
Kernel Machine SNP-set Analysis for Censored Survival Outcomes in Genome-wide

Association Studies

Xinyi Lin1, Tianxi Cai1, Michael C. Wu2, Qian Zhou 1, Geoffrey Liu3, David C.

Christiani4,5,6, Xihong Lin1

1 Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA

2 Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel

Hill, NC, USA

3 Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada

4 Department of Environmental Health, Harvard School of Public Health, Boston, MA,

USA

5 Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA

6 Department of Medicine, Massachusetts General Hospital/ Harvard Medical School,

Boston, MA, USA

Address for Correspondence:

Xihong Lin

Department of Biostatistics

Harvard School of Public Health

655 Huntington Avenue,

Boston, MA 02115

Phone: (617) 432-2914

Email: xlin@hsph.harvard.edu



Abstract

In this paper, we develop a powerful test for identifying SNP-sets that are predictive

of survival with data from genome-wide association studies (GWAS). We first group

typed SNPs into SNP-sets based on genomic features and then apply a score test to

assess the overall effect of each SNP-set on the survival outcome through a kernel ma-

chine Cox regression framework. This approach uses genetic information from all SNPs

in the SNP-set simultaneously and accounts for linkage disequilibrium (LD), leading

to a powerful test with reduced degrees of freedom when the typed SNPs are in LD

with each other. This type of test also has the advantage of capturing the potentially

non-linear effects of the SNPs, SNP-SNP interactions (epistasis), and the joint effects

of multiple causal variants. By simulating SNP data based on the LD structure of

real genes from the HapMap project, we demonstrate that our proposed test is more

powerful than the standard single SNP minimum p-value based test for association

studies with censored survival outcomes. We illustrate the proposed test with a real

data application.

Key Words: cox model, genetic studies, gene-based analysis, kernel machine, multi-

locus test, score test, single nucleotide polymorphism
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1 Introduction

There has been increasing interest in identifying single nucleotide polymorphisms

(SNPs) that are associated with disease phenotypes. The ultimate goal of most of these

association studies is to help uncover the biological mechanisms involved in the disease, which

can subsequently lead to better understanding of the disease process and improved strategies

for disease prevention and management [Hirschhorn, 2009]. Genome-wide association studies

(GWAS) have become popular tools for discovering loci in the human genome that can give

rise to disease susceptibility. A GWAS is a hypothesis free method wherein a large number of

markers are genotyped in many samples to find genetic variations associated with a disease

phenotype.

Most GWAS employ a case-control design and are concerned with identifying SNPs

that affect disease susceptibility. On cancer phenotypes alone, more than 50 studies have

been published to date [Ioannidis et al., 2010]. However, recently there has been increased

interest in identifying genetic markers that characterize a patient’s prognosis [Azzato et

al., 2010; Huang et al., 2009; Pillas et al., 2010]. Prognostic markers are important for

identifying patients with more aggressive disease who may need more aggressive or prioritized

treatment to improve survival outcomes. In addition to potentially using these markers to

tailor individual treatments, knowledge of these markers can help gain understanding into

the biological processes that underlie disease progression. To identify prognostic markers,

an investigator will typically employ prospective cohort design and collect information on

baseline predictors and the time from baseline to the occurrence of a clinical outcome of

interest. Examples of clinical event times include time to death or time to secondary tumor

from diagnosis. GWAS of survival outcomes have become available for various diseases. For

instance, Azzato et al. [2010] conducted a GWAS of survival after diagnosis of breast cancer.

Pillas et al. [2010] performed a GWAS on time to first tooth eruption.

2



A typical GWAS design includes (at least) two stages. The first is the discovery

stage which usually involves genotyping samples at a large number of SNPs using readily

available commercial chips. Instead of genotyping each individual at every SNP in the

genome, by utilizing the linkage disequilibrium (LD) and data from the completed HapMap

project [International HapMap Consortium, 2005], only a smaller subset of SNPs (called

typed SNPs) are genotyped. A selected number of top-ranked loci are then followed-up in

independent replication samples at the subsequent replication stages. The region around the

replicated typed SNP is then fine-mapped to examine the true disease locus. In the discovery

stage, a single locus approach is most commonly used for statistical analysis. The typical

analysis in this stage involves fitting a logistic regression model (for case-control study) or

Cox proportional hazards model (for time-to-event outcome) to each SNP, often adjusting

for non-genetic covariates.

Such a single SNP approach has several limitations. It may suffer from low power

due to a large number of tests and small effect sizes of individual SNPs, likely resulting in

a large number of false positives. Specifically, the true causal SNP is often not genotyped

but is captured through LD with the typed SNPs. Since each typed SNP is likely to be in

partial LD with the true causal SNP, the observed effect size might be smaller. Furthermore,

multiple SNPs jointly affecting the disease phenotype via a complex structure (e.g. epistasis)

will not be captured by the single SNP approach.

Few multi-locus tests for censored survival observations exist. The existing methods

can be broadly classified into two categories: (i) individual-SNP based minimum p-value

analysis (min test); (ii) haplotype-based tests. For multi-marker tests based on min p-

value analysis, in order to test for the effect of a group of loci, one calculates the p-values

for individual SNPs and corrects the minimum of these individual p-values to account for

multiple comparison by estimating the effective number of SNPs [Cheverud, 2001; Moskvina

and Schmidt, 2008; Nyholt, 2004] or via Monte Carlo methods [Lin, 2005]. As these tests
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rely heavily on the individual SNP approach, they do not fully utilize the correlation between

the SNPs and focus only on combining p-values from the various tests. The second class of

methods is haplotype-based analysis [Tregouet and Tiret, 2004]. Studies have shown that

haplotype-based analysis have little advantage over single SNP analysis [Chapman et al.,

2003; Roeder et al., 2005].

To overcome the difficulties in a single SNP approach, in this paper we apply a kernel

machine regression based approach to jointly analyze multiple SNPs for association with

censored survival outcomes. We first group SNPs into SNP-sets based on biological criteria

such as genes or LD blocks, and then test for the overall joint effects of all SNPs in a SNP-

set. Specifically, we use a kernel machine Cox regression framework and apply a score test to

assess the joint effect of a SNP-set on the survival outcome. This approach utilizes genetic

information from all SNPs in a SNP-set simultaneously, leading to a more powerful test with

reduced degrees of freedom when the typed SNPs are in LD with each other. By employing

non-linear kernels, this test can also capture the potentially non-linear and/or interaction

effects of the SNPs.

The kernel-machine (KM) approach has been developed and applied for continuous

and binary phenotypes to test for the pathway effects of gene expressions [Liu et al., 2007,

2008]. Kwee et al. [2008] applied linear KM to candidate gene studies with quantitative

traits. Wu et al. [2010] applied logistic KM to case-control GWAS to test for the SNP-

set effect. However, these methods are not applicable to survival data, which are subject

to censoring and use the Cox proportional hazards model. Li and Luan [2003] proposed a

kernel Cox regression model for modeling the effect of gene expression on survival, where they

focused on estimating regression coefficients and prediction, and did not provide any inference

procedures for the regression coefficient estimates of the gene expression level effects. Cai

et al. [2011] extended their work by developing a KM based score test for assessing the

pathway effect based on gene expression data on censored survival outcomes, where they
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considered the linear kernel for linear effects and the Gaussian kernel for interactions of gene

expressions in a pathway.

Our work is an extension of Cai et al. [2011] in which we tailor their methodology for

application to genotype data from a GWAS survival study. Specifically, we take into account

the particular characteristics of SNPs in a GWAS study. For example, we consider scenarios

where the true causal SNP may be untyped, as well as use kernels that are appropriate only

for SNP data, e.g. the identity-by-state (IBS) kernel, for modeling SNP-SNP interactions.

Note that the Gaussian kernel is suitable for continuous gene expression data but is not

suitable for discrete SNP data. We perform an extensive simulation study to evaluate the

performance of the proposed survival KM methods for testing for the SNP-set effect in

GWAS. Our paper can also be viewed as an extension of the logistic KM method of Wu

et al. [2010] where we apply the KM method to a prospective cohort GWAS in which the

phenotype is a censored survival outcome modeled using the Cox proportional hazards model

and the test is based on martingale residuals to incorporate censoring.

This paper makes three key contributions. First, we describe a powerful alternative

using SNP-sets to the single SNP Cox model in analyzing whole genome data. Second, we

illustrate the feasibility of employing a kernel machine framework in analyzing time-to-event

outcome in GWAS, that takes into account biological information as well as allows for testing

for multiple causal SNPs and epistasis. Finally, we demonstrate via numerical simulations

that our approach has better performance than the standard single SNP based minimum

p-value test (min test) when the typed SNPs are in LD with each other and with the true

causal SNP. The remainder of this paper is organized as follows: we will first discuss how

SNP-sets can be formed and then introduce the survival kernel machine method, before

presenting simulation results. Lastly, we apply our method to a GWAS dataset to identify

genes associated with lung cancer survival.
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2 Forming SNP-sets

The motivation behind forming SNP-sets is two-fold. Firstly, it allows us to capture

the joint effects of multiple SNPs and harness the LD between the SNPs in the SNP-set

to increase test power. Secondly, it allows us to incorporate biological information on how

SNPs may collectively affect the phenotype of interest, so the results have better biological

interpretation. There are various ways to form SNP-sets, see Wu et al. [2010] for an overview.

For example, one could form SNP-sets by including all the SNPs that are located near a gene.

This could be done by taking all SNPs from the transcription start to end, and possibly

include all SNPs that are upstream and downstream of a gene. A gene-based approach is

useful in helping to identify genes that are associated with the disease. Since the true causal

SNP is often not genotyped and is probably correlated with several SNPs in the SNP-set,

by forming gene SNP-sets and using the kernel machine method, we can increase power by

using the correlation between the SNPs in the SNP-set. Another way to form a SNP-set is

by pathway, e.g. by including all SNPs that fall within a gene and including all genes in a

biological pathway. The advantage of this approach is that if there are multiple causal SNPs

falling within different regions associated with the disease, the kernel machine method would

be able to capture this, leading to increased power. The drawback of forming SNP-sets using

genes or biological pathways is that not all genes are known and some SNPs associated with

a disease can be located in gene deserts. An alternative is to form SNP-sets based on LD

blocks, recombination hot-spots, or using a sliding window approach. These methods allow

complete coverage of the genome. For illustration purposes, we will form SNP-sets using the

gene-based approach in this article.
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3 Survival Kernel Machine Method

Consider a S × 1 covariate vector Zi containing the genotypes for the S SNPs in

the SNP-set, and a R × 1 covariate vector Xi containing the R non-genetic covariates for

individual i. For an additive effect of the allele, the genotype of each SNP is coded as 0, 1 or

2. Let Ti denote the survival time for individual i. Due to censoring, Ti is observable up to

a bivariate vector (Ui, ∆i), where Ui = min(Ti, Ci), ∆i = I(Ti ≤ Ci), and Ci is the censoring

time for the ith subject. We require the standard assumption that Ci is independent of Ti

conditional on Zi and Xi. For a study with sample size n, the data consist of n independent

and identically distributed copies of random vectors {(Ui, ∆i, Zi, Xi), i = 1, · · · , n}. Assume

that survival time Ti is related to Zi and Xi through the Cox proportional hazards model

[Cox, 1972]:

λ(t) = λ0(t) exp[h(Zi) + X
⊺

i γ] (1)

For example, specifying h(Zi) = Z
⊺

i β corresponds to the usual Cox proportional hazards

model including only main effect terms for all the S SNPs in the SNP-set (while adjusting

for the R non-genetic covariates). To allow for flexibility in modeling the effects of the SNPs

in a SNP-set, we allow h(·) to be an arbitrary function generated by a given positive definite

kernel function K(·, ·). To allow for the potential non-linear effects from the covariates, X

may include non-linear bases of the original covariates such as polynomial or splines.

3.1 Kernels

A kernel function K(·, ·) implicitly specifies a functional space HK spanned by a

particular set of orthogonal basis functions {φj(·)}
J
j=1, where J is allowed to be infinite. By

the representation theorem [Kimeldorf and Wahba, 1970], a properly regularized estimator
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of h(Z) based on the observed data can be written as both

h(Z) =
J∑

j=1

βjφj(Z) = φ (Z)⊺
β (the primal representation) (2)

and

h(Z) =
n∑

i=1

αiK(Zi, Z) (the dual representation) (3)

where αi are the unknown parameters. The kernel function is a projection of the genotype

data from the original space to a new space (spanned by the basis functions {φj(Z)}J
j=1), in

which h(·) is modeled linearly in this new space, as illustrated by equation (2). Intuitively,

K(Zj, Zl) is a distance metric measuring the similarity between two individuals, the jth and

lth subject, with respect to their genotype information in the SNP-set. A few popular choices

of kernels K(·, ·) that can be used for SNP data are given below. The linear kernel given by:

Klinear(Zj, Zl) =
S∑

s=1

Zj,sZl,s (4)

implicitly specifies HK to be spanned by {Zs}
S
s=1, which corresponds to the standard Cox

model with main effects for all SNPs in the SNP-set, i.e. h(Zi) = Z
⊺

i β. The weighted linear

kernel is similar to the linear kernel, except that weights can be incorporated to improve

power.

KWeighted linear(Zj, Zl) =

∑S

s=1 wsZj,sZl,s∑S

s=1 ws

(5)

For example, if we define the weights to be ws = 1
√

qs
, where qs is the minor allele fre-

quency (MAF) for the sth SNP in the SNP-set, this will cause rare variants to be given

higher weights, while down weighting the common variants. Such a weight might be used to
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prevent information from SNPs with low MAF to be smoothed over by SNPs with high MAF.

The advantage of using the kernel machine method is that the basis functions {φj(Z)}J
j=1

are not always easily specified. With a variety of kernels to choose from, one can conveniently

specify more complex models especially for high-dimensional data. Two such kernels are the

identical by state (IBS) kernel and the weighted IBS kernel, which are defined using the

number of alleles shared IBS by subjects j and l at the S typed SNPs. The IBS kernel is:

KIBS(Zj, Zl) =

∑S

s=1 IBS(Zj,s, Zl,s)

2S
(6)

where IBS(Zj,s, Zl,s) is the number of alleles shared IBS (0, 1, or 2) by subjects j and l at

SNP s in the SNP-set. The advantage of using the IBS kernel is that it allows for SNP-

SNP interactions (epistasis). The weighted IBS kernel is similar to the IBS kernel, except

that like the weighted linear kernel, it allows weights to be incorporated. Other choices of

kernels could also be employed as long as the kernel function satisfies the requirements of

Mercer’s Theorem [Cristianini and Shawe-Taylor, 2000], which includes the condition that

the kernel function is positive definite (eigenvalues must be positive). See Wessel and Schork

[2006], Lin and Schaid [2009], Mukhopadhyay et al. [2010] for examples of additional kernels.

The choice of a kernel specifies a metric with which the genetic distance between the two

individuals are measured and will influence the power of the test.

3.2 Kernel Machine Score test for Censored Survival Outcomes

We are interested in testing the null hypothesis that a SNP-set, for example a gene,

is not associated with the event time of interest after adjusting for covariates X. This

corresponds to testing H0 : h(Z) = 0 under model (1). From equation (3), testing H0 is

equivalent to testing H0 : h(Z) =
∑n

i=1 αiK(Zi, Z) = 0. Assuming that α = (α1, ..., αn)T

follows an arbitrary distribution with mean zero and variance covariance matrix τK
−, H0
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is equivalent to testing H0 : τ = 0, where K is the n × n matrix whose (i, j)th element is

K(Zi, Zj) and K
− is the generalized inverse of K. Under such a random effect framework,

H0 can tested using a score statistic for the variance component, namely

Q = M̂⊺
KM̂ − q̂ (7)

where M̂ =
(
M̂1, · · · , M̂n

)
⊺

, M̂i = ∆i −
∫ ∞

0
Yi(t)e

γ̂⊺XidΛ̂0(t) is the estimated martingale

residual for individual i under H0, Yi(t) = I(Ui ≥ t), γ̂ is the partial likelihood estimator of

γ and Λ̂0(u) =
∑n

i=1 ∆iI(Ui ≤ u)/Ŝ(0)(Ui) is the Breslow’s estimator of Λ0(t) =
∫ t

0
λ0(u)du

under the null model of λ(t) = λ0(t) exp(X⊺

i γ), Ŝ(0)(t) =
∑n

i=1 Yi(t)e
γ̂⊺Xi , and

q̂ =
n∑

i=1

∫
K(Zi, Zi)Yi(t)e

γ̂⊺XidΛ̂0(t) −
n∑

i=1

n∑

j=1

∫
Yi(t)Yj(t)e

γ̂⊺Xieγ̂⊺XjK(Zi, Zj)

Ŝ(0)(t)
dΛ̂0(t).

As discussed in Cai et al. [2011], the test statistic Q under the null follows a mixture

of chi-square distributions which can be approximated via resampling methods. To obtain

a p-value for the test using resampling methods, Cai et al. [2011] derived asymptotic ex-

pansions of the score statistic as double integrated martingale processes, and then generated

realizations of the score statistic under the null by approximating the distribution of the

martingale processes via resampling. Intuitively, the score statistic determines the extent to

which genetic similarities as described by the kernel is correlated to similarities in phenotype.

This can be seen if we rewrite the first term in the score statistic

M̂⊺
KM̂ =

n∑

i=1

n∑

j=1

M̂iM̂jK(Zi, Zj) (8)

The term K(Zi, Zj) would be large if the ith and jth patients have similar genetic profiles,

while the term M̂iM̂j would be large if they also have similar disease prognosis. Thus the

term M̂iM̂jK(Zi, Zj) would be large if genotype similarities are correlated with phenotype

10



similarities for the ith and jth patients. The second term of the score statistic is a centering

term so that the score statistic Q has mean zero. Hence the score statistic describes whether

patients with similar genetic profiles have similar disease prognosis.

4 Simulations

We conducted simulation studies to investigate the performance of the survival ker-

nel machine based SNP-set test in a genome-wide association study, whereby SNP-sets are

formed by including all SNPs located near a gene. For simplicity, no additional covariates

were included. We generated SNP-sets based on the LD structure of a single gene using

the program HAPGEN [Spencer et al., 2009]. The LD structure was derived from the CEU

population in the HapMap project (build 35, release 21). For illustration purposes, we con-

sidered four different genes of varying sizes as summarized in Table i. The gene locations

were obtained from the gene list used by PLINK [Purcell et al., 2007].

For each gene, we simulated genotype data for all HapMap SNPs from the transcrip-

tion start to the transcription end of the gene. A SNP is considered as a typed SNP if it is

on the Illumina HumanHap550 array. These are the observed SNPs that make up the SNP-

sets. In our simulations, we restricted testing to common variants, i.e. typed SNPs with

MAF ≥ 0.05. We compared the kernel machine method to the single SNP based minimum

p-value test (min test), which is calculated by fitting the standard Cox model to each SNP

in the SNP-set individually and correcting the smallest p-value pmin for multiple testing by

the effective number of SNPs Neff in the SNP-set, where Neff is estimated using the method

developed by Moskvina and Schmidt [2008]:

pSNP-set = 1 − [1 − pmin]
Neff (9)
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For the kernel machine method, we considered three different kernels: (i) linear kernel, (ii)

IBS kernel, and (iii) inverse root MAF weighted IBS kernel (ws = 1
√

qs
where qs =MAF). To

obtain a p-value for a SNP-set, perturbations were used (see Cai et al., 2011 for details).

Gene Chr Start End HapMap SNPs Typed SNPs
ASAH1 8 17958204 17986787 86 14
FGFR2 10 123227833 123347962 232 35
NAT2 8 18293034 18303003 22 4
HLA-B 6 31429627 31432968 6 2

Table i: Summary of Genes used in simulations.

4.1 Size Simulations

To investigate the empirical size of the survival kernel machine SNP-set test, we con-

ducted simulations in which survival times were simulated from the exponential distribution

with constant hazard λ0(t) = 1. This corresponds to the null model:

λ(t) = λ0(t) exp [0] = 1 (10)

Censoring times were generated from the exponential distribution with mean µC = 1 to yield

about 25% censoring. For each dataset, only typed SNPs with MAF ≥ 0.05 were included

in the testing procedure. The empirical size was computed using the proportion of datasets

(out of 5000) that had p-value ≤ 0.05.

4.2 Power Simulations

To compare the power of the kernel machine SNP-set test to the single SNP based min

test, we considered the case where there is only one causal variant and simulated survival
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time T under the linear Cox model:

λZ(t) = λ0(t) exp [βZcausal] (11)

As in the size simulations, censoring times were generated from the exponential distribution

with mean µC = 1, giving approximately 20%-22% censoring. The causal SNP was allowed

to vary across all HapMap SNPs (including both typed and untyped SNPs) one at a time,

however, only typed common SNPs with MAF ≥ 0.05 were included in the testing procedure.

We used β = 0.2. This setting closely mirrors the usual GWAS setting in which the true

causal SNP is often not genotyped but is captured only through LD with the typed SNPs.

The empirical power was calculated using the proportion of datasets (out of 500) that had

p-value ≤ 0.05. Note that both the kernel machine SNP-set test and the min test evaluate

the global null hypothesis that none of the SNPs in the SNP-set is associated with survival,

i.e. there is no association between survival and a SNP-set, e.g. a gene.

4.3 Power Simulations in the presence of epistasis

To compare the power of different kernels in the presence of epistasis, we generated

survival time from the model

λZ(t) = λ0(t) exp [0.4Zcausal,1Zcausal,2] (12)

We considered several scenarios using the ASAH1 gene. The first scenario is that the two

causal SNPs were set as the untyped SNPs rs4377998 and rs6586684 which are in low LD

with each other (R2 = 0.392). The typed SNP rs1049874 has high LD with rs4377998

(R2 = 0.836). The type SNP rs10112857 has high LD with rs6586684 (R2 = 0.819). The

second scenario sets the two causal SNPs to be one untyped SNP rs4377998 and one typed

SNP rs10112857. The third scenario sets the two causal SNPs to be one untyped SNP
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rs6586684 and one typed SNP rs1049874. The fourth scenario sets the two causal SNPs to

both typed (rs10112857 and rs1049874).

We then repeated this experiment for another two untyped SNPs, rs12541181 and

rs2427746, which are also in low LD with each other (R2 = 0.422). The SNP rs12541181 is

in high LD with the typed SNP rs7830490 (R2 = 0.986), and rs2427746 is in high LD with

the typed SNP rs12155668 (R2 = 0.953).

4.4 Size and Power Simulations using imputed SNPs

A common current practice in GWAS is to impute all the HapMap SNPs using the

typed SNPs and HapMap data. For this set of simulations, we restricted our attention only

to SNPs that segregate in the CEU panel, which consists of 62 HapMap SNPs and 13 typed

SNPs for the ASAH1 gene. We first simulated genotype data for all 62 SNPs in ASAH1 gene

using HAPGEN (LD structure for simulated genotypes was based on the CEU population).

We then used only the 13 typed SNPs to impute for all 62 SNPs in the ASAH1 gene using the

program MaCH [Li et al., 2009, 2010] and the CEU HapMap reference panel. The imputed

dataset consisting of both typed and imputed SNPs (in the form of dosage) was then used

for testing for the gene effect. Again we restricted testing to common variants with MAF

≥ 0.05. No filtering of the imputed SNPs was necessary as the median estimated squared

correlation between imputed and true genotypes was ≥ 0.5 for all SNPs (a cut-off of 0.3 will

flag most poorly imputed SNPs). For size simulations, we generated survival times as was

done in Section 4.1. Additionally, we compared the power of the kernel machine SNP-set

test (linear kernel) to the single SNP based min test, where there is only one causal variant

and simulated survival time T under the linear Cox model:

λZ(t) = λ0(t) exp [βZcausal] (13)
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We varied the causal SNP one at a time across each of the 62 HapMap SNPs. The effective

number of SNPs Neff was estimated using the most likely genotypes using the Moskvina and

Schmidt [2008] method. Note that the survival time was always simulated using the true

genotype Zcausal, not the imputed genotype, but the testing procedure was applied to both

typed and imputed SNPs.

5 Simulation Results

The empirical Type 1 error rates at the nominal level of α = 0.05 are given in Table ii.

The kernel machine SNP-set test had an appropriate size for all the three kernels and all

genes considered. As a benchmark, we also report the empirical Type 1 error rate for the

single SNP-based min test, which also gave the correct size.

Gene IBS Kernel Weighted IBS Kernel Linear Kernel min test
ASAH1 0.0542 0.0528 0.0546 0.0486
FGFR2 0.0460 0.0458 0.0466 0.0462
NAT2 0.0500 0.0502 0.0476 0.0416
HLA-B 0.0578 0.0572 0.0576 0.0550

Table ii: Empirical Type 1 error rates at nominal level of α = 0.05.

Figure 1 plots the empirical power of the kernel machine SNP-set test (using the

linear kernel) and the min test for the ASAH1 gene. The ASAH1 gene is on 8p22-p21.3 and

consists of 86 HapMap SNPs and 14 typed SNPs on the Illumina HumanHap550 array. The

SNP-set is formed by including only these 14 typed SNPs. In Figure 1, we allowed each of

the 86 HapMap SNPs to be the true casual SNP one-at-a-time and computed the power of

both the survival kernel machine SNP-set test and the min test. The ASAH1 gene region is

made up of SNPs with a good correlation structure, in which the typed SNPs are typically in

good LD with each other and with the causal SNPs. To understand better when the kernel

machine method performs better than the min test, for each casual SNP, we calculated the
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median R2 (a commonly used LD measure) of the causal SNP with the typed SNPs using the

program Haploview [Barrett et al., 2005]. From Figure 2, we can see that when the median

R2 of the causal SNP with the typed SNPs is moderate, the kernel machine method always

has higher power than the min test. Not surprisingly, when the median R2 of the causal SNP

with the typed SNPs is low, both methods have low and comparable power at levels around

the Type 1 error rate of 0.05. In Figure 3, we also plot the power of the IBS and weighted

IBS kernel. The plot shows that even when the survival time is simulated assuming a linear

model, a scenario where the linear kernel and min test are optimized, the IBS and weighted

IBS kernel suffer from only a slight power loss.

We also investigated the conditions under which the min test has higher power than

the kernel machine method using the NAT2 gene. NAT2 lies on 8p22 and has 22 HapMap

SNPs and only 4 typed SNPs from the transcription start to end of the gene. The 4 typed

SNPs are rs1390358, rs1112005, rs7832071 and rs1208 and are labeled as SNPs 7, 11, 13, 21

in Figure 4. The power of the kernel machine SNP-set test is higher than the min test for

most SNPs. The power of the min test is higher than that of the kernel machine method at

SNPs 2, 5, 9, 11, 20. A close examination of the LD plot will reveal that SNPs 2 (R2 = 0.83),

5 (R2 = 0.91), 9 (R2 = 0.99), 20 (R2 = 0.99) are in high LD with SNP 11 which is a typed

SNP. Hence SNPs 2, 5, 9 and 20 will have similar results as SNP 11. Additionally, SNP 11

is also in weak LD with the remainder typed SNPs (R2 = 0.26− 0.27). Hence when there is

only a single true causal SNP that is typed and tested (or one in high LD with it is typed

and tested) but not in LD with other typed SNPs, the min test might give higher power

than the kernel machine method. However, such a setting is unlikely to happen frequently in

an actual GWAS. In contrast, SNPs 7, 13 and 21 are in good LD with each other and when

each of these SNPs are the true causal SNPs, the power of the kernel machine method is

higher than the min test. For a much larger gene like FGFR2 (Figure 5), in regions of high

LD, the kernel machine method again outperforms the min test. In regions of weak LD, the
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two methods have comparable power.

To illustrate how using MAF as weights in the weighted IBS kernel can upweight rare

alleles, we present the empirical power for the HLA-B gene in Table iii. HLA-B gene is a

part of a family of genes known as the human leukocyte antigen (HLA) complex and lies on

6p21.3. There are only 6 HapMap SNPs and 2 typed SNPs (rs1058026 and rs2523608) in

the SNP-set. In Table iii, we simulated each of the 6 SNPs as the causal SNP. Since survival

time was simulated by assuming a linear genetic effect, one would generally expect the power

of the weighted IBS kernel to be no greater than that of the linear kernel, which corresponds

to a Cox model with linear genetic effects of the SNPs. Of the two typed SNPs, rs1058026

and rs2523608, the former (0.118) has a lower MAF than the latter (0.478). When the SNP

with the lower MAF was the causal SNP (rs1058026), the power of the weighted IBS kernel

(0.358) was much greater than that of the linear kernel (0.214) and the IBS kernel (0.274).

This is due to incorporating the information on the importance of rare variants into the

kernel function. On the other hand, when the SNP with higher MAF was the causal SNP

(rs2523608), the weighted IBS kernel (0.634) had a lower power than the IBS kernel (0.712)

as the effect of the more common allele which is also the causal SNP was downweighted by

the weighted IBS kernel.

MAF IBS Kernel Weighted IBS Kernel Linear Kernel min test
rs1058026 0.118 0.274 0.358 0.214 0.318

rs2770 0.493 0.170 0.168 0.170 0.168
rs3819299 0.018 0.056 0.060 0.070 0.064
rs3819294 0.083 0.086 0.090 0.090 0.084
rs2523608 0.478 0.712 0.634 0.782 0.708
rs7769258 0.000 0.044 0.036 0.048 0.042

Table iii: Empirical power of the KM test and the min test for HLA-B gene: Weighted IBS
kernel can lead to increased power if causal variants are uncommon.

Table iv shows the power for testing for the ASAH1 gene effect using the different

kernels in the presence of epistasis. In the cases studied, the IBS kernel always has the highest
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power, and the weighted IBS kernel has similar power. Both the linear kernel and min test

suffer from substantial power loss, which is not surprising given that they mis-specify the

model. These results are consistent when the causal SNPs are typed, and when the causal

SNPs are untyped and are in good LDs with the typed SNPs.

For simulations using imputed data, the empirical Type 1 error rates at the nominal

level of α = 0.05 were 0.0566 and 0.0404 for the linear kernel and min test respectively.

Figure 6 shows the empirical power of the kernel machine SNP-set test using the linear

kernel and the min test for the overall effect of the ASAH1 gene based on imputed data.

The conclusions are similar to before, specifically for a gene with a good LD structure like

ASAH1 gene, the kernel machine SNP-set test outperforms the min test.

Causal SNP 1 Causal SNP 2 LD IBS weighted IBS Linear min test
rs4377998 (untyped) rs6586684 (untyped) 0.392 0.538 0.532 0.122 0.102
rs4377998 (untyped) rs10112857 (typed) 0.539 0.588 0.588 0.168 0.18
rs1049874 (typed) rs6586684 (untyped) 0.563 0.574 0.548 0.122 0.11
rs1049874 (typed) rs10112857 (typed) 0.468 0.618 0.596 0.186 0.192

rs12541181 (untyped) rs2427746 (untyped) 0.422 0.926 0.914 0.688 0.766
rs12541181 (untyped) rs12155668 (typed) 0.461 0.94 0.918 0.668 0.738

rs7830490 (typed) rs2427746 (untyped) 0.409 0.928 0.916 0.704 0.764
rs7830490 (typed) rs12155668 (typed) 0.447 0.952 0.938 0.678 0.74

Table iv: Empirical Power in the presence of epistasis. The column labeled “LD” gives the
R2 between the two causal SNPs. The results show that IBS kernel is useful for detecting
epistasis.

6 Data Analysis

To illustrate the feasibility of our approach on real data, we applied our method to a

prospective GWAS identifying genetic markers associated with the overall survival of non-

small-cell lung cancer (NSCLC) patients [Huang et al., 2009]. The study consists of two

patient cohorts recruited from either the Massachusetts General Hospital (MGH) in Boston,

USA or the National Institute of Occupational Health in Oslo, Norway. DNA extracted from
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the tumor tissues of the patients were genotyped using the Affymetrix 250K Nsp GeneChip

(262,264 SNPs). After quality control filtering, there were a total of 149037 SNPs. To identify

genes that are associated with NSCLC overall survival, we applied the kernel machine SNP-

set testing procedures. For each of the 149037 SNPs, we first imputed the missing genotypes

for the missing individuals for each SNP by using the minor allele frequency of the SNP and

assuming Hardy-Weinberg equilibrium for the two cohorts separately. The two datasets were

then combined. We then group the SNPs into SNP-sets based on genes and apply the kernel

machine method. In addition to adjusting for study cohort, similar to Huang et al. [2009],

we adjusted for five additional covariates including age (in continuous scale), sex, clinical

stage (as ordinal categories), cell type (squamous cell carcinoma vs. adenocarcinoma) and

smoking pack-years (in continuous scale). 185 patients (96 from the MGH cohort and 89

from the Norway cohort) which were successfully genotyped and had complete information

in the five covariates were used in the analysis. There were a total of 96 events out of the

185 patients.

We did the analysis using the linear, IBS and weighted IBS kernel (using inverse root

MAF as weights). For comparison, we also report results from the min test, where we

corrected the most significant p-value by the no. of SNPs using a Bonferroni correction.

We restricted testing to SNP-sets that consists of at least two SNPs, giving a total of 6667

SNP-sets or genes. The top ten genes from each of the tests and the p-values obtained are

shown in Table v. All four tests identified the same top gene. The top 10 genes identified

from the IBS and weighted IBS kernels are largely identical, which is not surprising since

testing was restricted only to common variants. The linear kernel gave a slightly different set

of top 10 genes, but the top 10 genes identified from the linear kernel were generally highly

ranked using the other two kernels. Likewise, the top 10 genes from IBS and weighted IBS

kernels were also highly ranked by the linear kernel. In contrast, the top genes from the

min test are quite different from the top genes identified from the kernel machine SNP-set
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tests. Using the Bonferroni correction (cut-off= 0.05/6667 = 7.5 × 10−6), none of the genes

is significant. This is likely due to the small samples of the study. More research is needed

in order to identify prognostic markers associated with NSCLC survival and validate these

findings.

Gene Chr # SNPs p-values Rank
Linear IBS wIBS min test Linear IBS wIBS min test

DPY19L3 19 2 3.34e−05 2.07e−05 2.29e−05 6.86e−05 1 1 1 1
KALRN 3 53 1.06e−03 2.80e−04 2.40e−04 1.73e−02 12 2 2 180
XKR4 8 46 2.06e−03 3.40e−04 5.10e−04 8.68e−03 17 3 6 102

MARCH10 17 4 2.70e−04 5.10e−04 5.60e−04 1.04e−03 2 4 7 13
ERI1 8 2 1.03e−03 5.30e−04 4.50e−04 3.06e−03 11 5 4 48
RARB 3 8 4.20e−04 5.30e−04 3.80e−04 4.99e−03 3 5 3 66
ZNF230 19 2 1.19e−03 5.90e−04 1.09e−03 2.14e−03 14 7 14 34
ZNF644 1 4 6.76e−03 6.30e−04 7.80e−04 8.50e−04 48 8 8 12

TMEM106B 7 5 6.40e−04 7.40e−04 4.90e−04 1.83e−03 4 9 5 27
TNS4 17 2 1.11e−03 9.60e−04 9.20e−04 1.30e−03 13 10 10 18

ADAM7 8 3 2.28e−03 1.01e−03 8.60e−04 7.58e−04 19 11 9 11
PID1 2 26 6.50e−04 1.11e−03 1.51e−03 3.22e−03 5 12 16 50

FNDC1 6 20 9.80e−04 1.23e−03 2.91e−03 4.20e−04 10 13 30 6
C8orf37 8 2 8.10e−04 1.25e−03 1.05e−03 4.83e−04 7 14 13 8
PITPNB 22 2 8.30e−04 1.27e−03 1.01e−03 1.79e−03 9 15 12 26
LYPD6 2 10 8.20e−04 2.20e−03 3.43e−03 1.99e−02 8 19 37 205
PTCH1 9 6 7.00e−04 2.27e−03 1.19e−02 1.22e−03 6 21 86 17
CASS4 20 2 1.14e−02 3.37e−03 9.20e−04 7.30e−04 78 33 10 10
CYFIP1 15 9 8.86e−03 8.35e−03 2.44e−03 3.40e−04 62 61 25 4
LAMA4 6 9 4.33e−02 1.87e−02 6.10e−03 4.20e−04 347 137 51 7
MAP1B 5 2 1.73e−02 1.88e−02 6.38e−03 5.87e−04 132 140 53 9
SLC6A6 3 2 1.86e−02 2.01e−02 6.46e−03 3.14e−04 140 152 54 3
EYA2 20 37 1.23e−02 3.45e−02 5.44e−02 2.49e−04 84 279 439 2
A2BP1 16 257 1.52e−01 9.30e−02 5.92e−02 3.80e−04 1197 730 476 5

Table v: Top 10 genes identified from linear kernel, IBS kernel, weighted IBS (wIBS) kernel
and min test respectively.

7 Discussions

In this article, we developed a more powerful alternative to the min test by account-

ing for LD among the typed SNPs. The kernel machine SNP-set test improves power by

effectively utilizing the LD of the SNPs in the SNP-set and their correlation with untyped

causal variants. Our approach offers a few practical advantages. Firstly, by grouping SNPs
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into SNP-sets based on some biological criteria, the results obtained are more easily inter-

pretable. Secondly, our method is a multi-locus test that allows for multiple causal SNPs

acting jointly. Thirdly, the kernel machine allows for easy adjustment of non-genetic co-

variates. Additionally, the kernel machine approach allows flexibility in modeling epistastic

effects of SNPs, for example using the IBS kernel, without having to specify the functional

form of the model. We considered in this paper both the linear kernel for the linear SNP

effects and the IBS kernel to allow for SNP-SNP interactions in the SNP-set. Statistically

choosing which kernel to use using the data is in fact a model selection problem [Liu et al.,

2007], which is currently an active area of challenging statistical research with many open

questions. More research is needed. Our experience suggests that the IBS kernel is a robust

choice, in that it suffers a little loss in power when the effect of the SNP is linear, but is

useful when the effects of the SNPs are more complex or when epistasis is present. However,

the linear kernel is easier and faster to compute and works well if there is no strong evidence

of epistatic effects.

If there is only one causal SNP that is genotyped and is uncorrelated with all the

other typed SNPs, the min test may be more powerful, but such scenarios are uncommon,

given the increasing number of SNPs that are genotyped in GWAS. Alternatively, one can

also use a more powerful omnibus test, by taking the minimum p-value of the kernel machine

SNP-set test and the min test, to cover both scenarios.

When a SNP-set associated with disease prognosis has been identified, there is often

interest in identifying the causal variant(s). One could apply variable selection methods to

the typed SNPs in the SNP-set to identify more “promising” SNPs, especially if there are

many SNPs in the SNP-set. However such an approach is unsatisfactory since the true causal

variant(s) is unlikely to have been genotyped, and the typed SNPs may all only be in partial

LD with the causal variant(s). Thus to identify the causal variant(s), one would have to

sequence the entire region. Alternatively, we need statistical methods that can effectively
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utilize known LD patterns in the human genome and the partial LD between typed SNPs

and untyped causal variants to infer causal variant(s).
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Figure 1: Power Simulations for ASAH1. Blue solid line: power for Kernel Regression
method. Black dashed line: power for min test. Typed SNPs are indicated with upright
triangles.
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Figure 2: Kernel machine method has higher power than the min test when median R2 of the
causal SNP with the typed SNPs is sufficiently high - Power Simulations for ASAH1. The
causal SNPs on the x-axis are sorted by median R2 with the typed SNPs. Typed SNPs are
indicated with upright triangles at the bottom. Blue solid line: power for Kernel Regression
method. Black dashed line: power for min test. Red dotted line: minor allele frequency of
causal SNP. Purple dotted and dashed line: median R2 of causal SNP with the typed SNPs.
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Figure 3: Power Simulations for ASAH1. Blue solid line: power for Linear Kernel. Red
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kernel. Black dashed line: power for min test. Typed SNPs are indicated with upright
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Figure 5: Kernel machine method outperforms the min test in regions of high LD - Power
Simulations for FGFR2. Blue solid line: power for Kernel Regression method. Black dashed
line: power for min test. Typed SNPs are indicated with upright triangles.
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