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Abstract. The amount of ontologies and meta data available on the Web is con-
stantly growing. The successful application of machine learning techniques for
learning of ontologies from textual data, i.e. mining for the Semantic Web, con-
tributes to this trend. However, no principal approaches exist so far for mining
from the Semantic Web. We investigate how machine learning algorithms can be
made amenable for directly taking advantage of the rich knowledge expressed
in ontologies and associated instance data. Kernel methods have been success-
fully employed in various learning tasks and provide a clean framework for in-
terfacing between non-vectorial data and machine learning algorithms. In this
spirit, we express the problem of mining instances in ontologies as the problem
of defining valid corresponding kernels. We present a principled framework for
designing such kernels by means of decomposing the kernel computation into
specialized kernels for selected characteristics of an ontology which can be flex-
ibly assembled and tuned. Initial experiments on real world Semantic Web data
enjoy promising results and show the usefulness of our approach.

1 Introduction

The standardization of the ontology languages RDF(S) [1] and OWL [2] has led to an
ever increasing amount of available semantic annotations. As of August 2007, the statis-
tics of the Semantic Web search engine Swoogle3 count a total of 1, 238, 295 publicly
available “error-free pure Sematic Web Documents”. Research has actively addressed
the problem of learning knowledge structures – mostly from text data – for the Seman-
tic Web, a field commonly referred to as Ontology Learning [3]. Only little work has
been directed towards the question on learning from Semantic Web data and principled
approaches are still missing. We strongly believe that mining Semantic Web data will
become a crucial issue to deal with the massively growing amount of Semantic Web
data. The need for mining Semantic Web data may arise in the context of two scenarios.

This work was funded by the X-Media project (www.x-media-project.org) sponsored by the
European Commission as part of the Information Society Technologies (IST) programme un-
der EC grant number IST-FP6-026978.

3 http://swoogle.umbc.edu/
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On the one hand, we expect that it will be tempting to extend the scope of all kinds
of adaptive systems we already find on the current Web (such as personal recommen-
dation systems) from the still dominating document (text) data to Semantic Web data.
On the other hand, classifiers that act on semantic web data can complement the cripsp
reasoning procedures of current Semantic Web type systems possibly leading to hy-
brid systems where logic-based reasoning procedures interact with machine learning
techniques inspired by statistical notions.

In this paper, we investigate the question how machine learning algorithms can be
made amenable to work on instances that are described by means of an ontological
vocabulary and how we can exploit the rich knowledge encoded in the respective on-
tologies. We will do so by placing the problem of learning from Semantic Web data in
the context of the field of kernel methods. Kernel methods (see e.g. [4] for excellent
and comprehensive introductions) are one of the most prominent paradigms in modern
machine learning research. While Support Vector Machines can safely be regarded as
the best known kernelized learning algorithm, many other well-known supervised and
unsupervised machine learning algorithms can be kernalized as well. The main idea
behind kernel-based learning algorithms is that they express the learned hypothesis by
means of linear combinations of a specific type of similarity functions, the so-called
kernel functions, where one argument is fixed to some training data item. An intrigu-
ing property of kernel-based learning algorithms is that kernel functions need not be
restricted on vector-type data as arguments but can be defined directly on data items
of arbitrary type as long as some mild restrictions are ensured. This allows to directly
work on heterogenous and interconnected data that does not have a natural vector-style
representation. Rephrasing the earlier statement we can thus say that this paper inves-
tigates how machine learning algorithms can be made amenable for taking advantage
of the knowledge expressed in ontologies and associated metadata by designing kernel
functions defined on instances that reference certain ontologies. We introduce a frame-
work for kernel design on Semantic Web-type data that (i) builds on common notions
of similarity, (ii) ensures the validity of the kernel(s) regardless of parameter choices of
the user.

This paper is organized as follows: we introduce a number of preliminaries on kernel
methods as well as knowledge representation and review related work in Section 2.
In Section 3, we introduce our framework for kernel design on ontological instances.
We illustrate the instantiation of this framework in Section 4 in the context of two
experiments based on the SWRC and GALEN ontologies. We conclude in Section 5.

2 Preliminaries

In this section we shortly review the main preliminary notions necessary for the under-
standing of the main technical contributions of the paper. We give a brief overview of
kernel methods and of knowledge representation with ontologies in sections 2.1 and 2.2
respectively. The interested reader is pointed to [4] for comprehensive introductions to
the field of kernel methods and to [5,6] for introductions to ontologies and knowledge
representation, in particular description logic-type approaches.



2.1 Machine Learning with Kernel Methods

Kernel methods are powerful machine learning techniques that have widespread adop-
tion in the machine learning community and have been shown to be powerful learning
algorithms in various standard and non-standard learning settings. The major paradigm
behind kernel methods is the decoupling of the employed learning algorithms from the
representations of the data instances under investigation. Different learning algorithms
for various tasks can be “kernelized” such as, for example, Support Vector Machines [7]
for classification and regression (i.e. supervised learning tasks) or Kernel-kMeans and
Kernel-PCA [8] for clustering and dimensionality reduction (i.e. unsupervised learning
tasks). In the “unkernalized” variant, these algorithms operate on simple vectors of real
numbers. The hypotheses generated by these algorithms are typically tied to a geometric
interpretation within the corresponding vector space such as the notion of a separating
hyperplane in the case of classification with Support Vector Machines. By virtue of the
design of the algorithms of interest, the input vectors need not be accessible directly
by them. Instead, it is sufficient that they are able to access the evaluations of the inner
product 〈x, y〉 of two vectors x, y in this space. The resulting hypotheses are then ex-
pressed using linear combinations of the input objects. In the context of this paper, we
omit too much technical detail on this approach, also referred the dual representation
of the respective algorithms.

The second component of kernel methods is the so-called kernel function. The ker-
nel function computes the similarity of data instances in such a way that it is equivalent
to an inner product in some (possibly unknown) vector space.

Definition 1 (Kernel Function). Any function κ : X × X → R that for all x, z ∈ X
satisfies κ(x, z) = 〈φ(x), φ(z)〉, is a valid kernel, whereby X is some input domain under
consideration and φ is a mapping from X to some inner product space F, called the
feature space.

As such, the computations of the plain inner product in the unkernlaized algorithms
can be replaced by any valid kernel function. The kernel function, which can be re-
garded as a function that encodes a particular notion of similarity of data items of the
input domain, simultaneously serves three purposes: (i) it provides the interface be-
tween the learning algorithm and the data, which is particularly interesting for data
items that do not take the traditional form of vectors, (ii) it can leverage the perfor-
mance of the algorithm by incorporating prior knowledge about the problem domain,
and (iii) its evaluation might be computationally advantageous compared to an explicit
construction of the feature space in terms of memory and/or computation requirements.
The kernel function as such thus becomes an interesting subject of research. However,
restrictions apply on the choice of the employed function to make it a valid kernel,
namely, that the function needs to be a positive semi-definite function. Constructing
appropriate positive semi-definite kernels from arbitrary data is thus not a trivial task.
However, several closure properties aid the construction of valid kernels from known
valid kernels, which will also be exploited in the construction of kernels in section 3.
In particular, kernels are closed under sum, product, multiplication by a positive scalar
and combination with well-known kernel modifiers.



Well-known kernel modifiers for a valid kernel k(x, y) on some input set x, y ∈ X
are, among others: (i) the normalisation kernel which scales the kernel results to [0, 1]
(in analogy with the cosine of two vectors):

knormalised(x, y) =
k(x, y)√

k(x, x)k(y, y)
;

or (ii) the Gaussian kernel:

kgaussian(x, y) = exp
(
−k(x, x) − 2k(x, y) + k(y, y)

2σ2

)
, σ ∈ R+.

As we will often be occupied with dealing with sets of objects we introduce here two
well-known kernels defined on sets A, B ⊆ X of data items x ∈ X: (i) the intersection
kernel

k∩(A, B) = |A ∩ B| ;
and (ii) the crossproduct kernel:

k×(A, B) =
∑

xa∈A

∑

xb∈B

kbase(xa, xb) ,

where kbase(·, ·) is any valid kernel defined on X. In particular, note that the
crossproduct kernel boils down to the intersection kernel when used with the so-called
matching kernel:

kmatching(xi, x j) = δ(xi, x j)

where δ(xi, x j) = 1 if xi = x j and δ(xi, x j) = 0 otherwise. Proofs for the presented kernel
closure properties, kernel modifiers and set kernels are omitted but can for example be
found in [4].

2.2 Ontologies and Knowledge Representation

Ontologies provide a shared and common understanding of a domain of discourse and
provide a vocabulary to describe data instances. A popular knowledge representation
formalism is the family of Description Logics (DLs) which allow to model the rele-
vant properties of a domain by means of classes (unary predicates), which denote sets
of individuals, object properties (binary predicates), which denote binary relationships
between individuals, and datatype properties (binary predicates) which denote relations
between individuals and specific datatypes. Terminological axioms in the ontology can
combine and relate classes and roles by the use of various concept and role constructors.
Assertional axioms in associated knowledge bases make statements about the instances
of the domain. The semantics of a certain description logic is typically given as model
theoretic semantics by relating the syntax of the logic and the models of a domain.

The practical importance of description logics stems from the fact that they form the
basis of the Web Ontology Language OWL[2]. In particular, the sublanguage OWL DL
is based on the description logicSHOIN(D) for which a number of practical reasoning
algorithms are known and implemented. As an adopted Semantic Web standard, OWL



is increasingly used to define ontologies and these ontologies – in turn – are increasingly
used to describe data instances such as people, publications, services and the like.

The kernels presented in the next section will be based on probing instances for
membership in certain classes or properties, during this process, deductions made using
terminological axioms may enrich the explicitely asserted facts with deducted facts.
During the remainder of this paper it is important to keep in mind that, due to the open
world reasoning of DLs, the deduced facts are only the necessary facts. Other facts may
or may not hold but they may just not be deduced necessarily.

2.3 Related Work

Research on learning algorithms for data that comes in a logic-based representation is
mostly rooted in the field of Inductive Logic Programming (ILP) [9]. ILP algorithms
directly exploit the underlying logic and search for logical concept descriptions that
accuratly describe the concept(s) hidden in the data. As a positive side-effect, the re-
sulting concept descriptions can thus be directly incorporated in the overall knowledge
representation framework. As such they do, however, mostly completely circumvent
any statistical notions such that softer hidden concepts are hard to identify.

Research on kernels for structured data, i.e. for data that is expressed in a formal-
ism different from the standard vectorial representation, is a young research field that
has recently become a major topic of investigation in the machine learning community.
A good and fairly recent overview of basic types of kernels for structured data can be
found in [10]. In the following, we will shortly describe the main works related to our
research. Most of the work on kernels for structured data is rooted in the idea of the
convolution kernel [11]. The main argument behind this kernel is that the semantics
of composite objects can often be based on the semantics of its parts. The kernel thus
aims to first evaluate basic kernels on the combinations of parts and sum the respective
comparisons in the overall kernel, a direction that we will also investigate in this pa-
per. Recently, [12] proposed a logic-based kernel on individuals represented as (closed)
terms in a typed higher-order logic. Neglecting the technicalities of the approach this
logic essentially allows the construction of complex types such as sets or lists out of
other types, including standard types as e.g. natural numbers. The work presents a ker-
nel defined on terms in the associated logic. However, the kernel is not capable of in-
corporating intensional background knowledge. In different spirit, [13] have proposed a
kernel on Prolog proof trees. In this setting, the individuals are described in the context
of global background knowledge in first-order logic. The idea of this kernel is then to
measure the similarity of two individuals by means of the similarity of the proof trees of
a special logic progam, called the visitor program, which probes certain characteristics
of the individuals that may be of interest for the domain. In contrast to other approaches,
this kernel allows to exploit background knowledge in a principled way. However, as
acknowledged by the authors, the design of appropriate visitor programs is not neces-
sarily intuitive and the proof trees may easily contain unnecessary noise that may hurt
the overall performance.



3 Designing Kernels for Instance Data

In this section, we look at transfering kernel design principles to Semantic Web data.
We introduce a principled framework for defining kernel on instances that are described
with respect to some ontology. We can view this framework as a toolbox for formulating
adequate kernels on Semantic Web data. The framework we describe is generic and
we believe that it is capable of capturing most of the interesting future scenarios. As
explained earlier, kernels should capture the similarity of the arguments. Along the
common lines of interpretation of similarity, we will considering two instances the more
similar, the more common (or similar) characteristics they have.

Before digging into the definitions of the kernel components in the next two sections
let us fix some notation. We will implicitly define the kernels with respect to some fixed
ontology O. We will denote the set of named individuals in O as I, the set of atomic
classes C ⊆ I as C, the set of object properties p ⊆ I × I as PO and the set of datatype
properties p ⊆ I × dom(d) as PD.

We now introduce four layers of similarity of instances, each of which is defined
using a particular (set- or cross product-) kernel. The model is roughly inspired by the
layer model of [14] but the layers follow a different breakdown of the overall instance
similarity as summarized in the following. The identity layer solely considers the iden-
tity of two instances. The class layer considers similarities of instances based on the
classes the arguments can be shown to instantiate. The property layers consider simi-
larities of instances based on the data properties and/or object properties the arguments
can be shown to instantiate.

3.1 Identity Layer Kernel

On this layer we employ a particularly simple kernel, the identity kernel, which basi-
cally performs a binary check on the identity of the two arguments.

Definition 2 (Identity Kernel). Given two instances x, z and an ontology O, we define
the identity kernel as: kidentity(x, z) := δ(x, z) with δ(x, z) = 1 if O |= (x ≡ z) and
δ(x, z) = 0 otherwise.

We immediately note the correspondence to the matching kernel such that the kernel
will typically evaluate to 0 unless the it is evaluated on an instance with itself or the
ontology contains an explicit equivalence axiom for the two argument instances.

3.2 Kernels on the Class Layer

We see the class(es) two individuals instantiate as a basic building block for their com-
parison. Intuitively, this type of similarity is useful only in those cases where there is
some variation in the classes that are instantiated.

Definition 3 (Common Class Kernel). Given two instances x, z and an ontology O,
we define the common class kernel as: kclass(x, z) := | {C ∈ C | O |= C(x)} ∩ {C ∈ C | O |=
C(z)} |



The class intersection kernel is a valid kernel, as it is a specific instantiation of the
set intersection kernel. It can be interpreted as easily by defining the mapping φ(·) as a
mapping into a vector space whose dimensions correspond to the atomic classes defined
in the ontology. The kernel value is the higher the more atomic classes are instantiated
by the argument instances at the same time, if there is no common class the kernel will
be zero. We can extend this kernel by means of a weighting scheme µ : C → R+ as
follows:

Definition 4 (Weighted Common Class Kernel). Given two instances x, z and an on-
tology O, we define the weighted common class kernel as:

kclass′ (x, z) :=
∑

c∈{C∈C | O|=C(x)}∩{C∈C | O|=C(z)}
µ(c).

3.3 Kernels on the Data Property Layer

As a next building block for determining the similarity of two individuals we consider
properties. The general structure of this kernel is a sum of kernel evaluations of all
compatible pairings of properties. We begin by defining kernels for data properties as
follows.

Definition 5 (Data Property Kernel). Given two instances x, z, a data property p ∈
PD and an ontology O, we define the data property kernel as:

kp
DP(x, z) :=

∑

{d | O|=p(x,d)}

∑

{e | O|=p(z,e)}
kp(d, e)

whereby kp is a valid kernel on the datatype referenced by the respective datatype prop-
erty.

Again, the kernel property can be easily verified as the kernel is an instantiation
of the crossproduct kernel. The kernel makes use of an underlying base kernel that is
defined on the respective datatype to which the computes the similarity of pairs of data.
For basic datatypes, such as strings or numeric values, a variety of useful kernels have
been defined. For String datatypes, we may for example consider the well-known bag-
of-words type kernels or the String Kernel introduced in [15]. For numerical values, the
Gaussian Kernel defined on real numbers might be a useful choice. Again, we refer to
[4] for information on such kernels.

3.4 Kernels on the Object Property Layer

In the same spirit as with the datatype property kernel, we define the object property
kernels.

Definition 6 (Object Property Kernel). Given two instances x, z, an object property
p ∈ PO and an ontology O, we define the object property kernels as crossproduct ker-
nels:

kp
OP(x, z) :=

∑

{v | O|=p(x,v)}

∑

{w | O|=p(z,w)}
kp(v,w)



kp
OP′ (x, z) :=

∑

{v | O|=p(v,x)}

∑

{w | O|=p(w,z)}
kp(v,w)

whereby kp is a valid kernel on instance data.

This definition requires two further remarks. First, note that for each object prop-
erties we have to define two separate kernels, depending on whether the argument in-
stances should be considered as the source or the target of the object property. Second,
the definition in terms of the crossproduct kernel again makes reference to an underlying
base kernel kp, this time defined on instances just as the overall kernel itself. While be-
ing powerful and flexible, this approach can be tricky as we need to avoid cycles during
the computation of the kernel. A cycle arises if a kernel defined at a higher level is used
again as a kernel it directly or indirectly depend on. In essence we therfore require that
the kernel reference graph conforms to a tree structure. As an alternative, the matching
kernel can be used as base kernel, such that the object property kernel essentially boils
down to an intersection kernel requiring no further dependencies.

3.5 Integrated Kernel Calculation

We have so far presented isolated building blocks for kernel calculations on individuals
such as kernels comparing the class structure or the property extensions of the instances.
All valid kernel combination operators, in particular products or any form of weighted
addition would be possible to combine the results. In our view, an weighted additive
combination appears to be the most intuitive approach. Similar to the weights µ(C) for
classes, the weight parameters can be used to tune the contribution of the corresponding
kernels. Typically, only a small set of properties will be considered in the combined
kernel with all other property kernels having weights equal to 0.

4 Illustrations and Evaluations

In this section we aim to show how the kernel framework introduced in this paper can
be applied to real world Semantic Web data. We have implemented basic versions of the
kernels introduced in the last section based on the ontology management and reasoning
infrastructure KAON2 4. Our implementation, the KAON2Similarity API5 provides a
number of instantiations of basic kernels together with supporting infrastructure such as
kernel modifiers, kernel aggregators and a caching module that can be flexibly plugged
together for the purpose at hand. We have further developed an JNI-based extension of
the SVMlight Support Vector Machine software [16] that allows to deal with the kernels
available via Kaon2Similarity6.

As the task of learning from Semantic Web data has not yet been addressed actively,
a comparative evaluation is not possible due to the lack of standardised evaluation data
sets and baseline approaches. In fact, we aim at building a repository of standardized
data sets for this purpose and see our experiments reported in this section as a first step

4 http://kaon2.semanticweb.org/
5 http://kaon2similarity.ontoware.org/
6 http://www.aifb.uni-karlsruhe.de/WBS/sbl/software/jnikernel
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Number of overall positive Instances
Galen class Ooriginal Oweak

Biological entity 550 63
Physical entity 587 11
Complex 116 88
Continuant entity 600 96
Discrete entity 433 78
Mass entity 70 16
Occurrent entity 95 0

Results on Galen Test Set
Galen class err prec rec F1

Biological entity 0.03 1.00 0.96 0.98
Physical entity 0.02 0.99 0.96 0.97
Complex 0.01 1.00 0.93 0.96
Continuant entity 0.02 1.00 0.97 0.98
Discrete entity 0.01 1.00 0.98 0.99
Mass entity 0.00 1.00 1.00 1.00
Occurrent entity 0.02 1.00 0.75 0.85

Table 1. Galen Experiments: Statistics and Results

into this direction. In this section, we thus introduce examples and results of two learn-
ing problems based on typical Semantic Web data sets. Both problems enjoy promosing
results and, even though they are comparatively simple, they illustrate the approach very
well. In future work, we intend to widen such experiments to larger-scale settings.

4.1 Common Class Kernel for the GALEN Ontology

We first illustrate the use of machine learning classification using only the simple com-
mon class kernel. For this purpose, we performed some experiments with the OWL DL
version of the GALEN Upper Ontology7. The ontology contains atomic 175 classes,
together with restrictions arranged in 193 SubClassOf axioms, 51 EquivalentClasses
axioms, 127 DisjointClasses axioms and no Nominals. The idea of the experiment was
to simply immitate the classification behaviour of the ontology given a semantically
weakend ontology. We used 7 sublasses of the Self standing entity, namely the Biolog-
ical entity, Physical entity, Complex, Continuant entity, Discrete entity, Mass entity
and Occurent entity classes8. As only the TBox of the ontology is available, we ran-
domly populated the ontology with 1000 individuals. We then filtered the ontology
axoims and retained only SubClassOf and ClassMember axioms to obtain a weaker and
semantically different ontology Oweak. Table 1 summarizes the entailment statistics for
the 7 classes for the original and the changed version of the ontology.

We then split the overall instance set in two groups of 500 instances for training
and testing with class labels assigned according to the semantics of Ooriginal. We trained
(and tested) a Support Vector machine using the common class kernel (with a normali-
sation modifier) only using the information present in Oweak. The results of the test runs
are also reported in table 1. As the results show, the common class kernel is easily able
to immitate the reasoning behaviour of the complex ontology on a weaker – semanti-
cally different – ontology. These consistent positive results can probably be explained
by the fact that the weaker ontology still contains clear and crisp pattern for certain

7 http://www.cs.man.ac.uk/˜rector/ontologies/simple-top-bio/
8 The Non Biological entity, Organelle and Non Physical entity were left out as they are either

complements of existing concepts or did not have enough positive examples.

http://www.cs.man.ac.uk/~rector/ontologies/simple-top-bio/


Class (sub-) structures that can be detected easily by the learning algorithm. Neverthe-
less they show a potential for learning logical patterns in a statistical manner.

4.2 Mixed Object Property Kernels for the SWRC Ontology

We built a second experiment around the SWRC ontology [17] and the metadata avail-
able within the Semantic Portal of the Institute AIFB. The SWRC ontology initially
grew out of the activities in the KA2 project and is now applied in a number of projects
also outside of AIFB. The ontology has been ported to various knowledge representa-
tion languages including OWL9.

Fig. 1. Main classes and properties of the SWRC Ontology.

The SWRC ontology generically models key entities relevant for typical research
communities and the relations between them. The current version of the ontology com-
prises a total of 53 concepts in a taxonomy and 42 object properties, 20 of which are
participating in 10 pairs of inverse object properties. All entities are enriched with ad-
ditional annotation information. SWRC comprises at total of six top level concepts,
namely the Person, Publication, Event, Organization, Topic and Project concepts. Fig-
ure 1 shows a small portion of the SWRC ontology with its main top-level concepts and
relations. Since its initial versions, the SWRC ontology has been used and adapted in
a number of different settings, most prominently for providing structured metadata for
web portals. These include the web portal of the authors’ institute AIFB10. The Novem-
ber 2006 version of the AIFB metadata comprises an additional set of 2, 547 instances.
1, 058 of these can be deduced to belong to the Person class 178 of which have an
affiliation to one of the institute’s groups (the others are external co-authors) with 78 of
these being currently employed research staff. 1232 instances instantiate the Publication
class, 146 instances instantiate the ResearchTopic class and 146 instances instantiate
the Project class. The instances are connected by a total of 15, 883 object property
axioms and participate in a total of 8, 705 datatype properties.

Given the information in the SWRC ontology, we have designed two classification
problems that we have experimentally evaluated, namely the assignment of instances

9 http://ontoware.org/projects/swrc/
10 http://www.aifb.uni-karlsruhe.de/about.html

http://ontoware.org/projects/swrc/
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Fig. 2. Visualization of the (normalised) kernel matrix of 78 active AIFB researchers
using the kcttp. The researchers are ordered according to their research group affiliations.

of the Person and Paper classes to one of the four research groups they are affiliated
with (or, in the case of papers, where one of the authors is affiliated with.). Note that the
information on the affiliations in the AIFB Portal is maintained by the Institute’s admin-
istration and can thus be considered a very clean learning problem. On the other hand,
the data about people’s interests and projects or about paper metadata maybe noisy, or
inconsistent because this kind of data is maintained auonomously by the researchers.
For each of the two tasks, we have employed a couple of kernels. Obviously, the used
kernels did not rely directly on any of the target properties as the learning problem
would be trivial otherwise.

For the person2affiliation task, we designed a set of three kernels. The sim-ctp ker-
nels correspond to a kernel combining the common class similarity kernel (with a small
weight, 0.1) and the workedOnBy and worksAtProject object properties, pointing to
(or from) associated publications, research topics and projects, each with weight 1. The
sim-ctpp kernels additionally use the publication object property, also with weight 1.
In all these cases, the object property kernels are designed as matching kernels. As a
variant to this, the sim-ctpp-star kernel used an embedded bow cosine kernel on the
publications title filed for the publication object property. The modifiers p, pc and pgc
indicate wheter the respective sub-kernels where simply summed up, individually nor-
malised and summed up or summed up and normalised afterwards, respectively. For the
papers2affiliation task, we also designed a set of three kernels. As a kind of basline, we
report results on the sim-t kernel, which corresponds to the bow cosine kernel on the ti-
tle datatype propery. The sim-cta kernels combine the common class kernel (again with
weight 0.1), with the isAbout and author object properties (each with weight 1) pointing
to associated topics and authors. The sim-ctap kernels additionally consider the hasPro-



persons2affiliation, c = 1
kernel config err prec rec F1

sim-ctp-p 6.88 85.32 46.07 59.83
sim-ctp-pc 5.48 93.09 53.64 68.06
sim-ctp-pgc 6.32 94.86 43.28 59.45
sim-ctpp-p 6.04 90.70 48.78 63.44
sim-ctpp-pc 4.49 95.83 58.13 72.37
sim-ctpp-pgc 5.90 96.43 45.14 61.49
sim-ctpp-star-pc 4.49 95.87 57.27 71.71

persons2affiliation, c = 10
kernel config err prec rec F1

sim-ctp-p 7.72 78.10 43.10 55.55
sim-ctp-pc 6.46 86.87 49.77 63.29
sim-ctp-pgc 6.18 86.25 51.61 64.58
sim-ctpp-p 7.87 72.59 51.65 60.36
sim-ctpp-pc 5.20 90.90 54.22 67.92
sim-ctpp-pgc 5.34 86.62 57.16 68.87
sim-ctpp-star-pc 4.92 89.83 57.11 69.83

Table 2. Leave-one-out classification results for the persons2affiliation problem on
SWRC for different kernels and kernel modifiers. All numbers are percentages.

papers2affiliation, c = 1
kernel config err prec rec F1

sim-t-p 7.49 86.78 47.83 61.67
sim-cta-p 0.69 99.68 95.10 97.34
sim-cta-pc 0.69 99.79 94.52 97.09
sim-cta-pg1 6.84 96.39 56.97 71.62
sim-cta-pg3 1.38 99.59 90.15 94.63
sim-cta-pgc 0.85 99.44 94.28 96.79
sim-ctap-p 0.77 99.82 94.68 97.18
sim-ctap-pc 0.73 99.45 94.52 96.92
sim-ctap-pg1 7.63 95.93 53.14 68.40
sim-ctap-pg3 1.38 99.59 90.28 94.70
sim-ctap-pgc 0.91 99.33 94.39 96.80
sim-ctat-p 0.61 99.71 95.41 97.51
sim-ctat-pc 0.75 99.65 94.48 97.00

papers2affiliation, c = 10
kernel config err prec rec F1

sim-t-p 6.21 91.11 63.08 74.55
sim-cta-p 0.63 99.74 95.22 97.43
sim-cta-pc 0.63 99.17 94.95 97.02
sim-cta-pg1 6.09 96.77 61.23 75.01
sim-cta-pg3 0.69 99.79 94.91 97.29
sim-cta-pgc 0.58 99.03 95.68 97.33
sim-ctap-p 0.69 99.71 95.03 97.31
sim-ctap-pc 0.71 98.81 94.92 96.83
sim-ctap-pg1 6.63 96.34 60.11 74.03
sim-ctap-pg3 0.77 99.56 94.58 97.01
sim-ctap-pgc 0.67 98.80 95.48 97.11
sim-ctat-p 0.61 99.74 95.38 97.51
sim-ctat-pc 0.77 99.68 94.46 97.00

Table 3. Leave-one-out classification results for the papers2affiliation problem on
SWRC for different kernels and kernel modifiers. All numbers are percentages.

ject property whereas the The sim-ctat kernels additionally consider the title datatype
property, again in conjunction with the bow cosine kernel. Again, we have employed
different kernel modifiers, this time additionally the pg1 and pg3 kernel modifiers which
correspond to the gaussian modifiers applied to the plain sum with parameters σ equal
to 1 or 3.

As an example, Figure 2 visualizes the kernel matrix (the matrix of all kernel eval-
uations on all pairs) for the case of the sim-ctpp-p kernel in the person2affiliation task.
Table 2 and table 3 illustrate the macro-averaged results of the classification exper-
iments, estimated via the Leave-One-Out cross-validation strategy, for two different
choices of the SVM soft margin parameter c. Not surprisingly, the papers2affiliations
task has achieved virtually optimal results that are stable over the different kernel vari-
ants. These good results can be traced to the fact that the object properties pointing to



associated authors have been included in the kernel computation, inherently bearing a
strong correspondence to the research groups.

5 Conclusion

In this paper, we have investigated the question how kernel methods can be used to
directly apply machine learning algorithms on Semantic Web-type instance data. This
problem has to the best of our knowledge only been considered to a minor extend. We
believe that this type of learning will become increasingly important in future research
both from the machine learning as well as from the Semantic Web communities.

We have introduced a generic and principled framework for designing valid ker-
nels on this type of input data that also allows to implicitly exploit the schema-level
knowledge encoded in the ontology. This approach is in line with other work on ker-
nels for structured data [10,12]. We have presented some initial experiments in which
we have exemplified the instantiation of the proposed framework for the specific pur-
pose by classifying researchers to their respective research groups based on information
represented by the well-known SWRC ontology and associated instance data and in a
scenario using the GALEN upper ontology. While simple and artifically posed, the ex-
periments enjoyed promising results and illustrated the overall approach.

Judged by the aim, namely mining data described by means of logical predicates,
this research brings in some connections to Inductive Logic Programming (ILP) and
Multi-Relational Data Mining [9]. While the results will always be conceptually sim-
ilar to results achieved by adequate propositionalization approaches [18], the use of
kernels avoid extensive pre-processing efforts and the definition of adequate kernels or
the choice of adequate kernel components as a notion of similarity may often be more
intuitive to the involved users.

A challenge for future work will, however, be to design means to aid the user in
the choice of the various kernels, kernel modifiers and parameters. One such research
trail is the automated optimization of kernel parameters such as the weights for kernel
components for example by means of kernel alignment techniques [19]. As another
line for future work, we aim at augmenting our framework by other kernel types that
can exploit the relation structure of an instance space such as diffusion kernels [20].
Such kernels can also help to finding means for a more intuitive approach to avoiding
cyclic kernel definitions. As much of the research in Description Logics is occupied
with the properties of complex class descriptions, yet a different research trail would
be the consideration of DL-type class descriptions as input for kernel-based learning
algorithms. Last but not least, these initial conceptual results need to be carried over to
the emerging Semantic Web application domains.
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