
Kernel Methods for Exploratory Pattern
Analysis: A Demonstration on Text Data

Tijl De Bie1 and Nello Cristianini2

1 K.U.Leuven, ESAT-SCD
Kasteelpark Arenberg 10, 3001 Leuven, Belgium

tijl.debie@esat.kuleuven.ac.be

www.esat.kuleuven.ac.be/~tdebie
2 U.C.Davis, Statistics Dept.

360 Kerr Hall, One Shields Ave., Davis, CA 95616, USA
nello@support-vector.net

www.kernel-methods.net

Abstract. Kernel Methods are a class of algorithms for pattern analysis
with a number of convenient features. They can deal in a uniform way
with a multitude of data types and can be used to detect many types
of relations in data. Importantly for applications, they have a modular
structure, in that any kernel function can be used with any kernel-based
algorithm. This means that customized solutions can be easily developed
from a standard library of kernels and algorithms. This paper demon-
strates a case study in which many algorithms and kernels are mixed
and matched, for a cross-language text analysis task. All the software is
available online.

1 Introduction

Kernel Methods (KMs) offer a very general framework for performing pattern
analysis on many types of data. In this paper we focus on text data, where text is
chosen as an example of non-numeric data, and we demonstrate the versatility of
this approach by performing cluster analysis, classification, correlation analysis
and visualization on this data. What is more important, we do this by using
different representations of our data defined by different kernel functions, as
will be explained below. Overall, the purpose of this work is to make clear how
different components can be combined together, to easily produce a wide variety
of data analysis algorithms.

The main idea of kernel methods is to embed the dataset S ⊆ X into a (pos-
sibly high dimensional) vector space �N , and then to use linear pattern analysis
algorithms to detect relations in the embedded data. Linear algorithms are ex-
tremely efficient and well-understood, both from a statistical and computational
perspective. The embedding map is denoted here by φ : X → �N , and it is
understood that X can be any set.

An important point is that the embedding does not need to be performed
explicitly: we do not actually need the coordinates of all the image vectors of

A. Fred et al. (Eds.): SSPR&SPR 2004, LNCS 3138, pp. 16–29, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Kernel Methods for Exploratory Pattern Analysis 17

the data in the embedding space �N , we can perform a number of algorithms
just knowing their relative positions in it. To be more accurate, if we know all
the pairwise inner products 〈φ(x), φ(z)〉 between image vectors for all pairs of
datapoints x, z ∈ X , we can perform most linear pattern discovery methods
known from multivariate statistics and machine learning without ever needing
the coordinates of such data points.

This point is important because it turns out that it is often easy to compute
the inner product in the embedding space, even when the dimensionality N is
high and so the coordinate vectors would be very large. It is often possible to
find a (cheaply computable) function that returns the inner product between
the images of any two data points in the feature space, and we call it a kernel.
Formally, if we have data x, z ∈ S ⊆ X and a map φ : X → �N , we call kernel
a function such that

K(x, z) = 〈φ(x), φ(z)〉
for every x, z ∈ �N . As mentioned above, x and z can be elements of any set, and
in this case study they will be text documents. On the other hand, their image
φ(x) is a vector in �N . The matrix Kij = K(xi, xj) is called the kernel matrix.
Armed with this tool, we can look for linear relations in very high dimensional
spaces at a very low computational cost. If the map φ is non-linear, then this
will provide us with an efficient way to discover non-linear relations in the data,
by using well understood linear algorithms in a different space. What is even
more powerful, is that if X is not a vector space itself, the use of kernels enables
us to operate on generic entities with essentially algebraic tools.

The kernel matrix contains sufficient information to run many classic and
new linear algorithms in the embedding space, including Support Vector Ma-
chines (SVM), Fisher’s Linear Discriminant (FDA), Partial Least Squares (PLS),
Ridge Regression (RR), Principal Components Analysis (PCA), K-means and
Spectral Clustering (SC), Canonical Correlation Analysis (CCA), Novelty De-
tection (ND) and many others. We refer the reader to [11, 9, 13, 3, 10, 1, 12] for
more information on these methods, to [2] for a tutorial on kernel methods based
on eigenvalue problems (PCA, CCA, PLS, FDA and SC), and to [16, 15] for two
nice examples of the use of kernel methods in real life problems. Owing to the
level maturity already achieved in these algorithmic domains, recently the focus
of kernel methods research is shifting towards the design of kernels defined on
general data types (such as strings, text, nodes of a graph, trees, graphs,. . . ).
Major issues in kernel design are its expressive power and its efficiency of eval-
uation [5, 7, 14, 8, 6].

Since by now a wide variety of kernel functions has been developed, each
equivalent to a specific embedding function, the set of kernel methods has cul-
minated into a complete toolbox to deal with real life machine learning and
exploratory data analysis problems. Here we demonstrate this idea by using a
variety of algorithms in combination with different text and string kernels on
the articles of the Swiss constitution, which is available in 4 languages: En-
glish, French, German and Italian. What is interesting for this demonstration:
the constitution is divided into several groups of articles, each group under a



18 Tijl De Bie and Nello Cristianini

Fig. 1. A sketch of the modularity inherent in kernel-based algorithms: the data is
transformed into a kernel matrix, by using a kernel function; then the pattern analysis
algorithm uses this information to find the suitable relations, which are all written in
the form of a linear combination of kernel functions.

different so-called ‘Title’ (in the English translation). All data can be found on-
line at www.admin.ch/ch/e/rs/c101.html. A few articles were omitted in this
case study (some because they do not have an exact equivalent in the different
languages, 2 others because they are considerably different in length than the
bulk of the articles), leaving a total 195 articles per language. The texts are pro-
cessed by removing punctuation and stop words followed by stemming (where
stop word removal and stemming are performed in a language specific way).

Ultimately, the aim of this simple case study is to exhibit how the inherent
modularity of kernel methods makes them perfectly suited for fast and efficient
deployment in a wide variety of tasks.

The entire matlab demo and the data used in this case-study, including scripts
to remove punctuation and stop words and a stemming tool, are freely avail-
able online at www.kernel-methods.net, together with more free software. The
pseudo-code and the detailed description of each algorithm and kernel used in
this demo are described in the new book [12].

2 Pattern Algorithms

We briefly list here the algorithms that we will demonstrate. Given their large
number and the space constraints of this article, it is impossible to even outline
the theory behind them, so we refer the interested readers to the book [12]. All
of these algorithms can work in any kernel-induced feature space, and all are
amenable to statistical analysis based on Statistical Learning Theory. What we
want to emphasize here is how all can be used as modules of a system, where
any algorithm can be combined with any kernel, enabling practitioners to rapidly
develop and test a large quantity of general purpose algorithms, and customize
them by selecting the appropriate algorithms and kernels. Importantly, all algo-
rithms (with the exception of k-means clustering) reduce to optimizing a convex
function or to solving an eigenvalue problem.



Kernel Methods for Exploratory Pattern Analysis 19

Classification. One of the most classic tasks in pattern recognition is that of
classification (or discrimination in the statistics literature, and categorization in
text analysis). The goal is to find a function of the data that can be used to
correctly assign a data item (e.g. a document) to one of a finite set of categories.
A classic statistical method is Fisher’s Linear Discriminant Analysis (FDA),
and a classic method from machine learning is the Support Vector Machine
algorithm (SVM) [3]. Both algorithms aim at finding a separating hyperplane in
the embedding space, and differ in the properties of such hyperplane. In the first
case (FDA) the hyperplane is chosen to maximize the proportion of the between
class variance over the within class variance orthogonal to this hyperplane; in
the second case (SVM) the hyperplane is chosen to maximize the margin.

Clustering. A second classic application in pattern recognition is the task of
partitioning the samples in coherent groups. A common method for clustering
vectorial data is K-means clustering. However K-means can be applied in a kernel
induced feature space as well, making it applicable to virtually any kind of data
using the kernel trick. As an alternative to K-means, we will demonstrate a more
recently developed clustering technique known as spectral clustering (SC). This
method is based on a cheap processing of the kernel matrix, followed by a simple
eigenvalue problem.

Factor Analysis. When data is high dimensional (such as e.g. in text and
bioinformatics applications), often the interesting information contained by the
data can be explained by a number of underlying factors much smaller than this
dimensionality. Depending on what is assumed to be interesting in a particular
problem, different linear methods have been developed in multivariate statistics
to extract these factors. The best known of these is principal component analysis
(PCA), that finds a low dimensional projection of the data capturing as much
of its variance as possible. Another method called canonical correlation analysis
(CCA) can be used when we have two or more instantiations of the data that are
all assumed to contain the relevant factors. CCA then proceeds by identifying
those directions along which the data shows a large correlation between the
different spaces. Both PCA and CCA can naturally be combined with kernels
making it possible to identify hidden non-linear factors as well, or even factors
explaining non-vectorial data such as text, trees, graphs,. . . For a survey on these
methods based on eigenvalue problems, see [2].

3 Kernel Functions

All algorithms listed in the previous section are originally developed to be ap-
plied to vectorial data. However, for many other types of data it is possible to
explicitly or implicitly construct a feature space capturing relevant information
from this data. Unfortunately even when it can be expressed explicitly, often
this feature space is so high dimensional that the algorithms can not be used in



20 Tijl De Bie and Nello Cristianini

their original form for computational reasons. However, as pointed out above,
many of these algorithms can be reformulated into a kernel version. These kernel
versions directly operate on the kernel matrix instead of on the feature vectors.
For many data types, methods have been devised to efficiently evaluate these
kernels, avoiding the explicit construction of the feature vectors. In this way,
the introduction of kernels defined for a much wider variety of data structures
significantly extended the application domain of these algorithms.

In this section we briefly discuss the various kernels we will demonstrate in
this case study. All kernels used here are text kernels, and we always normalized
them. For a detailed description we refer the reader to [12].

Bag of Words Kernel. A text document can be represented by the words
occurring in it, without considering the order in which the words appear. Of
course this is a less complete representation than the texts themselves, but for
many practical problems this is sufficient. Consider the complete dictionary of
words occurring in all texts. Then each text document x could be represented by
a bag of words feature vector φ(x). The entries in this vector are indexed by the
words in the vocabulary, and equal to the number of times the corresponding
word occurs in the given text. Then, the bag of words kernel between two texts is
defined as the inner product of their bag of words vectors: K(x, z) = 〈φ(x), φ(z)〉.
Of course the feature vectors are usually sparse (since texts are usually much
smaller than the dictionary size), and some care has to be taken to efficiently
implement the bag of words kernel.

Figure (2) contains an image of the bag of words kernel on all articles (of
all languages)1. One can distinguish a block structure, corresponding to the 4
languages. In these blocks, one can see some substructure in the articles, roughly
corresponding to the Titles, Chapters, Sections. . . the articles are arranged in.
This substructure reappears in all languages to some extent.

K-mer Kernel. Another – more generally applicable – class of kernels is the
class of k-mer kernels [8]. For each document a feature vector is constructed
indexed by all possible length-k strings (k-mer) of the given alphabet; the value
of these entries is equal to the number of times this substring occurs in the given
text. The kernel between two texts is then computed in the usual way, as the
inner product of their corresponding feature vectors. Note that this kernel is
therefore applicable to string data, also where no words can be distinguished,
such as in DNA sequences. On the other hand, its power is generally less than
a bag of words kernel wherever this can be used, such as on natural language.
K-mer kernels capture the order k− 1 Markov properties of the texts, which are
specific to natural languages. Therefore, even for small k they are quite powerful
already in distinguishing different languages.

1 To avoid a completely black picture except for a bright diagonal, before visualizing
the diagonal is subtracted from the kernel. This is necessary because text kernels
generally have a very heavy diagonal.



Kernel Methods for Exploratory Pattern Analysis 21

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Fig. 2. A visualization of the full bag of words kernel matrix after normalization.Note
that it is obvious from the figure that we have 4 distinct groups of texts, corresponding
to the 4 different languages.

Note that the length of the feature vector is exponential in k, therefore a
naive implementation would be prohibitively expensive for larger k. However
efficient algorithms have been devised allowing the computation of this kernel
for large scale problems [8].

Figures (3,4) contain the full 2-mer and 4-mer kernels. Figure (3) contains
the part of the 4-mer kernel that corresponds to the English and French texts.
Figure (5) above left, shows the same but now on the same articles artificially
made noisy. Clearly the structure fades away.

Restricted Gappy K-mer Kernel. For noisy data, the k-mer kernel may
be a bit too conservative in the sense that, even though two documents may
be similar, still they don’t share many k-mers. In that case, one may consider
using a restricted gappy k-mer kernel. Consider feature vectors with entries cor-
responding to all possible k-mers again. Now, every entry is made equal to the
number of k-mers up to (k+g)-mers in the text, that contain a (not necessarily
contiguous) subsequence of length k equal to the k-mer of this specific entry.
Here g is a parameter indicating the maximum number of gaps allowed. For
details we refer the reader to [8], where an efficient way to evaluate such kernels
is described. Figure (5) left below contains the restricted gappy 4-mer kernel on
the same noisy texts.

Wildcard K-mer Kernels. This kernel adopts a different approach to deal
with noisy texts. Now we use a feature space where each dimension corresponds



22 Tijl De Bie and Nello Cristianini

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Fig. 3. The 2-mer kernel matrix after normalization. Again the cluster structure can be
seen, however it is less clear than from the bag of words kernel. This is not surprising: a
2-mer kernel only takes into account 1st order Markov properties in the texts, making
them probably less suitable for natural language applications. Note that the third group
of texts –corresponding to the German language–, sticks out however, indicating that
the 1st order Markov properties of German are significantly different from those of the
other languages considered.

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Fig. 4. The 4-mer kernel matrix after normalization. One can see that the distinction
between the different languages is more clear now than for the 2-mer kernel.



Kernel Methods for Exploratory Pattern Analysis 23

50 100 150 200 250 300 350

50

100

150

200

250

300

350

50 100 150 200 250 300 350

50

100

150

200

250

300

350

50 100 150 200 250 300 350

50

100

150

200

250

300

350

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Fig. 5. Above left, the part of the normalized 4-mer kernel matrix corresponding to
the English and French texts only is shown. Above right, the normalized 4-mer kernel
matrix on the noisy English and French texts is depicted. One can see that the pattern
has faded away a bit. The normalized restricted gappy 4-mer kernel matrix on the noisy
English and French texts is shown below on the left. This kernel explicitly tries to take
the noise influence into account. It is not immediately obvious from the figure, however
experiments will show an improvement in performance of algorithms using this kernel
over using the simple 4-mer kernel. The normalized wildcard 4-mer kernel matrix on
the noisy English and French texts is shown below on the right. This kernel provides
an alternative way to deal with noisy data. Also with this kernel algorithms will be
shown to perform better than with the simple 4-mer kernel on the noisy data.

to a k-mer of the alphabet augmented with a wildcard. The number of wildcards
in these k-mers is restricted by a parameter m. Then every feature is equal to
the number of matches to this k-mer found in the text. Again, [8] describes
an efficient way to evaluate such kernels. Figure (5) right below contains the
wildcard 4-mer kernel on the same noisy texts.

4 A Case Study: Swiss Constitution Corpus

Thus far we have given an exposition of a wide variety of linear algorithms in
machine learning that can be kernelized, and of different kernels applicable to
text data. In what follows, we will show how each of these kernels can be used in
the different algorithms. This inherent modularity in kernel methods is of major
importance. Since for most types of data relevant kernels that can be evalu-



24 Tijl De Bie and Nello Cristianini

Table 1. Classification error rates on the noise free data, averaged over 100 random-
izations with balanced 80/20 splits. The 2-mer kernel is used.

English vs French English vs German English vs Italian

SVM 0.82 ± 0.05 0.03 ± 0.03 0.43 ± 0.04

FDA 5.0 ± 0.2 0 ± 0 1.2 ± 0.1

ated efficiently have been proposed in literature, the application domain is vast.
Furthermore, this modularity has obvious advantages in software engineering.

4.1 Classification

Technical Notes. For FDA, we always took 1 for the regularization param-
eter. For the SVM we used the new-SVM formulation, and the regularization
parameter ν was always chosen equal to 0.1.

Note that the ambition here is not to optimally tune the parameters: the main
goal is to show how the modularity of kernel methods allows to apply a large
library of algorithms to non-vectorial data; not to benchmark these algorithms.

Classifying Articles in Their Respective Language Classes

Noise Free. The first task we consider is the classification of texts into their
respective language classes. The kernel we use here is the 2-mer kernel. We
considered 3 binary classification problems, discriminating English texts from the
texts in other languages (averaged over 100 random balanced splits in training
(80%) and test sets (20%)). Error rates are in table 1.

English and French are hardest to distinguish based on the 2-mer kernel,
which is probably due to many loan words present in English, recently adopted
from French. Also, English and Italian are not perfectly distinguished (probably
due to the same fact, and due to the fact that many English words have a Roman
origin). German sticks out most clearly, which is to be expected. SVM’s seem to
have a better performance on this dataset.

Noisy, English versus French. Now let us consider the classification problem
‘English vs French’ in some greater detail. What happens if we add noise to
the texts? We study this by artificially modifying the text by randomly deleting
or altering 1/4th of the letters. Table 2 contains the average classification error
rates for different kernels, along with the standard deviation on the estimated
average, over 100 randomizations.

Note that the 4-mer kernel performs better that the 2-mer kernel. We can
further improve the performance by using the restricted gappy and the wildcard
4-mer kernels.

Somewhat surprisingly FDA on the noisy data performed significantly worse
with the restricted gappy as compared to the standard 4-mer kernel. However,
clearly the method of choice here is SVM, which improves when using the re-
stricted gappy or wildcard kernels.



Kernel Methods for Exploratory Pattern Analysis 25

Table 2. Classification error rates for different kernels on the noisy data, averaged over
100 randomizations with balanced 80/20 splits.

2-mer 4-mer gappy 4-mer wildcard 4-mer

SVM, No noise 0.82 ± 0.05 0.42 ± 0.03 - -
SVM With noise 2.89 ± 0.09 1.53 ± 0.07 1.28 ± 0.06 1.29 ± 0.06

FDA, No noise 5.0 ± 0.2 1.4 ± 0.1 - -
FDA With noise 18.0 ± 0.5 8.4 ± 0.3 8.7 ± 0.3 10.9 ± 0.3

Table 3. Adjusted Rand index performances for spectral clustering and K-means clus-
tering of the documents. The ideal clustering is clustering per language.

bow 2-mer 4-mer

Spectral clustering 0.966 ± 0 0.437 ± 0 0.337 ± 0

K-means 0.38 ± 0.04 0.17 ± 0.03 0.26 ± 0.04

4.2 Clustering

Having shown that kernel methods allow to do classification in various ways, we
will now show also clustering can be performed on data such as text in this case
study. We will consider two methods: K-means clustering and spectral clustering.

Clustering the Articles in Their Language Clusters

Spectral Clustering. We cluster the articles of all languages, and check how
well they are clustered into their respective language clusters. To assess the
performance we use the adjusted Rand index [4], which is 1 for perfect clustering
and has an expected value of 0 for random clustering. The final step consists of
K-means on the eigenvectors, the clustering corresponding to the minimal K-
means cost is taken over 10 starting values, chosen as described in [10].

K-means. Similarly, we perform kernel K-means on the documents. After 100
random initializations of K-means, the one with the best K-means cost is taken,
and its adjusted Rand index is computed.

The results are summarized in table 3. The numbers in the table are averages
over 10 runs along with the standard deviations on these averages. Note that
spectral clustering (virtually) always returns the same optimal value (very small
standard deviation), i.e. it is quite independent of the starting values in the
K-means iterations, whereas K-means does not.

Somewhat surprisingly the 2-mer kernel performs better than the 4-mer ker-
nel with the spectral clustering. As expected the best performance is achieved
with the bow-kernel. The spectral method outperforms K-means in all cases.

Clustering the Articles into Coherent Groups

The articles in the constitution are organized into groups, called ‘Titles’. Can
we use clustering to automatically categorize the articles into their Titles?



26 Tijl De Bie and Nello Cristianini

Table 4. Adjusted Rand indices for spectral clustering of the English articles into the
chapters they appear in.

bow 2-mer 4-mer

English Spectral clustering 0.326 ± 0 0.231 ± 0 0.328 ± 0.001
K-means 0.24 ± 0.02 0.24 ± 0.02 0.27 ± 0.02

French Spectral clustering 0.372 ± 0 0.206 ± 0 0.340 ± 0
K-means 0.23 ± 0.03 0.17 ± 0.01 0.30 ± 0.02

German Spectral clustering 0.559 ± 0 0.136 ± 0 0.241 ± 0
K-means 0.13 ± 0.02 0.12 ± 0.01 0.19 ± 0.02

Italian Spectral clustering 0.508 ± 0.001 0.214 ± 0 0.308 ± 0
K-means 0.26 ± 0.02 0.0.19 ± 0.01 0.31 ± 0.03

Spectral Clustering and K-means. See table 4 for the adjusted Rand scores
achieved on this clustering problem for the different languages, kernels and meth-
ods. The performances are much less than for clustering articles into their lan-
guage classes. This is of course to be expected: now the number of samples is
smaller, and the distinction between languages is an objective criterion, while
the distinction between Titles in the constitution is man-made and thus sub-
jective in nature. Still, the performance is well above what a random clustering
would do.

4.3 Factor Analysis

As a last type of applications discussed in this paper, we consider two methods
for doing factor analysis: principal component analysis and canonical correlation
analysis. Again, even though these techniques are originally developed to analyze
vectorial data, the kernel trick allows us to apply them in a kernel induced feature
space on a wide variety of data types. We demonstrate the methods here on the
text data of our case study.

PCA. PCA is an algorithm to project the data in a lower dimensional space
such that as much of the variance as possible is captured. The first two principal
components are shown in figure 6. It can be seen that in this case indeed the
directions of large variance seem to visualize some interesting cluster structure
in the data.

CCA. With CCA one is able to capture information that is in common between
several information sources. In this case, we have the same information in dif-
ferent languages. Since we are in fact interested in the semantic meaning of the
articles, and not in the particularities of the languages, using CCA can be a good
idea. Indeed, the division of the constitution articles into groups (the ‘Titles’ as
they are called in the constitution) has something to do with their semantic
context, and not with their particularities due to the language in which they are
written.



Kernel Methods for Exploratory Pattern Analysis 27

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 6. First two principal components
of the bag of words kernels for the
English articles, as obtained by doing
PCA. Articles from different chapters
are represented by a different symbol.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 7. First two canonical components
of the bag of words kernels for the En-
glish articles, as obtained by doing CCA
with the other languages. Articles from
different chapters are represented by a
different symbol.

We can use it here as a visualization tool: find two semantically interesting
directions in the high dimensional feature space of the articles, and plot the
components of the articles along these directions in the 2D plane2. The result
can be seen in figure (7).

Apart from dimensionality reduction, CCA can also be used for cross-langu-
age text retrieval. For more information we refer the reader to the relevant
literature [16].

Comparison of PCA with CCA. If we compare figure (6), where only one lan-
guage is used, with figure (7), where the other languages are used to supervise
the dimensionality reduction to some extent, we can see that the cluster struc-
ture is slightly more apparent when using CCA. We can assess this by computing
the between class variance divided by the total variance (BCV/TV) in the sub-
spaces found by PCA and CCA respectively. The larger this number, the better
the class separation. The results for subspaces from 1 dimension up to 10 dimen-
sions are shown in figure 8. Clearly CCA performs better than PCA, indicating
that the different languages effectively supervise each other when selecting rele-
vant dimensions in CCA.

5 Conclusion

We have demonstrated with a case study some of the most appealing features
of kernel methods for pattern analysis: their modular design, the possibility of

2 Note that training the regularization parameter is an issue here, and done by permu-
tation analysis (the difference between the sum of the maximal correlations between
the actual problem and a permuted version is maximized).



28 Tijl De Bie and Nello Cristianini

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of dimensions

B
C

V
 / 

T
V

Fig. 8. Between class variance divided by total variance (BCV/TV) for PCA (full line)
and CCA (dotted line) as a function of the dimension of the subspace (equivalently:
the number of factors selected).

naturally using them for exploratory data analysis and rapid deployment, and
their capability of operating seamlessly on non-numeric data. The theoretical
details which are absent in this paper can be found in [12], and all the software
and data are available at www.kernel-methods.net.

Acknowledgments

The authors thank John Shawe-Taylor for useful discussions and Manju Pai for
contributing to part of the software development. TDB is a Research Assistant
with the Fund for Scientific Research – Flanders (F.W.O.–Vlaanderen).

References

1. F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of
Machine Learning Research, 3:1–48, 2002.

2. T. De Bie, N. Cristianini, and R. Rosipal. Eigenproblems in pattern recognition.
In E. Bayro-Corrochano, editor, Handbook of Computational Geometry for Pattern
Recognition. Springer-Verlag, 2004.

3. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, U.K., 2000.

4. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, page
193–218, 1985.

5. T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kernel method to
detect remote protein homologies. In Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular Biology, 1999.

6. H. Kashima, K. Tsuda, and A. Inokuchi. Kernel methods in computational biology.
In B. Schoelkopf, K. Tsuda, and J.P. Vert, editors, Handbook of Computational
Geometry for Pattern Recognition. Springer-Verlag, 2004.



Kernel Methods for Exploratory Pattern Analysis 29

7. R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete struc-
tures. In Proceedings of the ICML, 2002.

8. C. Leslie and R. Kuang. Fast kernels for inexact string matching. In Conference
on Learning Theory and Kernel Workshop (COLT 2003), 2003.

9. S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant
analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors,
Neural Networks for Signal Processing IX, pages 41–48. IEEE, 1999.

10. A. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algo-
rithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

11. B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

12. J. Shawe-Taylor and N. Cristianini. Kernel methods for Pattern Analysis. Cam-
bridge University Press, Cambridge, U.K., 2004.

13. D.M.J. Tax and R.P.W. Duin. Support vector domain description. Pattern Recog-
nition Letters, 20(11-13):1191–1199, 1999.

14. K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller. A new
discriminative kernel from probabilistic models. Neural Computation, 14(10):2397–
2414, 2002.

15. J.-P. Vert and M. Kanehisa. Graph-driven features extraction from microarray
data using diffusion kernels and kernel cca, 2003.

16. A. Vinokourov, N. Cristianini, and J. Shawe-Taylor. Inferring a semantic repre-
sentation of text via cross-language correlation analysis, 2002.


	1 Introduction
	2 Pattern Algorithms
	3 Kernel Functions
	4 A Case Study: Swiss Constitution Corpus
	4.1 Classification
	4.2 Clustering
	4.3 Factor Analysis

	5 Conclusion
	References

