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Abstract: This chapter explores the features and advantages of kéamdd local-
ization. Kernel methods simplify received signal stref§B8S)-based localization by
providing a means to learn the complicated relationshipaAeetn RSS measurement
vector and position. We discuss their use in self-calilmgindoor localization sys-
tems. In this chapter, we review four kernel-based loctitirealgorithms and present
a common framework for their comparison. We show resulta fiwo simulations and
from an extensive measurement data set which provide a itptare comparison and
intuition into their differences. Results show that kemnethods can achieve an RMSE
up to 55% lower than a maximum likelihood estimator.

1.1 Introduction

Knowledge of user’s position is becoming increasingly imt@ot in applications that
include medicine and health care [1], personalized infoionadelivery [2, 3], and
security. Indoor localization algorithms have been prepossing various methods
such as angle of arrival, time of flight and received signadrgith (RSS), of which
RSS-based algorithms are the most common.

In general, existing RSS-based indoor localization athors can be classified into
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three main categories: (1) model-based algorithms; (X)éddsased algorithms; and
(3) RSS fingerprinting algorithms. Kernel-based algorshthe subject of this chapter,
are a “middle-ground” between model-based and RSS fingeipgialgorithms.

Model-based algorithms [4, 5, 6, 7] use standard statlstitannel models to pro-
vide a functional relationship between distance and RS&dubis functional rela-
tionship, the location of a tag (unknown location devicegssimated from the RSS
measured by in-range access points (APs) or anchors (kramation devices) by first
estimating the distances to the in-range APs using modadstreen using methods of
lateration to determine the coordinates. Some researc [B)] also propose using
statistical models to create an entire radio map as a funcfiposition, in which the
location of the tag is estimated directly from the RSS meaby the in-range APs.

RSS-fingerprinting methods [11, 12], on the other hand, viriwwo phases - an
offlinetraining phase and amnline estimation phase. In the offline training phaké,
signaturesare collected at some known locations in the deploymenbregihich are
then stored in a database. An RF signature is a vector of RB8smeasured by some
predetermined APs. In the online estimation phase, a locasi searched from the
constructed database whose RF signature matches closblth&iRF signature of the
tag.

Statistical channel models, in most cases, are unable toreafhe complicated
relationship between RSS and location in indoor envirortmefihey also typically
assume that shadow fading on links are mutually indepenégah though environ-
mental obstructions cause similar shadowing effects toynfiaks that pass through
them, an effect called correlated shadowing [13, 14].

RSS-fingerprinting methods, on the other hand, do not assuny@rior relation-
ship between RSS and position, but the training phase caesarsignificant amount
of time and effort[11, 15]. To some extent, the training &fé@n be reduced via spatial
smoothing [15, 16, 17], but this is possible only to distanaewhich the RSS is cor-
related. Some research have also suggested supplemeottiegp$ the measurements
using predicted RSS using channel models [11]. Changegi@erthironment over time
reduce the accuracy of the database, requiring recaliorati

In summary, model-based algorithms require the leastitrgieffort, but they rely
heavily on the prior knowledge of the relationship betwe&SRand position. RSS-
fingerprinting algorithms, on the other hand, are not basedny prior knowledge of
the relationship between RSS and position, but requireiderable training effort and
time.

This chapter is an exploration of kernel-based algorithmisch provide the ability
to mix the features of both model-based and RSS fingerpgraigorithms. Kernel-
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based algorithms encapsulate the complicated relatipigiiveen RSS and position,
along with correlation in the RSS at proximate locationsaikerne| which can be
assumed as a parametrized “black box” that takes the mebR&® as inputs and gives
ameasuref position as output. In this chapter, we describe fouedéht kernel-based
RSS localization algorithms using a common mathemati@héwork and compare
and contrast their performance (to each other, and to aibasabdel-based algorithm,
the maximum likelihood estimator) using a simulation exégnd using an extensive
experimental study. These algorithms include LANDMARC ][18aussian kernel
localization [19], radial basis function localization [L&nd linear signal-distance map
localization [20].

The experimental study described in this chapter demdestthat all four of the
kernel-based localization algorithms outperform the Mh& real-world environment.
In fact, the improvement in average RMSE is as high as 55% eoeaddo the MLE. In
this chapter, we explain this improved performance of thadéebased algorithms by
using several numerical and simulation examples, in whesin& methods are shown
to enable the tag’s coordinate estimates to be robust toshatthowing and independent
and identically distributed (i.i.d.) fading. The experim& evaluation also suggests
that the complexities of the fading environment and the damated nature of the large-
scale deployment require more parameters than are avatiatypical model-based
algorithms. In particular, in this chapter, we attempt tplain why the kernel-based
algorithms perform better than model-based localizatigor&ghms.

Standard kernel-based algorithms still require a traigghgse for calibration of
kernel parameters In this chapter, we discuss methods to minimize the calidma
requirements of kernel-based algorithms by performinigitng simultaneously while
the system is online, using pairwise measurements betwsn 3pecifically, several
APs are deployed at some known locations throughout thelibgil Each AP is a
transceiver and can measure the RSS of packets from othgakRsugh we note that
we do not limit ourselves to WiFi APs; we may use any standarithvallows peer-
to-peer communication). These pairwise measurementsittgaghe training data for
calibration purposes.

Outline of Chapter

Prior to discussing the four kernel methods for RSS-basealilation algorithms, we
present a common mathematical framework for kernel-baszdization algorithms in
Section 1.2.2. The remainder of Section 1.2 discusses fauekbased algorithms. To
provide more intuitive understanding of the advantagesofi& methods, we present
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a simple numerical example in Section 1.3. In Section 1.4eveduate the algorithms
using kernel methods on a real-world measurement data etteal in a hospital
environment. Finally we conclude this chapter in Sectidn 1.

1.2 Kernel Methods

Kernel methods are a class of statistical learning algmstin which the complicated
relationship between the inpug.€, signal strength) and the outpet.g, physical co-
ordinates) is encapsulated using kernel functions. A Kdumetion is a potentially
nonlinear and parameterized function of input variableBe parameters control the
functional dependencies between input and output, in ae,dsetween signal strength
and physical coordinates. A key feature of statisticalf@dy is that it estimates the
parameters based on some known input/output pairs, alkesl éehrningfrom known
data. Models using kernel methods are typichligar with respect to the parameters,
which gives them simple analytical properties, yet, arelinear with respect to the
input variablese.g, received signal strength.

In this section, we present an overview of coordinate estomaising statistical
learning with kernel methods. We begin our discussion ig $kiction by defining our
problem statement and then proceed to present a generameatibal framework for
coordinate estimation using kernel methods.

1.2.1 Problem Statement

In this chapter, we consider signal strength-based taditatimn. Specifically, we
wish to find a two-dimensional tag coordinatg, given the known two-dimensional
reference coordinates of APs,x;,Vi € {1,..., N}, their pairwise RSS measure-
ments,s; ;,Vi # j, 4,5 € {1,..., N}, and the RSS measured byreference APs for
a signal transmitted by a tag;,;, Vi € {1,..., N}. Also, let notatiors; indicate the
RSS vector for AP}, wheres; = [sq;,...,sn,;]7. Similarly, let notatiors, indicate
the RSS vector for a tag wheres; = [s1¢,...,5n.4]" .

Note that even though we consider a two-dimensional coateiastimation here,
the same methodology can readily be extended to a threeadioral case. Before we
proceed further, we clarify our notation for the signal sgth s; ;. A measurement,
si,j, represents the dB signal strength measured by afaPthe signal transmitted by
AP j. Similarly, subscript indicates that the measurement is for a tag (witla @niori
unknown location).



1.2. KERNEL METHODS 5

The measurement ;, which corresponds to the RSS measured by co-located APs,
is unavailable. In practice, even if two APs are located atdhme position, the RSS
measured between them is non-zem, s; ; # 0, and depends on the transmit power
of the APs [20]. Some localization algorithms require thigeof s; ; to be known;
thus in this paper, we assume when necessarythat —33 dBm [20].

We do not assume full connectivity between links. Consetiyene define set
H(j) to be the set of APs which are in direct communication rangeRf. SetH (j)
does not include the APandH(j) C {1,...,N}. Similarly, H(t) is the set of APs
that are in direct communication range of tag

An AP £ that is not in the setZ(j), is notin the direct communication range of
AP j and would not measure any RSS from APIt does not necessarily mean that
AP k does not receive any signal from AP Rather, it simply means that the signal
power from APj was so low that AR: could not demodulate its signal. This “non-
measurement” of RSS by ARis known as the “censored data” problem in statistics.
We know this RSS value is low, but we do not know the value,0f. How should
an algorithm represeny, ; for k ¢ H(j) in its RSS vectos;? Most kernel-based
approaches have not addressed this censored data isstmvasimply assumed full
connectivity between APs. One algorithm estimates the measured RSS values
using expectation-maximization [21]. In this article, wélyrovide for each kernel
method a means to address non-measured RSS.

1.2.2 General Mathematical For mulation

In the framework of kernel methods, a function of the cooaténestimate of a tag,
f(x¢), can be expressed as,

f(x¢) = Z @i¢i(st) + oo (1.1)

i€H(t)

wherea;, Vi € H(t) is thecoordinate weighof AP i, H (t) denotes the set of APs that
contribute to the kernel angl (-) is known as thé&ernel functiorcorresponding to AP
1. The parametety is known as thdiasparameter which compensates for any fixed
offset in the data [22]. In this section, we will show how therameters{c}, 7,
anday, are optimized and estimated, and how the kernel functigns)},. 5, are
chosen, for different algorithms and techniques in theditere.

The parameterga },. 7, are sometimes called “weights”, in particular when
predetermined functions are used as kernel functig(g, e.g, Gaussian functions.
However, these parameters represent the coordinates éffthén “location space”.
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Typically, these parameters are functions of the AP coatdmand are optimized to
match the information given by the AP pairwise RSS measunésrend their coordi-
nates. The coordinate estimate of the tagjs determined by taking the inverge! of
f(x;). Figure 1.1 shows the operation of coordinate estimatiamgusernel methods.

Data Location Coordinate
Space Space Space
f(x¢)

\

S>3, () £1() %

dB meters meters
(may be physical coords,
may be distances)

Figure 1.1: Flow chart showing the localization operatising kernel methods.

Algorithms in the class of kernel-based localization diffethe methods of opti-
mization off (x;). Some algorithms set the kernel functions with predeteechfunc-
tions and optimize the parametefia; },. 7, based on pairwise RSS measurements
[20, 15, 23]. In contrast, other algorithms set the pararsefi@; },. (,) with some
functions of the physical coordinates of a set of APs anchuipé the kernel functions
using their pairwise RSS measurements [18, 19].

Deter mination of kernel parameters. Typically, the kernel functions;(-) belong
to a class of parametric nonlinear functions. Determimetikernel parametersis nota
trivial task and has been extensively studied in the stegidearning literature [24]. A
common technique used for their estimation is cross-véid425]. For the purposes
of cross-validation of localization algorithms, we use tlata set collected between
APs. In this case, the AP measurement data set is dividedvilotgroups, one group
containing(N — 1) APs and the other group containing one “left out” AP, whéfe
is the total number of APs. Thus, there @&eways of dividing the data set. In cross-
validation, we estimate the location of the left-out AP atsitoordinate was unknown.
The location error can be determined after coordinate esitim, because every AP
coordinate is, in fact, known. The average location errarasmputed by averaging
over all left-out APs. The location error is a function of tkernel parameters. By
repeating this procedure across a range of candidate vafule parameters, we can
optimize the kernel parameters for the particular envirentn This method is also
called leave-one-out (LOO) cross-validation.
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In general, existing RSS-based localization algorithns loa formulated in the
framework of (1.1) by selection of:

e The function of coordinate estimatds; ),

e Set of APs that contribute to the kerné(t),
e Coordinate weightsja; },. 7,

e kernel functionsg;(-), and,

e Bias parametery.

In the remainder of this section, we show how the mathemdtaraework of (1.1) can

be applied to different positioning algorithms. In partan)we select four different
algorithms from the RSS-based localization literature ahdw how the developed
framework is applied for each algorithm.

Example Framework: Consider an example wireless network with four APs de-
ployed at known locations;, Vi € {1,2,3,4} as shown in Fig. 1.2. Also, consider
a tag whose actual location (in m)ss = [3,2]7. The coordinates (in m) of the four
APs arex; = [0.5,0.5]; xo = [0.5,3.5]; x3 = [3.5,3.5]; x4 = [3.5,0.5]. Letus
assume that, all the APs are in direct communication rangkeobther APs and the
tag,i.e, |H(t)| = |H(j)| = 4, Vj € {1,2,3,4}. Using the known locations of the
APs, their pairwise RSS measurements are generated usogydistance path-loss
model. A brief description of log-distance path-loss madejiven in Section 1.3. An
instance of these pairwise RSS measurements is tabulafebia 1.1. Each row of
Table 1.1 represents the RSS measured by the four APs forgihal sransmitted by
the corresponding device. For example, the RSS values ifirtheow represents the
RSS measured by the deployed APs when AP-1 was transmi8inglarly, the APs’
RSS measurements for the tag are generated, an instanceécbfigtabulated in the
last row of Table 1.1.

For the purpose of this example, the values of various paemare tabulated in
Table 1.2.

The goal in this example is to estimate the location of the fagusing 1.) the
known location of four APs{x1,x3,x3,%4}, 2.) their pairwise RSS measurements
sij, Vi # j, 4,5 € {1,2,3,4}, tabulated in Table 1.1, and 3.) the RSS measured by
the four APs for a signal transited by the tag;, Vi € {1, 2, 3,4}, tabulated in the last
row of Table 1.1.
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Figure 1.2: Position of APs and tags.

Rx APs
AP1| AP2| AP3| AP 4
TXAP 1| n/a -72 -62 -81
TxXAP2 | -70 n/a -59 -85
TxAP 3| -60 -65 n/a -63
TxAP 4 | -59 -77 -72 n/a
Tag -72 -69 -61 -60

Table 1.1: Table showing an example RSS values (in dBm) meddy APs.

parameter Description Value
Ny Path-loss exponent 4
04B Fading variance 6.0dB
1y Reference Rx Power (at 1 m)-50 dBm

Table 1.2: Log-normal path-loss parameter descriptionvatues used in the running
example framework.
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We will revisit this example wireless network throughouistsection when we
consider each localization algorithm in detail.

1.2.3 LANDMARC Algorithm

LANDMARC [18] is an RSS-based localization algorithm in whia tag’s coordinate
estimate is given by a weighted average of the coordinatésotdsest APs that can
hear the tag’s transmission. In this section, we presenthelvANDMARC algorithm
can be expressed as a kernel method. Because LANDMARC ig¢ivetand can be
explained with a single weighted average, it helps to dertnatesthe concepts of kernel
algorithms in an intuitive manner, and shows how simple a&kebased algorithm can
be.
In LANDMARC, a tag’s estimated coordinate is written, usif(g:) = x;, a; =

x;, g = 0, and
1/se —sil?

bi(st) = (1.2)
8 = S 1T — 5,11
Applying these relations in (1.1), we have,
_ <. l12
% = Z 1/||St SZ” (1.3)

Xi
i€ A (t) e Mllse —sill?
Here,H (t) is the set ok APs that are closest to the tag. In LANDMARC, “closeness”
is quantified by the Euclidean distance between the RSS wet®#P i, s;, and the
RSS vector of the tagy, i.e,, E; = ||s: — s;||. We define the vectdE as,

E=[E,....,Ex]" (1.4)

The set of APsH (t) in (1.2) - (1.3) is the set ok AP indices with thek smallest
E; in the vectorE. In LANDMARC, £ is a variable parameter which determines the
number of APs that contribute in the kernel. Any non-mea$&®8S in vectors; or

s;, as discussed in Section 1.2.1, is replaced by the minimuB ét5erved over the
duration of the experiment minus one.

Estimation of Parameters. The only parameter that needs to be estimated in LAND-
MARC is the set of APs that contribute in the kern&l(t), which in turn depends on
the parametek. If £ = 1, then we choose the AP which is “closest” (small&s) to

the tag as the coordinate estimate of the tag. Similarky=f 2, then the two ‘closest’
APs are considered and parameters are determined usingWbfrtunately, there is
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no analytical solution for the optimal value bf although it can be determined exper-
imentally for a given environment or by using the crossdation approach described
in Section 1.2.2.

The above argument implicitly assumes that the optimalesafu is less than the
number of neighbors of a tage., k < |H (t)|, whereH (t) denotes the set of one-hop
neighboring APs which hear the transmission from the tag.uéstjon that arises is
what would be the seff (t) whenk is greater than the number of one-hop ABg{).

A naive approach for this situation would be to place an upipesshold on the value
of k. In other wordsk’ = min{k, |H (t)|}, wherek’ is the actual number of neighbors
used for a particular tag

Example 1.1 Revisit Example Framework
Consider the wireless network of Fig 1.2. Estimate the tag&rdinatex;, using the
LANDMARC algorithm.

Solution: Let us assumé = 3. Using (1.4) and the definition of’;, we can
compute the Euclidean distance vector (in dBm) as,

E = [44.36, 43.86, 30.71, 33.58]".

The set of APsH (t) in (1.2) and (1.3) is the set of three AP indices with the
smallest; in vectorE. Thus,H (t) = {2, 3, 4}. The values kernel functiom, (-),
corresponding to each AP H (t), is computed using (1.2),

¢2(St) = 0217 ¢3(St) = 0437 ¢4(St) =0.36

Using these kernel values and the known AP coordindtes, xs, x4}, in (1.3),
the LANDMARC coordinate estimate of the tag, (in m), is computed as,

% = [2.9, 2.4]T.
Compared to the actual tag location, the LANDMARC coordénedtimate has an

error of 0.44 m.

1.24 Gaussian Kernel Localization Algorithm

The Gaussian kernel localization algorithm is an RSS-besdization algorithm pro-
posed by Kushkét al. [19]. Similar to LANDMARC, in the Gaussian kernel localiza-
tion algorithm, the coordinate estimate of a tag is the weidlaverage of coordinates
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of the closest APs. However, the weights are determined baussian kernel, which
gives a measure of distance between the RSS vector of thadath@ RSS vectors of
the APs. Any stationary kernel function could be used in@laicthe Gaussian kernel
to determine the weights. The authors chose to use the Gaussinel because it is
widely used and studied in the literature. As presented byatithors, this algorithm
uses the AP measurements over time, for time 1,...,7, denoted b3sl(.7). In this
section, we briefly describe the various aspects of thisreilgo and how it fits into the
framework developed in Section 1.2.2.

In the Gaussian kernel positioning algorithm, the coorgimstimate of the tag;,
is written as in (1.1) withf (%,) = %;, a; = x;, g = 0, H(t) = H(t), and,

) = e S ey (B E (15)
i(St) = ——F—— exp| ————1, .
! T(V2ro?)d 7= 202
whereo is a parameter called ‘width’ of the kernel. The notatigmepresents the ‘re-
duced’s,, the RSS vector of the tag, and is given &s= [s;.i,,---,5¢.4,]7, where
i1,...,14 IS @ list of the elements itH,(¢), a set ofd predetermined APs. Sim-
ilarly, éz(.T) represents the reduced RSS vector for A& a particular time instant
,V7 € {1,...,T}. The estimation of the AP sdi,(¢) will be discussed below
in the “Estimation of Parameters” subsection.

Simplifying, (1.1) reduces to,

Xy = Z X;¢i(St). (1.6)

i€ H(t)

The kernel functions{¢;(---)}, of (1.5) may be normalized [19]. Normalization
avoids the situation where there are “holes” in the RSS spacgons ofs, where
the sumin (1.5) has a low value. This would lead to fewer mtéatis at those regions
of the RSS space [26]. In other words, normalization makes that the resulting
kernel covers the whole range of RSS values measured by Alesadrmalized kernel
functions,g; (s;) can be represented as,

¢.(S)— 1 ;iex M (17)
(A T(W)del p 20_2 ’ .

~C

where

C= > ¢ilst)

1€ H(t)
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Estimation of Parameters: The Gaussian kernel localization algorithm requires es-
timation of the following parameters:

1. Width of the kernelg,
2. A predetermined set ef APS, H(t).

Neighboring APs would report correlated RSS measuremérnitssuggested that in-
cluding all neighbors leads to redundancy as well as biasthates [19]. One can
minimize this effect by selecting a subsetAPs, H,(t), from the set of neighboring
APs, H (t), which have minimum redundancy. This 9€}(¢) is found to be the set
which has minimum divergence. Léf; ; denote a vector time series of RSS measured
by AP for a signal transmited by AR, i.e, V; ; = [sz(.,lj), e, sg)]. The set off APs,
H,(t), is selected such that,

Hy(t) = argmin Z |hi — hyjl, (1.8)
Hp()CH@:Hp(O)=d y, o, (1)

where
By = hy] = min A(Vi = Vi),

whereA(V; , —V; 1) is thedivergencéetween two time seriég ;, andV , and given
by [19],

1 0.5 01-2 + 02
+ —IOg ( k _],k)
2 Oik0jk

oik + Uj,k} o (1.9)

1
AWVik = Vi) = 2 (ik — pjn)’ { 5

8
wherey; , andp; i, are the means angd ;, ando; ;. are the standard deviations for the
time series/; ,, andV; ;, respectively. Although other divergence measures existen
literature, the divergence represented in (1.9) is comynasdd when the distribution
of the time series is Gaussian.

Another parameter to be determinedisthe kernel width parameter. Note that
the kernel width parametes, is a global parameter which depends on the pair-wise
measurements of the APs and is independent of the RSS meesuref the tag. In
our evaluation in Section 1.4, is determined using the cross-validation approach de-
scribed in Section 1.2.2.

Example 1.2 Revisit Example Framework
Let’s return to the example wireless network of Fig. 1.2.ifRate the tag’s coodinate,
X, using the Gaussian kernel localization algorithm.
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Solution: Note that the Gaussian kernel localization algorithm ukesAP mea-
surements over time, which is used to determine the subg€®othat have mini-
mum redundancy in their measured RSS. Our example frameveonkot provide
information about this redundancy because of the pairwise hature of RSS sim-
ulation model used in this example. For the purposes of #@sple, let us assume
the setHy(t) = {1,2,4}.

The next parameter we need to determine is the width of theeker, which is
estimated using the cross validation approach describ8ddtion 1.2.2. Based on
the experimental evaluation in Section 1.4, the value ok#érael width is found to
bec = 30 dB.

Using the RSS values from Table 1.1 along wifh = {1,2,4}, 0 = 30 dB, and
T = 1in (1.7), the values of normalized kernel functions. . .), corresponding
to AP, Vi € {1,2,3,4}, are determined to be:

¢1(St) = 0167 ¢2(St) = 0167 ¢3(St) = 0427 ¢4(St) =0.27.

Using these values of the kernel functions and their comedimg coordinates in
(1.6), the estimated tag coordinate, (in m) is:

% = [2.6, 2.2]T.

Compared to the actual tag coordinate, the Gaussian kbaseld coordinate esti-
mate has an error of 0.5 m.

1.2.5 Radial BasisFunction Based L ocalization Algorithm

In the statistical learning literature, radial basis fumies have been widely used as the
kernel functions; (). Radial basis functions were introduced for the purposxatt
function interpolation. Given a set of training inputs ahdit corresponding outputs,
the purpose of radial basis function interpolation is tatee smooth function that fits
training data exactly [22].

Functions of this class have a property that the basis fomstiepends only on the
radial distance(typically Euclidean) from a centgt;, such that,

¢i(st) = h([lst — ],

whereh(-) is a radial basis function. Typically, the number of basisclions and the
position of their centergy,, are based on the input data $et};—1,.. n. A straight-
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In the context of tag localization, the use of radial basisctions was proposed
by Krummet al. [15]. Primarily, the authors of [15] introduced interpadat using
radial basis functions as a way to reduce the calibraticortedf RADAR positioning
[11] at the same time maintaining an acceptable locati@r.eBpecifically, the authors
construct an interpolation function using radial basiscfions that gives the location
of atagt, x;, as a function of its RSS vectsy.

Using the same notation as in Section 1.2.1, the coordirsdita@e of a tagx;,
using radial basis functions can be written in our commoméwork using (x;) = x,
H(t)=1,...N, along with

forward approach is to create a radial basis function cedtatevery(s;},—1... n.

1 N
ap =~ ij, (1.10)
7j=1
and, ,
—|lst — si|
¢i(st) = exp ( ; (1.11)
20%

where N denotes the total number of deployed APs, angr is the width of the
kernel. Applying these relations in (1.1), we have,

N
X =Y aidi(st) + (1.12)

i=1
The parameter§a; },c¢1,... vy are estimated. Unlike LANDMARC and the Gaussian
kernel positioning algorithm, in whick; = x; is theactual AP location, in the radial
basis function localization algorithm, the parametes };c(1,.. ) are “artificial”
coordinates for each AP set such tkatin (1.12) minimizes the location error for all
training measurements.

Estimation of Parameters: There are two parameters that need to be estimated in
the radial basis function based localization algorithm:

¢ Coordinate weightsfa; }icq1,...,n}, @and,

.

e Width of the radial basis function kernelggr.

Specifically, the coordinate weightsy; };c(1... .~} are the coordinates in “location
space”. There is no need to make them equal to the coordin&t&Bs. In radial
basis function localization, these parameters are optichg&uch that the information
given by the AP pairwise RSS measurements best matches thenkiP locations.

We begin with the estimation and optimization of coordinaeéghts{cv; }ic1,... v} -
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Substituting the AP pairwise RSS measurements and theesmonding coordinates
in (1.12) and expressing them in matrix, we get,

7 = ®A, (1.13)

whereA is the coordinate weight matriX = [a, . .., ay]T, andZ is a matrix whose
it" row, z;, is given as,

Z; = [Xi - aO]T7

and® is the kernel design matrix whosgj element® (i, j), is given as,

- —lls; —sill®
(i, j) = ¢i(sj) =exp | —55—— (1.14)
20kpBr
An optimal solution can be found by using the methodeafst-square$27]. Within
the framework of least squares, the coordinate weight mai = [, ..., ax]?,
can be estimated as,
A= (dT®) @77, (1.15)

The term
of = (oT®) 1T

in (1.15) is known as th@seudo-inversef the matrix®. The psuedo-inverse is a
generalized matrix inverse for non-square matrices [28].

The other parameter that needs to be estimated is the radiel tunction kernel
width, orpr. Estimation of this parameter, similar to the estimatiorkefel width
for Gaussian kernel position algorithm described in Secli®.4, is done via cross-
validation.

Example 1.3 Revisit Example Framewor k
Consider the wireless network of Fig. 1.2. In this example will estimate the tag’s
coordinatex,, using the radial basis function based localization atbaori

Solution: The first step is to estimate the value of parametgg », which is es-
timated using cross-validation as explained in Sectior?1.Based on the experi-
mental evaluation in Section 1.4, the value (in dB) of kemiglth is found to be
orpr = 30 dB.
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Using the AP pairwise RSS from Table 1.1, the kernel desigtmixpab, is deter-
mined using (1.14) as,

1020 035 0.18
020 1 0.27 0.06
0.35 027 1 024
0.18 0.06 024 1

The next step is to determine the coordinate weight ma#ixysing (1.15). In
our exampleay = [2, 2]7, using (1.10). The coordinate weight matu is
determined to be

—2.24 —228
| -181 143
| 243 232 |

143 —1.74

in which row: corresponds to the coordinates of the ARs“location space’a! .
Using the estimated values &, o, a3, oy }, the coordinate estimate of the tag
according to radial basis function based localization @llgm is computed from
(1.12) as,

% = [2.8,2.1]7

Compared to the actual tag location, the radial basis fandbased coordinate es-
timate has an error of 0.25 m.

1.2.6 Linear Signal-Distance Map L ocalization Algorithm

The linear signal-distance map localization algorithnfed# from the kernel-based
localization algorithms discussed so far in which the ptgiscoordinate of a device
(tag/AP) is ‘directly’ expressed as a weighted nonlinearction of the RSS vectoy;.

In other words, the function of coordinate estimdtek; ), in (1.1) was the coordinate
estimate itselfj.e, f(x:) = %x;. In the linear signal-distance map algorithfiix;) is
the log of the distance betweén and each AP i (¢), i.e.,

f(%) = [log [[%; — %, ||, - .-, log |[%¢ — %, [[]"

where{i,,...,i,} = H(t) [20]. In this algorithm, we first estimatix;), and then
use the estimatef{x;) and the known coordinates of the APs to position the taggusin
methods like multilateration. Specifically, multilatdoat can be viewed as invere!
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function. In this section, we present a mathematical foatiaih of this algorithm in
the framework of kernel methods developed in Section 1.2.2.

A key aspect of this localization algorithm is determingitlationship between the
pair-wise RSS measurements between the APs and their géndgahdistances. Let
the log-distance estimate between a tagnd APk, be represented by, ;, such that
the estimated log-distance vector of the tag to the in-ra&fg H (t), be represented
by d: = [01,¢,---,0)m@)),]. Following the same notation of Section 1.2.1 and using
(1.1), the estimated log-distance vector of the tagis given by,

N
(%) =0, = Y ctighi(se), (1.16)
i=1

wherea; € RIZ®I N denotes the total number of deployed APSz) = {1,..., N}
and,

ay = 0, (1.17)

T
di(st) = ejsy
wheree; is a column vector whosg” elemente;(5), is given as,

1, ifi=j

() = , 1.18
ei(y) {0, otherwise ( )

Note thate; is a column vector of the same length&s Once the log-distance to
every known location AP in the séf(¢) is estimated, the coordinate of the tag can be
determined using techniques like multilateration.

From (1.16), we can observe that the log-distance estinfdtetaveen a tag and
AP is alinear function of the raw RSS. The basis for this linearity comesTfexisting
radio propagation models such as the log-distance pasintosiel [29]. A typical log-
distance path-loss model represents the received pdweait a distancel from the
transmitter as,

P, =1Iy — 10nlog, d.

So, one might represent the log-distance as

Iy — P,

o (1.19)

logod =

which shows that the log-distance is linear with respecdhéoreceived signal strength
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P,. Technically, (1.19) is affine while (1.16) is linear, howeev(1.19) shows some
motivation for the formulation of log-distance as lineatwiRSS.

Estimation of Parameters. In the linear signal-distance map algorithm the only pa-
rameters that need to be estimated are the coordinate w¢ight, Vi € {1,..., N}.

A least-squares approach is used. As in the radial basisidmriocalization algorithm,
let the coordinate weight matrixy., be represented aa, = [a, ..., ay]|T. The least
squares solution gives the estimate of coordinate weighixres,

A = (S79)71ST log(D), (1.20)
whereS denotes the signal strength matrix such that,
S =1[Siys---,8i,], Where {iy,....i,} = H(t)

and, D is the Euclidean AP distance matrix, whase element is the Euclidean dis-
tance between AP and APj, ||x; — x;||, andlog(D) is element-wise logarithm on
elements of the matri®.

Example 1.4 Revisit Example Framewor k
Consider the wireless network of Fig. 1.2. The goal of thigregle is to estimate the
coordinate of the tags; using the linear signal-distance map localization aléonit

Solution: As in the previous examples, we start with the estimationaosémeters.
Using known coordinates of the APs, the distance mdiris:

0 3.0 42 3.0
3.0 0 3.0 42
42 3.0 0 3.0
3.0 42 30 O

Note: Typically, before taking the logarithm of matri®, the diagonal is replaced
by a small positive value, in order to avoid taking logarithm of zero. It has been
recommended in [20] to take the valuecof d,,,;,, /e, whered,,,;,, is the minimum
value of the off-diagonal elements of the matfix In our exampled,,,;,, = 3.0 m
and, hences = 1.1 m.

The RSS matrixS in (1.20) is constructed from Table 1.1. Using the matri€es
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and D, the coordinate weight matriA is determined using (1.20) as,

—0.032  0.001 0.015 —0.004
—0.006 —0.025 —0.006 0.002
0.014  0.003 —0.031 0.009
—0.006 0.006 —0.006 —0.021

3

in which row: corresponds to the optimized coordinates ofiAfPthe “data space”,
al'. Using the estimated values ffv;, i, a3, s} in (1.16), the estimated log-
distance of the tag to the four ARE, is:

6, = [1.48,1.11, 0.75, 0.84]T.

Using this estimated log-distance to the APs, the coordieatimate of the tag
is determined using methods of multilateration, which aseussed in the other
chapters of this book. Instead, in this example, we use alsigrja search method
in which distances are computed between each grid pointtenébtr APs. The
grid point which gives the least squared error with the estéd distances to the
four APs,d,, is the desired coordinate of the tag. Using this method;dloedinate
estimate of the tag is computed as,

% = (3.5, 2.1)7

Compared to the actual tag coordinate, the linear signtmiie map-based coor-
dinate estimate has an error of 0.51 m.

127 Summary

This section first presented a mathematical framework foallpation using kernel
methods. Next, we showed through four RSS-based locaizalgorithms, how the
common framework, represented in (1.1), can be appliedferdnt positioning algo-
rithms. The various parameters and their differences andasities are presented in
Table 1.3.

1.3 Numerical Examples

For the purposes of obtaining an intuitive understandinthefadvantages of kernel
methods in localization algorithms, we show some numeggamples. Specifically,
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LM GK RBF SDM
f(x¢) Xy Xy Xy O
o Actual AP Actual AP Optimized Coordg Optimized Coordsg
coordsx; coordsx; in “Loc. space” in “Data space”
¢:(st) | Unitless weight| Unitless weight| Unitless weight | RSS (dBm) from
determined by | determined by| determined by tag to AP
(1.2) (1.5) (1.11)
o 0 0 Centroid of 0
all deployed APs
H(t) Topk APs All APs All APs All in-range APs
length of N d using length NV lengthV
St (18)

Table 1.3: Table summarizing the similarities and dissanities of LANDMARC
(LM), Gaussian kernel (GK), radial basis function (RBF) dimegar signal-distance
map (SDM) localization algorithms.

we compare the coordinate estimation of kernel-basedifatain algorithms, in an
example setting, with that of a maximum likelihood coordéastimation (MLE) using
the log-normal shadowing model. Before we proceed with ttenle, we briefly
describe the MLE algorithm.

1.3.1 Maximum Likelihood Coordinate Estimation

A commonly used statistical model for radio propagatiomés lbg-distance path-loss
model, in which the shadowing is modeled as log-noriinal Gaussian if expressed in
dB). Within this model, the dB RSS between devitasadj is represented as [29],[30],

si; = o — 10n,logyo [|xi — x;|| + Xi 5 (1.21)
wherell, represents the RSS at a reference distance of one mgtegpresents the
path-loss exponent, and; ; (in dB) is the fading error, modeled as a Gaussian random
variable with a standard deviation (in dB) @f 5.

Estimating Coordinatefrom RSS:  Given the path-loss model parameters in (1.21),
the coordinate of the tag can be estimated by maximizingkie&Hood ofs; or mini-
mizing the negative log-likelihood. The negative log-likeod of s; is given by (1.22),

1
L(st|xt, 1. Tlo) = C + 5 D7 sty — (g — 10m, logy [1x: — x4()]* (1.22)

ag
4B jeH(t)
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whereC' is a constant. Note that the negative log-likelihood equefil.22) assumes
that the shadowing on links are mutually independent. Bhéssimplifying assumption
as it has been observed that geographically proximate érkibit correlated shadow-
ing [13].

The maximum likelihood coordinate estimate of the ta}f-Z, can be determined
by minimizing the negative log-likelihood function of (2R

x}1EE = argmin Y " [s;; — [Io — 10, log, | — x;1[]]° (1.23)
o jeH()

In the likelihood equation of (1.22), the path-loss parareet, andIl, were as-
sumed to be known. These parameters can be estimated usipgittwise RSS mea-
surements between APs and their known locations. Spedjfiedinear regression is
performed on the pair-wise RSS measurements and log-destacomputed using the
known locations, to give the path-loss parametgrandlIl [31].

Implementation Details. Due to the lack of an analytical solution to (1.23), the min-
imum is computed by usinglarute-forcegrid search over possible coordinates<f
The deployment area is divided into a grid of predetermiriee, svhich determines
the resolution of the coordinate estimate. At each grid fobia value of negative log-
likelihood, L(s|x¢, np,Iy), is determined by using (1.22). The grid point which has
the minimum negative log-likelihood is the MLE coordinagtimate of the tagg -~

The maximum likelihood coordinate estimation of (1.23)fetd from computa-
tional disadvantage. Compared to the coordinate estimafi(l.1) using kernel meth-
ods, there is no closed form solution for minimizing the tlegative log-likelihood of
(1.23). Typically, for real-time implementation, one muse numerical optimization
methods [31].

1.3.2 Description of Comparison Example

In this section, we illustrate through example the advaedagf kernel-based position
estimation over model-based estimation. Consider a singilgork of four APs placed

atthe corners of a square with a wall separating them, asrsimoiig. 1.3. We consider
two tag positions, one at the center of the network and therattthe edge. Using this
AP placement, we generate RSS values using (1.21) wkigféncludes the wall loss

if the line between transmitter and receiver crosses thralig wall. Specifically, the

RSS,s; ;, between devicesandj is computed using (1.21) with, = 2 and X; ;
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Figure 1.3: Position of APs and tags. There is a wall sepagdtie network, repre-
sented by a black vertical line.

given as,

(1.24)

) Lw+Yi, if link (i, j) passes through the wall
Y Yij, otherwise

whereY; ; is the shadowing loss, modeled as a zero mean i.i.d. Gaussi@random
variable,i.e.,
}/i,j [dB] ~ N(Ov U(%B)

andL,, is the additional loss incurred when passing through a iidle channel pa-
rameters used for generating the RSS vectors are tabutaledbie 1.4.

parameter Description Value
Ny Path-loss exponent 2
L, Loss across wall 5.0dB

04B Fading std. deviatiorj 0 dB and 6.0 dB
I, Reference RX Powef -40 dBm

Table 1.4: Parameter description and values used in theatiom of network. The
values are assumed to aeriori unknown to the localization algorithm.

Note that the channel parameters given in Table 1.4 are a&sbtwnbea priori
unknown to the MLE algorithm. The path-loss parametegsandIl, in (1.23), are
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estimated using the pairwise RSS measurements betweerPtharAl their known lo-
cations. Specifically, a linear regression is performnetherpair-wise RSS measure-
ments and log-distances, determined using the known wtatf the APs [31, 32]. In
determining the path-loss, the most recent RSS measurdrmtméen the AP pair is
used.

Example 1.5

Consider the scenario when the shadowing standard devjatig = 0. A noise vari-
ance of zero dB is practically not possible, but, neverggli helps in understanding
the effects of shadowing on coordinate estimation, with tieeoother fading losses.
Links that pass through the wall suffer an additional losg @fdB due to transmission
through the wall.

Solution: The coordinate estimates for different kernel algorithissussed in the
previous section are shown in Fig. 1.4. In addition to kebeded algorithms,
we plot the coordinate estimate using MLE, described iniSedt.3.1. For a fair

3,
_ 2.5
é Gauss kernel
Gauis Kernel Mf % Actual tag MLE
c L A/
A 5 2
Actual tag SoM LANDMARC § LANDI C SEM
RBF kl) RBF
>
1.5f
1.6 1.8 2 2.2 2.4 2.6 i.S 2 25 3 35
X-Coordinates (m) (b) X—Coordinates (m)

Figure 1.4: Plot showing the coordinate estimates for tff€localization algorithms
along with the position of the tag. In (a) the tag is at the eenf the network and in
(b) the tag is at the edge of the network.

comparison between algorithms, we keep the set of the ARsdmdribute to the
kernel, for different algorithms, the same and equal to,foe |H (¢)| = 4 for all
algorithms.
We also studied the performance of the coordinate estimaligorithms when differ-
ent sets of APs contribute to the kernel. We observed thah&.{5aussian kernel and
2.) the radial basis function based algorithms have thepgmrébrmance when all the
in-range APs contribute to the kernel. However, for the LANBRC localization al-

4.5



24CHAPTER 1. KERNEL METHODS FOR RSS-BASED INDOOR LOCALIZATID

gorithm, the best AP sdi () depends on the relative location of the tag in the network.
For tags located at the center of the netwoekg( Fig. 1.4(a)), taking all in-range APs
as the sefd (t) performs best. On the other hand, for tags located on the efie
network, taking the top three APs as the Bét) performs the best.

We observe that the kernel-based algorithms for coordistimation perform bet-
ter compared to the MLE. One can also observe that the MLEd@oate estimates have
errors in the direction away from the wall. This is intuith@ecause the presence of a
wall between an AP and a tag, would lower the RSS of the tratiagnitag. Conse-
quently, the log-normal propagation model would prediett tthe tag is further away
from the AP, which is behind the wall. For example, in Fig.,JAPs 1 and 2 are be-
hind the wall for the two tag locations and these APs wouldklte tag is further away
from them. Consequently, the coordinate estimate wouldtpoithe direction away
from the wall. Statistically, the coordinate estimate of thg is said to have a bias,
pointing away from the wall. More bias analysis is perforrirethe next example.

This example clearly demonstrates the effect of shadownaghew kernel-based
methods can overcome these effects. Specifically, shadaluie to walls or obstacles
causes a reduction in RSS from the mean RSS. General prapagaidels, like the
one in (1.21), would account this loss to the loss sufferexhbse of distance, in order
to minimize the errocX; ;. Consequently, even in the absence of noise variance, the
estimates are biased in the direction away from the souragstruction. Kernel-
based algorithms, on the other hand, “learn” to adapt toltss because they have
more freedom in the parameters than a pure model-basedaabypaod thus, overcome
the limitations of the model. Kernel methods interpolate BRSS and the physical
coordinate using the AP pair-wise RSS measurements and éRrkooordinates.

Example 1.6

In this example, in addition to the wall loss of Example 1Hg effect of shadowing
variance is added in the path-loss equation (1.2d),0,5 > 0. Independent Monte
Carlo trials are run and the coordinate of the tag is estich@teach trial. A one stan-
dard deviation covariance ellipse and bias performandesdfoiication estimates is then
determined. The one-standard deviation covariance eligoa useful representation of
the magnitude and variation of the coordinate estimatels [33

Solution: The covariance ellipse along with the bias performance @vshin
Fig. 1.5 and Fig. 1.6. In the Fig. 1.5, the tag is located atcénater of the net-
work (at[2, 2]” m) and in the Fig. 1.6, the tag is located at the edge of thearktw
(at[3,2]" m).

One of the most important lessons learned from this exansplegit the kernel-based
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Figure 1.5: Bias plot showing the mear)(of tag location estimates over 500 trials
for LANDMARC (LM), Gaussian kernel (GK), radial basis fuimt (RBF) and linear
signal-distance map (SDM) localization algorithms. Acttizay location ¢) is con-
nected to the mean location estimate (——). Plot also showsdvariance ellipse
(—) for the coordinate estimates. The AR} &re at the corners of the grid. The tag is
located at the center of the network.
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Figure 1.6: Bias plot showing the mear)(of tag location estimates over 500 trials
for LANDMARC (LM), Gaussian kernel (GK), radial basis fuimt (RBF) and linear
signal-distance map (SDM) localization algorithms. Attizsy location ¢) is con-
nected to the mean location estimate (——). Plot also showsavariance ellipse
(—) for the coordinate estimates. The AR} &re at the corners of the grid. The tag is
located at the edge of the network.
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localization algorithms perform better than the MLE in terof average RMSE. This
can be easily observed in Fig. 1.5 and Fig. 1.6, where the Midtdinate estimates,
Fig. 1.5(e) and Fig. 1.6(e), suffer from both high bias anghhiariance. The per-
formance improvement for kernel-based localization atgors can be explained as
follows. In the kernel-based methods, the estimated coateiof a tag is a weighted
average of some function of the coordinates of the APs trairarange of the tag.

These weights are distinct for the distinct APs and each Ataias a table of its

weights for all the other APs in the network. The determoraf the weights are

different for different algorithms. Consequently, the ARat are on a particular side of
the wall would have lower weights for the APs that are on thepside. For example,
in Fig. 1.5 and Fig. 1.6, APs 1 and 2 have lower weights assigméhem by AP 3 as

compared to the weight assigned to AP 4.

On the other hand, maximum likelihood coordinate estinmadilgorithm assumes a
commorstatistical channel model for all the links in the networlonSequently, when
minimizing the overall error, the path-loss exponent, wts@nifies the slope of the
decay in RSS with respect to log-distance, is higher, smidaExample - 1. Since
all the links are weighted equally, this causes a high biakénmaximum likelihood
coordinate estimates, pointing away from the wall.

In summary, the advantage of the kernel-based localizatgworithms over MLE is
that in the kernel-based algorithms the APs which natukaiye significantly different
RSS values compared to the tag are weighted less compaiteg edher APs. On the
other hand, in maximum likelihood coordinate estimatidhttee in-range APs have
equal weights when computing the likelihood ratio and thlis,APs which have sig-
nificantly different RSS values compared to the tag domitteecoordinate estimates
pushing the tag further away from its actual location.

1.4 Evaluation Using M easurement Data Set

In this section, we compare the performance of the diffekemel-based localization
algorithms introduced and formulated in the previous sesti Performance is quanti-
fied using two related measures:

e Bias Bias is the difference between the average coordinatmatgi(over many
trials) and the actual coordinate. In this chapter, we sh@hbias using a bias
plot, in which the actual coordinate and average coordiestienate are plotted
together for each tag. Bias is a consistent error in the d¢oatel estimate.

e Root-mean squared error (RMSH)he RMSE is used to summarize both bias
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and variance effects. The “squared error” is the differdmet@veen the coordi-
nate estimate and the actual location, squared, with uhits?o The RMSE is

then the square root of the average squared error (averaged@lbtags in the
deployment). Bias and error variance are two componentdMBR The two

together, quantified by RMSE, provide a good summary metrigjiantifying

localization performance.

In the rest of this section, we describe the environmentgaieith the processing
of the experimental data and the evaluation procedure fdr data set.

141 Measurement Campaign Description

The measurement data consists of the pairwise RSS measeineden 224 known-

location wireless APs deployed on a single floor of a hospitdi an area of 16,700
square meters. These APs are wireless transceivers whéefatepn the 2.4 - 2.48
GHz frequency band and transmit at a constant power. The ARsdnlimited range,

and as such, the network formed by the deployed APs is nagt éahnected. Each
AP has a limited set of neighboring APs to which it can hearrmate RSS measure-
ments. The RSS values were collected for a period of 10 msridueng which 40 RSS

measurements were collected for each measurable link.

Since there are no “tags” in the measurement data, we sienaiatinknown loca-
tion tag using leave-one-out (LOO) procedure. In the LOCQcpdure, whenever we
need to “create” a known-location tag, we “change” an AP @tag for purposes of
evaluation. We expect the RMSE for the leave-one-out praeetb be higher than
would be seen in deployed systems with tags. APs are deployezbsefully to be
spatially separated from one another, for purposes of gicigeoverage with a small
number of APs. So when one AP is converted to a tag, its neae@giboring APs are
relatively far from it, compared to the nearest neighboraro&ctual tag that would be
used in the system when no APs were “left out”.

1.4.2 Evaluation Procedure

It was mentioned in Section 1.4.1 that the measurement datsists of pairwise RSS
between APs only. In order to simulate a tag measurementnvpéog the leave-one-
out approach. As mentioned before, an AP is assumed as a dagsagposition is
estimated based on the remaining APs in the deployment. \Wkeefer to a “tag” in
this section, we mean the left-out AP which is used as a knlowation tag.
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The RMSE for each particular tag is computed based on the RERi®d over a
period of 10 minutes. This procedure is repeated for all tRs & the deployment.
When reporting an average RMSE, we provide two numberst, ies average over
all the tag (left-out AP) locations. Second, we average ovérthesAPs in what we
consider to be the “sweet spot”, that is, APs in the middléheflargest section of the
floor plan shown by+) in Fig. 1.7. These APs should have lower bias because they
are not at the edge of the building and therefore the edgesafétwork. The RMSE in
the sweet spot provides intuition about location estinmaiin“good” areas, while the
RMSE for all APs provides the average error result.
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Figure 1.7: Coordinates of APs in the measurement analybis APs represented by
() are said to be in “sweet spot” of the deployment.

143 Results

In this section, we present the results of applying the famkl-based localization
algorithms, discussed in Section 1.2, on the measureméatset Specifically, we
quantify the algorithms with the two related measures ngnie) bias, and 2.) root-
mean squared error.
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Bias Results

Figure 1.8 shows the bias plot for the four kernel-basedliettion algorithms and
maximume-likelihood coordinate estimation. As mentionetooe, bias is a consistent
error in the coordinate estimates. In addition, we complgeaverage bias for each
localization algorithm, which is shown in Table 1.5. We atveethat the lowest bias is
observed for the signal-distance map localization algorit Specifically, the average
bias is 3.72 m. The coordinate estimates are more biaseddanaximum-likelihood
coordinate estimation algorithm, with an overall bias afl5m and 5.01 m for the
sweet spot region. Moreover, as one would expect, the agédriag for the APs located
in the sweet spot of the deployment region is lower compavettie¢ overall average
bias.

RM SE Results

In most cases, the average RMSE provides a good metric fatifiying the localiza-
tion performance. The average RMSE results for differecaliaation algorithms are
tabulated in Table 1.5. From the table, we observe thatakéinel-based localization
algorithms perform better than the MLE, which is a pure mdzided approach. In
fact, the linear signal distance map localization algonitherforms the best with an
overall improvement of 37% over the MLE, while the improvertis 55% for the APs
in the sweet spot region.

Algorithm Avg. bias (m)| Avg. RMSE (m)
O.A.| SS. | OA. S.S.
LANDMARC 5.01| 3.28 | 5.48 4.06

Gaussian Kernel | 5.25| 3.30 | 5.87 4.04
Radial basis function 4.16 | 2.75 | 4.87 3.53
Linear SDM 3.72| 249 | 431 3.18
MLE 5.41| 5.01 | 6.87 7.04

Table 1.5: Table showing the overall (O.A.) and sweet sp@.j$erformance of dif-
ferent localization algorithms for the real-world measneat data.

1.5 Discussion and Conclusion

This chapter explores the advantages and features of aaflatatistical learning al-
gorithms, called kernel methods, as used in RSS-basedZatiah. Kernel methods
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provide a simplified framework for localization without aaypriori knowledge of the
complicated relationship between the RSS and positioteds these relationships are
encapsulated in parametrized nonlinear functions. Atgors based on kernel meth-
ods inherently account for spatial correlation in the RS8ictv most model-based
approaches fail to capture. Kernel methods do not rely palela database of train-
ing measurements, like RSS fingerprinting algorithms, Wimzist be measured very
densely in space. In this chapter, a calibration schemeesepited which attempts to
minimize the calibration requirements of kernel-based@igms. Specifically, in this
scheme, training is performed simultaneously while théesydgs online, using the AP
pairwise measurements.

A simulation example of a simple four AP network is preseritedrovide better
understanding of kernel methods. The results show thateheekbased algorithms
provide better location accuracy compared to the modeddbakyorithms, in terms of
average RMSE. This is because kernel methods provide atiaslaighting scheme
for the APs. Within this weighting scheme, the APs that hagaificantly different
RSS values compared to the tag are weighted less compaiesldthier APs.

An extensive experimental evaluation is performed for ladl kernel-based algo-
rithms and the MLE using a data set collected from a large itedsfacility. These
real-world experimental results indicate that all fourdedrbased algorithms perform
better than the MLE. In fact, the linear signal-distance noaglization algorithm has
the best performance in terms of average RMSE. The lineaakijstance map lo-
calization algorithm has an overall RMSE reduction of 37%rahe MLE, while the
RMSE reduction is as high as 55% for the “sweet spot” areab@fieployment re-
gion. The complexities of the fading environment and the licated nature of the
large-scale real-world deployment require more pararaéten are available to a sin-
gle log-distance path-loss model. In particular, even ¢fiotine linear signal-distance
map localization algorithm assumes a linear with respetiigadistance relationship
for RSS, the parameters of the linear relationship are é&zhamd adapted locally to the
RSS measured at each AP.

Another perspective of this analysis is that spatial catieh in the RSS can be
particularly useful in wireless localization. Typicallygographically proximate links
would encounter similar environmental obstructions aredshadowing loss suffered
on these links would be correlated. Better understandingefirea can be obtained
when considering spatial correlations. Kernel methodsateong candidate because
thekernelin a kernel-based algorithm provides a spatial similarisasure. Addition-
ally, kernel models are typically linear with respect to e@ameters, allowing good
analytical properties, yet are nonlinear with respect &0RI$S measurements.
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