspond roughly to the message-based and procedure
based approaches, respectively, identified by Lauer and Needham in their 1978 paper [11]. In a
vertical kernel there is no fundamental distinction between a process in user space and a process
in the kernel. Each user program is represented by a process that enters the kernel via traps, per
forms kernel operations, and returns to user space. Kernel resources are represented by data
structures shared between processes. In a horiwntal kernel each major kernel resource is
represented by a separate kernel process, and a typical kernel operation requires communication
(via queues or message-passing) among the set of kernel processes that represent the resources
needed by the operation.

Both approaches to kernel organization can be aesthetically appealing, depending on one's
point of view. The vertical organization presents a uniform model for user- and kernel-level
processes, and closely mimics the hardware organization of an UMA multiprocessor. The hor
izontal organization, on the other hand, leads to a compartmentalization of the kernel in which all
synchronization is subsumed by message passing. The horiwntal organization closely mimics
the hardware organization of a distributed-memory multicomputer. Because it minimizes context
switching, the vertical organization is likely to perform better on a machine with uniform
memory [5]. The horiwntal organization may be easier to debug [8]. Most Unix kernels are
vertical. Demos [4] and Minix [17] are horizontal.

Remote invocation seems to be more in keeping with the horiwntal approach to kemel
design. Remote memory access seems appropriate to the vertical approach. If porting an operat
ing system from some other environment, the pre-existence of a vertical or horizontal bias in the
implementation may suggest the use of the corresponding mechanism for kernel-kernel commun
ication, though mixed approaches are possible [12]. If a vertical kernel is used on a uniprocessor,
the lack of context switching in the kernel may obviate the need for explicit synchronization in
many cases. Extending the vertical approach to include remote memory access may then incur
substantial new costs for locks. On a machine with multiprocessor nodes, however, such lOCking
may already be necessary.

3. Case Study: Psyche on the BBN Butterfly
Our experimentation with alternative communication mechanisms took place in the kernel of

the Psyche operating system [16] running on a BBN Butterfly Plus multiprocessor [2]. The
Psyche implementation is written in C++, and uses shared memory as the primary kernel com
munication mechanism. The Psyche kernel was modified to provide performance figures for
remote invocation as well, with and without fine-grain locking. Our results are based on experi
ments using these modified versions of the kerneL

The basic abstraction provided by Psyche is the realm, a passive object containing code and
data. A process is a thread of control representing concurrent activity within an application.
Processes are created, destroyed, and scheduled by user-level code, without requiring kernel
intervention. User-level processes interact with one another by invoking realm operations.
Processes are executed by virtual processors, or activations. The kernel time-slices the processor
among the activations located at a node. Activations execute in address spaces known as protec
tion domains, and obtain access to realms by means of an open operation that maps a realm into
the caller's domain.

The implementation of the Psyche abstractions favors node locality. The kernel object
representing an application-level abstraction is allocated and initialized on a single node, either
on the node where the request originated or another specified node. Other kernel data structures
associated with a node's local resources are also local to that node. It is quite common, therefore,
for a kernel operation not to need access to data on another node. In those cases where kernel
kernel communication is required, local accesses still tend to dominate.

Among those kernel operations requiring access to data on more than one node, it was com
mon in the original Psyche implementation for remote memory accesses to occur at several dif
ferent times in the course of the operation. In an attempt to optimize our protected procedure
call mechanism (a form of RPC) we found that many, though not all, of these accesses could be
grouped together by re-structuring the code, thereby permitting them to be implemented by a sin
gle remote invocation.

3.1. Fundamental Costs
The Butterfly Plus is a NUMA machine with a remote:local memory access time ratio of

approximately 12: 1. The average measured execution time [7] of an instruction to read a 32-bit
remote memory location using register indirect addressing is 6.88 ~; the corresponding instruc
tion to read local memory takes 0.518~. The time to write memory is slightly lower: 4.27 lIS
and 0.398 lIS for remote and local memory, respectively.3 Microcoded support for block copy
operations can be used to move large amounts data between nodes in about a fifth of the time

3 The original Butterfly architecture had a remote-to-local access time ratio of approximately 5:1.
The speed of local memory was significantly improved in the Butterfly Plus, with only a modest
improvement in the speed of remote accesses.

required for a wOrd-by-word copy (345 ~ instead of 1.76 ms for lK bytes). None of the experi
ments reported below moved enough data to need this operation.

Our remote invocation mechanism relies on remote memory access and on the ability of one
processor to cause an interrupt on another. A processor that requires a remote operation writes an
operation code and any necessary parameters into a preallocated local buffer. It then writes a
pointer to that buffer into a reserved location on the remote node, and issues a remote interrupt.
The requestiog processor then spins on a "operation received" ftag in the local buffer. When the
remote processor receives the interrupt, it checks its reserved location to obtaio a pointer to the
buffer. It sets the "operation received" ftag, at which point the requesting processor begios to
spin on an "operation completed" ftag. If another request from a different node overwrites the
original request, the second request will be serviced instead. After a fixed period of unsuccessful
waiting for the "operation received" ftag, the first processor will time-out and resend its request.
1n case a processor's request is completed just before a resend, receiving processors ignore
request buffers whose "operation received" ftag is already set.

The remote invocation mechanism is optimistic, in that it minimizes latency in the absence
of contention and admits starvation in the presence of contention. Its average latency, excluding
parameter copying and operation costs, is 56 IJ.s. An earlier, non-optimistic, implementation
relied on microcoded atomic queues, but these required approximately 60 ~ for the enqueue and
dequeue operations alone.

3.2. Explicit Synchronization
Psyche uses spin locks to synchronize access to kernel data structures. 1n order to achieve a

high degree of concurrency within the kernel, access to each component data structure requires
possession of a lock. This approach admits simultaneous operations on different parts of the
same kernel data structure, but also introduces a large number of synchronization points in the
kernel. Opening (mapping) a realm, for example, can require up to nine lock acquisitions. Creat
ing a realm can require 38 lock acquisitions. A cheap implementation oflocks is critical.

We use a test-and-test&set lock [14] to minimize latency in the absence of contention. If the
lock is in local memory, we use the native MC68020 T AS instruction. Otherwise, we use a more
expensive atomic instruction implemented in microcode on the Butterfty (T AS is not supported
on remote locations). The slight cost of checking to see whether the lock is local (involving a
few bit operations on its virtual address) is more than balanced by the use of a faster atomic prim
itive in the common, local case.

A lock can be acquired and released manually, by calling inline subroutioes, or automati
cally, using features of C++. The automatic approach passes the lock as an initialization parame
ter to a dummy variable in the block of code to be protected. The constructor for the dummy
variable acquires the lock; the destructor (called by the compiler automatically at end of scope)
releases it. Constructor-based critical sections are slightly slower, but make it harder to forget to
release a lock. Manual locking is used for critical sections that span function boundaries or that
do not properly nest. Acquiring aod releasing a local lock manually requires a minimum of 5 IJ.s,
and may require as much as 10 IJ.s, depending on instruction alignment, the ability of the compiler
to exploit common subexpressions, and the number of registers available for temporary variables.
Acquiring and releasing a remote lock manually requires 38 to 45 ~. The additional time
required to acquire and release a lock through constructors is about I to 3 IJ.s. Synchronization
using remote locks is expensive because the Butterfty's microcoded atomic operations are
significantly more costly than native processor instructions. Extensive use of no-wait data struc
tures [10] might reduce the need for fine-grain locks, but would probably not be faster, given the
cost of atomic operations.

3.3. Impact on the Cost of Kernel Operations
To assess the impact of alternative kernel-kernel communication mechanisms on the per

formance of typical kernel operations, we measured the time to perform several such operations
via local memory access, remote memory access, and remote invocation, with and without expli
cit synchronization. The results appear in Table 1. The first three lines give times for low
latency operations. The first of these inserts and then removes an element in a doubly-linked
list-based queue; the second and third search for elements in a list The last three lines give times
for high-latency operations: creating a realm, opening (mapping) a realm, and adding a new
activation to a protection domain. All times are accurate to about ± 3 in the third significant digit.
Times for the low-latency operations are averaged over 10,000 trials. They are stable in any par
ticular kernel load image, but fluctuate with changes in instruction aligoment. They are also sen
sitive to the context in which they appear, due to variations in the success of compiler optimiza
tions. We have read through the assembly language output of the compiler for our timing tests, to
make sure the optimizer isn't removing anything important. Times for the high-latency opera
tions are averaged over I to 10 trials. They are limited by the resolution of the 62.5 ~ clock.

Times in columns I and 2 are with all data on the local node. Times in columns 3 through 6
are with target data on a remote node, but with temporary variables still in the local stack.
Columns I and 3 give times for the unmodified version of the Psyche kernel. Column 2 indicates
what operations would cost if synchronization were achieved through lack of context switching,
with no direct access to remote data structures. Column 4 indicates what operations on remote
data structures would cost if subsumed in some other operation with coarse-grain locking.
Column 6 indicates what remote operations would cost if always executed via remote invocation,
so that the lack of context-switching would obviate the need for locks. Column 5 indicates the
cost of performing operations via remote invocation in a hybrid kernel that continues to rely on
locks.

In actuality, of course, the use of remote invocation for all remote operations eliminates the
need for true mutual exclusion locks, but retains the problem of synchronization between normal
activity and the remote invocation interrupt handler. The times in columns 2 and 6 may therefore
underestimate real costs. (The times in column 2 do apply, as shown, to subsumption in larger
operations with coarser locking.) A more realistic implementation of remote invocation without
explicit locking would employ a bit indicating whether normal execution was currently in the
kernel. If the kernel were already active, the remote invocation handler would queue its request

Local Access Remote Access Remote Inv.

Operation locking locking locking
on off on off on off

enqueue+dequeue (j!s) 42.4 21.6 247 154 197 174
find last in list of 5 (j!s) 25.0 16.1 131 87.6 115 96.7
find last in list of 10 (j!s) 40.6 30.5 211 169 125 105
create realm (ms) 6.20 5.69 14.8 13.1 6.87 6.37
open realm (ms) 0.96 0.86 3.05 2.62 1.15 1.09
create activation (ms) 1.43 1.35 ~.~o ~.04 1.53 1.43

Table 1: Overhead of Kernel Operations

for execution immediately prior to the next return to user space. If the kernel were not active, the
interrupt handler could execute its operation immediately, at interrupt level, or it could use a
mechanism such as the VAX AST to force a context switch out of user space and into the kernel
upon return from the interrupt handler. Execution directly from the interrupt handler is clearly
faster, but mayor may not be appropriate for high-latency operations. We have used it in all our
tests, and our figures indicate the performance that results when the kernel is not otherwise active.
With the exception of diagnostic serial lines, devices in the Butterfly are attached to a single
"king" node; processors other than the king are in no danger of losing device interrupts due to
extended computation at high priority.

Explicit Synchronization

As seen in Table I, the cost of synchronization dominates in simple operations on queues,
introducing in some cases nearly 100% overhead for local operations and 60% overhead for
remote operations. Though less overwhelming, synchronization impacts more complex opera
tions as well, due to the use of line-grain locks. Realm creation requires acquiring and releasing
approximately 38 constructor-based locks, adding over 500 J.IS, or 9%, to the cost in the local case
and 1.7 ms, or 13%, to the cost in the remote case. The overhead of line-grain locking combined
with automatically-acquired locks is clearly significant. More to the point, this overhead is
imposed on local access to data structures in order to permit remote access to those structures.
We could reduce the cost of synchronization by locking data structures at a coarser grain. This
change would reduce the number of locks required by a typical operation, but would simultane
ously reduce the potential level of concurrency.

Remote References

We can assess the impact of remote memory references by comparing the cost of local and
remote operations in Table 1. Without locking, the marginal cost of remote references accounts
for 86% of the cost of a remote enqueue/dequeue operation pair; remote references exclusive of
synchronization account for 54% of the cost even when locking is used (154 Ils to perform the
operation remotely excluding synchronization costs minus 21.6 J.IS to perform the operation
locally, over 247 Ils total time). When searching for the 10th element in a list, remote references
exclusive of synchronization account for 2/3 of the cost of the operation. Even for complex
operations such as realm creation, which performs much of its work out of the stack, remote
references account for half of the total cost.

The overhead associated with explicit synchronization and remote references is a function of
the complexity of the operation, while the overhead associated with remote invocation is fixed.
In addition, if using remote invocation exclusively we can rely on implicit synchronization (non
preemption in the kernel), thereby reducing the cost of operations significantly. In table I, the
times in the last three rows of column 6 are not only much faster than the corresponding times in
column 3, they are comparable to the times in column 1; the ability to avoid lock acquisition and
release hides the cost of remote invocation and parameter passing. The enqueue/dequeue opera
tion and the search in a list of 5 both take less time via remote invocation, without synchroniza
tion, than they take via remote memory access with synchronization. If we could avoid the need
for synchronization, however, (e.g. by coarse-grain locking), remote access would be cheaper.
Since a remote memory access costs more than 6 J.IS more than a local access, and a remote
lock/unlock pair costs about 40 IlS, the 60 J.IS overhead of a remote invocation with a single
parameter can be justified to avoid four remote references and a lock/unlock pair. If synchroniza
tion were free, remote invocation could still be justified to avoid eleven remote references.

4. Conclusions
Architectural features strongly inlluence operating system design. The choice between

remote invocation and remote access as the basic communication mechanism between kernels on
a shared-memory multiprocessor is highly dependent on the cost of the remote invocation
mechanism, the cost of atomic operations used for synchronization, and the ratio of remote-to
local memory access time. Since the overhead associated with remote access scales with the
operation, while the overhead associated with remote invocation is fixed, we would expect
remote access to outperfonn remote invocation only on relatively simple operations. The operat
ing system designer must detennine exactly which operations, if any, would benefit from the use
of remote access, and whether the impact on the overall design of the operating system would be
justified.

On the Butterfly Plus, remote invocation is relatively fast, explicit synchronization is costly,
and remote references significantly more expensive than local references. As a result, few opera
tions can be executed more efficiently with remote access than with remote invocation. In fact,
remote invocation dominates even if the kernel exhibits node locality. Although originally intro
duced to minimize remote references, node locality can also ensure that only one remote invoca
tion is required per kernel operation. If no attempt had been made to maximize node locality, no
complex operation could have been perfonned with one remote invocation; many invocations
would be needed just to collect the data necessary to perfonn an operation. Under those cir
cumstances remote access would be competitive; however, the resulting organization would not
be a reasonable one for the Butterfly architecture.

Given the obvious advantages of remote invocation on the Butterfly Plus, why did we con
sider using shared memory in the original Psyche kernel? First, we were attracted to the shared
memory kernel model on aesthetic grounds and believed that remote accesses could be minim
ized and overall perfonnance made acceptable with an appropriate degree of node locality. We
did not realize the extent to which the cost of remote access would be dominated by synchroniza
tion, nor did we explicitly recognize that node locality would also improve the perfonnance of
remote invocation. We expected that the remote accesses required by a typical operation, even if
few in number, would often be separated by significant amounts of local computation, and would
therefore reqnire several separate remote invocations. Second, our original experience with
remote invocation suggested that it took over 150 ~ to perfonn a remote operation, which
increased the appeal of remote access. Unfortunately, this experience was based on an imple
mentation that used Butterfly atomic operations extensively. Our current implementation does
not use those operations at all. Third, our estimates of the cost of synchronization were based
heavily on the efficiency of the MC68020 test&set instruction, and did not suffiCiently consider
such additional factors as the need to differentiate between local and remote locks, the overhead
of constructors and destructors, and the frequency of synchronization.

Despite our conclusions regarding the advantages of remote invocation, remote access can
play an important role in the kernel. For example, the PLATINUM kernel on the Butterfly [6] uses
remote access to manage page tables and can free a page in 10 Ils. Efficiency in managing page
infonnation is particularly important in PLATINUM because the operating system replicates and
migrates pages frequently to create the illusion of unifonn access memory. Since most opera
tions on page tables and memory management data structures are simple operations, they are par
ticularly well-suited to remote access. Thus, there clearly is a role for remote access in the ker
nel. The significance of that role will vary from machine to machine, depending on architectural
parameters. On the Butterfly, remote invocation should be the dominant mechanism, reserving
remote access for frequently executed, specialized operations.

Acknowledgments
Our thanks to Rob Fowler for his helpful comments on this paper, and to Tim Becker for his
invaluable assistance with experiments.

References
1. M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian and M. Young,

"Mach: A New Kernel Foundation for UNlX Development," Proc. of the Summer 1986
USENIX Technical Conference and Exhibition, Pittsburgh, PA, June 1986.

2. BBN Advanced Computers Inc., Inside the Butterfly Plus, Oct 1987.

3. M. J. Bach and S. J. Buroff, "Multiprocessor Unix Systems," AT&T Bell Laboratories
Technical Journal 63, 8 (Oct 1984), pp. 1733-1750.

4. F. Baskett, J. H. Howard and J. T. Montague, "Task Communication in Demos," Proc. 6th
ACM Symp. on Operating System Principles, West Lafayette, IN, Nov 1977, pp. 23-31.

5. D. Oark, "The Structuring of Systems Using Upcalls," Proc. 10th ACM Symp. on
Operating System Principles, Orcas Island, WA, Dec 1985, pp. 171-180.

6. A. L. Cox and R. J. Fowler, "The Implementation of a Coherent Memory Abstraction on a
NUMA Multiprocessor: Experiences with PLATINUM," Proc. 12th ACM Symp. on
Operating System Principles, Litchfield, AZ, Dec 1989, pp. 32-44.

7. A. L. Cox, R. J. Fowler and J. E. Veenstra, "Interprocessor Invocation on a NUMA
Multiprocessor," TR 356, Departtnent of Computer Science, University of Rochester, Oct
1990.

8. R. A. Finkel, M. L. Scott, Y. Attsy and H. Chang, "Experience with Charlotte: Simplicity
and Function in a Distributed Operating System," IEEE Transactions on Software
Engineering 15, 6 (June 1989), pp. 676-685.

9. A. Garcia, D. Foster and R. Freitas, "The Advanced Computing Environment
Multiprocessor Workstation," IBM Research Report RC-I4419, IBM T.J. Watson Research
Center, Mar 1989.

10. M. Herlihy, "A Methodology for Implementing Highly Concorrent Data Structures," Proc.
ofthe SecondPPOPP, Seattle, WA,Mar 1990, pp. 197-206.

11. H. C. Lauer and R. M. Needham, "On the Duality of Operating System Structures,"
Operating Systems Review 13, 2 (Apr 1979), pp. 3-19.

12. T. J. LeBlanc, J. M. Mellor-Crummey, N. M. Gafier, L. A. Crowl and P. C. Dibble, "The
Elmwood Multiprocessor Operating System," Software-Practice & Experience 19, 11
(Nov 1989), pp. 1029-1056.

13. J. M. Mellor-Crummey, "Concurrent Queues: Practical Fetch-and-Phi Algorithms," TR
229, Departtnent of Computer Science, University of Rochester, Nov 1987.

14. J. M. Mellor-Crummey and M. L. Scott, "Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors," ACM Transactions on Computer Systems, to appear.
Earlier version published as TR 342, Departtnent of Computer Science, University of
Rochester, April 1990, and COMP TR90-114, Center for Research on Parallel Computation,
Rice University, May 1990.

15. G. R. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
McAuliffe, E. A. Melton, V. A. Norton and J. Weiss, "The mM Research Parallel Processor
Prototype (RP3): Introduction and Architecture," Proc. 1985 International Conference on
Parallel Processing, St. Charles, IL, Aug 1985, pp. 764-771.

16. M. L. Scott, T. J. LeBlanc, B. D. Marsh, T. G. Becker, C. Dubnicki, E. P. Markatos and N.
G. Smithline, "Implementation Issues for the Psyche Multiprocessor Operating System,"
Computing Systems 3,1 (Winter 1990), pp. 101-137.

17. A. S. Tanenbaum, Operating Systems: Design and Implementation, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

