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Abstract: This chapter explores the features and advantages of kernel-based local-

ization. Kernel methods simplify received signal strength(RSS)-based localization by

providing a means to learn the complicated relationship between RSS measurement

vector and position. We discuss their use in self-calibrating indoor localization sys-

tems. In this chapter, we review four kernel-based localization algorithms and present

a common framework for their comparison. We show results from two simulations and

from an extensive measurement data set which provide a quantitative comparison and

intuition into their differences. Results show that kernelmethods can achieve an RMSE

up to 55% lower than a maximum likelihood estimator.

1.1 Introduction

Knowledge of user’s position is becoming increasingly important in applications that

include medicine and health care [1], personalized information delivery [2, 3], and

security. Indoor localization algorithms have been proposed using various methods

such as angle of arrival, time of flight and received signal strength (RSS), of which

RSS-based algorithms are the most common.

In general, existing RSS-based indoor localization algorithms can be classified into
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three main categories: (1) model-based algorithms; (2) kernel-based algorithms; and

(3) RSS fingerprinting algorithms. Kernel-based algorithms, the subject of this chapter,

are a “middle-ground” between model-based and RSS fingerprinting algorithms.

Model-based algorithms [4, 5, 6, 7] use standard statistical channel models to pro-

vide a functional relationship between distance and RSS. Using this functional rela-

tionship, the location of a tag (unknown location device) isestimated from the RSS

measured by in-range access points (APs) or anchors (known location devices) by first

estimating the distances to the in-range APs using models, and then using methods of

lateration to determine the coordinates. Some research [8,9, 10] also propose using

statistical models to create an entire radio map as a function of position, in which the

location of the tag is estimated directly from the RSS measured by the in-range APs.

RSS-fingerprinting methods [11, 12], on the other hand, workin two phases - an

offlinetraining phase and anonlineestimation phase. In the offline training phase,RF

signaturesare collected at some known locations in the deployment region, which are

then stored in a database. An RF signature is a vector of RSS values measured by some

predetermined APs. In the online estimation phase, a location is searched from the

constructed database whose RF signature matches closely with the RF signature of the

tag.

Statistical channel models, in most cases, are unable to capture the complicated

relationship between RSS and location in indoor environments. They also typically

assume that shadow fading on links are mutually independent, even though environ-

mental obstructions cause similar shadowing effects to many links that pass through

them, an effect called correlated shadowing [13, 14].

RSS-fingerprinting methods, on the other hand, do not assumeany prior relation-

ship between RSS and position, but the training phase consumes a significant amount

of time and effort [11, 15]. To some extent, the training effort can be reduced via spatial

smoothing [15, 16, 17], but this is possible only to distances at which the RSS is cor-

related. Some research have also suggested supplementing some of the measurements

using predicted RSS using channel models [11]. Changes in the environment over time

reduce the accuracy of the database, requiring recalibration.

In summary, model-based algorithms require the least training effort, but they rely

heavily on the prior knowledge of the relationship between RSS and position. RSS-

fingerprinting algorithms, on the other hand, are not based on any prior knowledge of

the relationship between RSS and position, but require considerable training effort and

time.

This chapter is an exploration of kernel-based algorithms,which provide the ability

to mix the features of both model-based and RSS fingerprinting algorithms. Kernel-
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based algorithms encapsulate the complicated relationship between RSS and position,

along with correlation in the RSS at proximate locations, ina kernel, which can be

assumed as a parametrized “black box” that takes the measured RSS as inputs and gives

ameasureof position as output. In this chapter, we describe four different kernel-based

RSS localization algorithms using a common mathematical framework and compare

and contrast their performance (to each other, and to a baseline model-based algorithm,

the maximum likelihood estimator) using a simulation example and using an extensive

experimental study. These algorithms include LANDMARC [18], Gaussian kernel

localization [19], radial basis function localization [15], and linear signal-distance map

localization [20].

The experimental study described in this chapter demonstrates that all four of the

kernel-based localization algorithms outperform the MLE in a real-world environment.

In fact, the improvement in average RMSE is as high as 55% compared to the MLE. In

this chapter, we explain this improved performance of the kernel-based algorithms by

using several numerical and simulation examples, in which kernel methods are shown

to enable the tag’s coordinate estimates to be robust to bothshadowing and independent

and identically distributed (i.i.d.) fading. The experimental evaluation also suggests

that the complexities of the fading environment and the complicated nature of the large-

scale deployment require more parameters than are available to typical model-based

algorithms. In particular, in this chapter, we attempt to explain why the kernel-based

algorithms perform better than model-based localization algorithms.

Standard kernel-based algorithms still require a trainingphase for calibration of

kernel parameters. In this chapter, we discuss methods to minimize the calibration

requirements of kernel-based algorithms by performing training simultaneously while

the system is online, using pairwise measurements between APs. Specifically, several

APs are deployed at some known locations throughout the building. Each AP is a

transceiver and can measure the RSS of packets from other APs(although we note that

we do not limit ourselves to WiFi APs; we may use any standard which allows peer-

to-peer communication). These pairwise measurements constitute the training data for

calibration purposes.

Outline of Chapter

Prior to discussing the four kernel methods for RSS-based localization algorithms, we

present a common mathematical framework for kernel-based localization algorithms in

Section 1.2.2. The remainder of Section 1.2 discusses four kernel-based algorithms. To

provide more intuitive understanding of the advantages of kernel methods, we present



4CHAPTER 1. KERNEL METHODS FOR RSS-BASED INDOOR LOCALIZATION

a simple numerical example in Section 1.3. In Section 1.4, weevaluate the algorithms

using kernel methods on a real-world measurement data set collected in a hospital

environment. Finally we conclude this chapter in Section 1.5.

1.2 Kernel Methods

Kernel methods are a class of statistical learning algorithms in which the complicated

relationship between the input (e.g., signal strength) and the output (e.g., physical co-

ordinates) is encapsulated using kernel functions. A kernel function is a potentially

nonlinear and parameterized function of input variables. The parameters control the

functional dependencies between input and output, in our case, between signal strength

and physical coordinates. A key feature of statistical learning is that it estimates the

parameters based on some known input/output pairs, also called learningfrom known

data. Models using kernel methods are typicallylinear with respect to the parameters,

which gives them simple analytical properties, yet, are nonlinear with respect to the

input variables,e.g., received signal strength.

In this section, we present an overview of coordinate estimation using statistical

learning with kernel methods. We begin our discussion in this section by defining our

problem statement and then proceed to present a general mathematical framework for

coordinate estimation using kernel methods.

1.2.1 Problem Statement

In this chapter, we consider signal strength-based tag localization. Specifically, we

wish to find a two-dimensional tag coordinate,x̂t, given the known two-dimensional

reference coordinates ofN APs,xi, ∀ i ∈ {1, . . . , N}, their pairwise RSS measure-

ments,si,j , ∀ i 6= j, i, j ∈ {1, . . . , N}, and the RSS measured byN reference APs for

a signal transmitted by a tag,si,t, ∀ i ∈ {1, . . . , N}. Also, let notationsj indicate the

RSS vector for APj, wheresj = [s1,j , . . . , sN,j]
T . Similarly, let notationst indicate

the RSS vector for a tagt, wherest = [s1,t, . . . , sN,t]
T .

Note that even though we consider a two-dimensional coordinate estimation here,

the same methodology can readily be extended to a three-dimensional case. Before we

proceed further, we clarify our notation for the signal strengthsi,j . A measurement,

si,j , represents the dB signal strength measured by a APi for the signal transmitted by

AP j. Similarly, subscriptt indicates that the measurement is for a tag (with ana priori

unknown location).
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The measurementsi,i, which corresponds to the RSS measured by co-located APs,

is unavailable. In practice, even if two APs are located at the same position, the RSS

measured between them is non-zero,i.e., si,i 6= 0, and depends on the transmit power

of the APs [20]. Some localization algorithms require the value of si,i to be known;

thus in this paper, we assume when necessary thatsi,i = −33 dBm [20].

We do not assume full connectivity between links. Consequently, we define set

H(j) to be the set of APs which are in direct communication range ofAP j. SetH(j)

does not include the APj andH(j) ⊂ {1, . . . , N}. Similarly,H(t) is the set of APs

that are in direct communication range of tagt.

An AP k that is not in the setH(j), is not in the direct communication range of

AP j and would not measure any RSS from APj. It does not necessarily mean that

AP k does not receive any signal from APj. Rather, it simply means that the signal

power from APj was so low that APk could not demodulate its signal. This “non-

measurement” of RSS by APk is known as the “censored data” problem in statistics.

We know this RSS value is low, but we do not know the value ofsk,j . How should

an algorithm representsk,j for k /∈ H(j) in its RSS vectorsj? Most kernel-based

approaches have not addressed this censored data issue, andhave simply assumed full

connectivity between APs. One algorithm estimates the non-measured RSS values

using expectation-maximization [21]. In this article, we will provide for each kernel

method a means to address non-measured RSS.

1.2.2 General Mathematical Formulation

In the framework of kernel methods, a function of the coordinate estimate of a tag,

f(x̂t), can be expressed as,

f(x̂t) =
∑

i∈H̃(t)

αiφi(st) +α0 (1.1)

whereαi, ∀ i ∈ H̃(t) is thecoordinate weightof AP i, H̃(t) denotes the set of APs that

contribute to the kernel andφi(·) is known as thekernel functioncorresponding to AP

i. The parameterα0 is known as thebiasparameter which compensates for any fixed

offset in the data [22]. In this section, we will show how the parameters,{αi}i∈H̃(t)

andα0, are optimized and estimated, and how the kernel functions{φi(·)}i∈H̃(t) are

chosen, for different algorithms and techniques in the literature.

The parameters{αi}i∈H̃(t) are sometimes called “weights”, in particular when

predetermined functions are used as kernel functionsφi(·), e.g., Gaussian functions.

However, these parameters represent the coordinates of theAPs in “location space”.
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Typically, these parameters are functions of the AP coordinates and are optimized to

match the information given by the AP pairwise RSS measurements and their coordi-

nates. The coordinate estimate of the tag,x̂t, is determined by taking the inversef−1 of

f(x̂t). Figure 1.1 shows the operation of coordinate estimation using kernel methods.

Location

Space
Data 

Space
Coordinate

Space

dB meters

(may be physical coords,

may be distances)

meters

Figure 1.1: Flow chart showing the localization operation using kernel methods.

Algorithms in the class of kernel-based localization differ in the methods of opti-

mization off(x̂t). Some algorithms set the kernel functions with predetermined func-

tions and optimize the parameters{αi}i∈H̃(t) based on pairwise RSS measurements

[20, 15, 23]. In contrast, other algorithms set the parameters {αi}i∈H̃(t) with some

functions of the physical coordinates of a set of APs and optimize the kernel functions

using their pairwise RSS measurements [18, 19].

Determination of kernel parameters: Typically, the kernel functionsφi(·) belong

to a class of parametric nonlinear functions. Determination of kernel parameters is not a

trivial task and has been extensively studied in the statistical learning literature [24]. A

common technique used for their estimation is cross-validation [25]. For the purposes

of cross-validation of localization algorithms, we use thedata set collected between

APs. In this case, the AP measurement data set is divided intotwo groups, one group

containing(N − 1) APs and the other group containing one “left out” AP, whereN

is the total number of APs. Thus, there areN ways of dividing the data set. In cross-

validation, we estimate the location of the left-out AP as ifits coordinate was unknown.

The location error can be determined after coordinate estimation, because every AP

coordinate is, in fact, known. The average location error iscomputed by averaging

over all left-out APs. The location error is a function of thekernel parameters. By

repeating this procedure across a range of candidate valuesof the parameters, we can

optimize the kernel parameters for the particular environment. This method is also

called leave-one-out (LOO) cross-validation.
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In general, existing RSS-based localization algorithms can be formulated in the

framework of (1.1) by selection of:

• The function of coordinate estimates,f(·),

• Set of APs that contribute to the kernel,H̃(t),

• Coordinate weights,{αi}i∈H̃t
,

• kernel functions,φi(·), and,

• Bias parameter,α0.

In the remainder of this section, we show how the mathematical framework of (1.1) can

be applied to different positioning algorithms. In particular, we select four different

algorithms from the RSS-based localization literature andshow how the developed

framework is applied for each algorithm.

Example Framework: Consider an example wireless network with four APs de-

ployed at known locationsxi, ∀ i ∈ {1, 2, 3, 4} as shown in Fig. 1.2. Also, consider

a tag whose actual location (in m) isxt = [3, 2]T . The coordinates (in m) of the four

APs arex1 = [0.5, 0.5]; x2 = [0.5, 3.5]; x3 = [3.5, 3.5]; x4 = [3.5, 0.5]. Let us

assume that, all the APs are in direct communication range ofthe other APs and the

tag, i.e., |H(t)| = |H(j)| = 4, ∀ j ∈ {1, 2, 3, 4}. Using the known locations of the

APs, their pairwise RSS measurements are generated using a log-distance path-loss

model. A brief description of log-distance path-loss modelis given in Section 1.3. An

instance of these pairwise RSS measurements is tabulated inTable 1.1. Each row of

Table 1.1 represents the RSS measured by the four APs for the signal transmitted by

the corresponding device. For example, the RSS values in thefirst row represents the

RSS measured by the deployed APs when AP-1 was transmitting.Similarly, the APs’

RSS measurements for the tag are generated, an instance of which is tabulated in the

last row of Table 1.1.

For the purpose of this example, the values of various parameters are tabulated in

Table 1.2.

The goal in this example is to estimate the location of the tag, x̂t, using 1.) the

known location of four APs,{x1,x2,x3,x4}, 2.) their pairwise RSS measurements

si,j, ∀ i 6= j, i, j ∈ {1, 2, 3, 4}, tabulated in Table 1.1, and 3.) the RSS measured by

the four APs for a signal transited by the tag,si,t, ∀ i ∈ {1, 2, 3, 4}, tabulated in the last

row of Table 1.1.
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Figure 1.2: Position of APs and tags.

Rx APs
AP 1 AP 2 AP 3 AP 4

Tx AP 1 n/a -72 -62 -81
Tx AP 2 -70 n/a -59 -85
Tx AP 3 -60 -65 n/a -63
Tx AP 4 -59 -77 -72 n/a

Tag -72 -69 -61 -60

Table 1.1: Table showing an example RSS values (in dBm) measured by APs.

parameter Description Value
np Path-loss exponent 4
σdB Fading variance 6.0 dB
Π0 Reference Rx Power (at 1 m)-50 dBm

Table 1.2: Log-normal path-loss parameter description andvalues used in the running
example framework.
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We will revisit this example wireless network throughout this section when we

consider each localization algorithm in detail.

1.2.3 LANDMARC Algorithm

LANDMARC [18] is an RSS-based localization algorithm in which a tag’s coordinate

estimate is given by a weighted average of the coordinates ofk closest APs that can

hear the tag’s transmission. In this section, we present howthe LANDMARC algorithm

can be expressed as a kernel method. Because LANDMARC is intuitive and can be

explained with a single weighted average, it helps to demonstrate the concepts of kernel

algorithms in an intuitive manner, and shows how simple a kernel-based algorithm can

be.

In LANDMARC, a tag’s estimated coordinate is written, usingf(x̂t) = x̂t, αi =

xi, α0 = 0, and

φi(st) =
1/||st − si||2

∑

j∈H̃(t) 1/||st − sj||2
(1.2)

Applying these relations in (1.1), we have,

x̂t =
∑

i∈H̃(t)

xi

1/||st − si||2
∑

j∈H̃(t) 1/||st − sj ||2
(1.3)

Here,H̃(t) is the set ofk APs that are closest to the tag. In LANDMARC, “closeness”

is quantified by the Euclidean distance between the RSS vector of AP i, si, and the

RSS vector of the tag,st, i.e., Ei = ||st − si||. We define the vectorE as,

E = [E1, . . . , EN ]T (1.4)

The set of APsH̃(t) in (1.2) - (1.3) is the set ofk AP indices with thek smallest

Ei in the vectorE. In LANDMARC, k is a variable parameter which determines the

number of APs that contribute in the kernel. Any non-measured RSS in vectorsst or

si, as discussed in Section 1.2.1, is replaced by the minimum RSS observed over the

duration of the experiment minus one.

Estimation of Parameters: The only parameter that needs to be estimated in LAND-

MARC is the set of APs that contribute in the kernel,H̃(t), which in turn depends on

the parameterk. If k = 1, then we choose the AP which is “closest” (smallestEi) to

the tag as the coordinate estimate of the tag. Similarly, ifk = 2, then the two ‘closest’

APs are considered and parameters are determined using (1.2). Unfortunately, there is
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no analytical solution for the optimal value ofk, although it can be determined exper-

imentally for a given environment or by using the cross-validation approach described

in Section 1.2.2.

The above argument implicitly assumes that the optimal value ofk is less than the

number of neighbors of a tag,i.e., k < |H(t)|, whereH(t) denotes the set of one-hop

neighboring APs which hear the transmission from the tag. A question that arises is

what would be the set̃H(t) whenk is greater than the number of one-hop APs,H(t).

A naive approach for this situation would be to place an upperthreshold on the value

of k. In other words,k′ = min{k, |H(t)|}, wherek′ is the actual number of neighbors

used for a particular tagt.

Example 1.1 Revisit Example Framework

Consider the wireless network of Fig 1.2. Estimate the tag’scoordinate,x̂t, using the

LANDMARC algorithm.

Solution: Let us assumek = 3. Using (1.4) and the definition ofEi, we can

compute the Euclidean distance vector (in dBm) as,

E = [44.36, 43.86, 30.71, 33.58]T .

The set of APsH̃(t) in (1.2) and (1.3) is the set of three AP indices with the

smallestEi in vectorE. Thus,H̃(t) = {2, 3, 4}. The values kernel function,φi(·),
corresponding to each APi ∈ H̃(t), is computed using (1.2),

φ2(st) = 0.21, φ3(st) = 0.43, φ4(st) = 0.36

Using these kernel values and the known AP coordinates,{x2, x3, x4}, in (1.3),

the LANDMARC coordinate estimate of the tag,x̂t (in m), is computed as,

x̂t = [2.9, 2.4]T .

Compared to the actual tag location, the LANDMARC coordinate estimate has an

error of 0.44 m.

1.2.4 Gaussian Kernel Localization Algorithm

The Gaussian kernel localization algorithm is an RSS-basedlocalization algorithm pro-

posed by Kushkiet al. [19]. Similar to LANDMARC, in the Gaussian kernel localiza-

tion algorithm, the coordinate estimate of a tag is the weighted average of coordinates
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of the closest APs. However, the weights are determined by a Gaussian kernel, which

gives a measure of distance between the RSS vector of the tag and the RSS vectors of

the APs. Any stationary kernel function could be used in place of the Gaussian kernel

to determine the weights. The authors chose to use the Gaussian kernel because it is

widely used and studied in the literature. As presented by the authors, this algorithm

uses the AP measurements over time, for timeτ = 1, . . . , T , denoted bys(τ)i . In this

section, we briefly describe the various aspects of this algorithm and how it fits into the

framework developed in Section 1.2.2.

In the Gaussian kernel positioning algorithm, the coordinate estimate of the tag,̂xt,

is written as in (1.1) withf(x̂t) = x̂t, αi = xi, α0 = 0, H̃(t) = H(t), and,

φi(st) =
1

T (
√
2πσ2)d

T
∑

τ=1

exp

(

−||s̃t − s̃
(τ)
i ||2

2σ2

)

, (1.5)

whereσ is a parameter called ‘width’ of the kernel. The notations̃t represents the ‘re-

duced’st, the RSS vector of the tag, and is given as,s̃t = [st,i1 , . . . , st,id ]
T , where

i1, . . . , id is a list of the elements inHd(t), a set ofd predetermined APs. Sim-

ilarly, s̃
(τ)
i represents the reduced RSS vector for APi at a particular time instant

τ, ∀ τ ∈ {1, . . . , T }. The estimation of the AP setHd(t) will be discussed below

in the “Estimation of Parameters” subsection.

Simplifying, (1.1) reduces to,

x̂t =
∑

i∈H(t)

xiφi(st). (1.6)

The kernel functions,{φi(· · · )}, of (1.5) may be normalized [19]. Normalization

avoids the situation where there are “holes” in the RSS space, regions ofs̃t where

the sum in (1.5) has a low value. This would lead to fewer predictions at those regions

of the RSS space [26]. In other words, normalization makes sure that the resulting

kernel covers the whole range of RSS values measured by APs. The normalized kernel

functions,φi(st) can be represented as,

φi(st) =
1

C

[

1

T (
√
2πσ2)d

T
∑

τ=1

exp

(

−||s̃t − s̃
(τ)
i ||2

2σ2

)]

, (1.7)

where

C =
∑

i∈H(t)

φi(st)
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Estimation of Parameters: The Gaussian kernel localization algorithm requires es-

timation of the following parameters:

1. Width of the kernel,σ,

2. A predetermined set ofd APs,Hd(t).

Neighboring APs would report correlated RSS measurements.It is suggested that in-

cluding all neighbors leads to redundancy as well as biased estimates [19]. One can

minimize this effect by selecting a subset ofd APs,Hd(t), from the set of neighboring

APs,H(t), which have minimum redundancy. This setHd(t) is found to be the set

which has minimum divergence. Let,Vi,j denote a vector time series of RSS measured

by AP i for a signal transmited by APj, i.e., Vi,j = [s
(1)
i,j , . . . , s

(T )
i,j ]. The set ofd APs,

Hd(t), is selected such that,

Hd(t) = argmin
Hp(t)⊂H(t):|Hp(t)|=d

∑

hi,hj∈Hp(t)

|hi − hj|, (1.8)

where

|hi − hj| = min
k

∆(Vi,k − Vj,k),

where∆(Vi,k−Vj,k) is thedivergencebetween two time seriesVi,k andVj,k and given

by [19],

∆(Vi,k − Vj,k) =
1

8
(µi,k − µj,k)

2

[

σi,k + σj,k

2

]−1

+
1

2
log

0.5(σ2
i,k + σ2

j,k)

σi,kσj,k

(1.9)

whereµi,k andµj,k are the means andσi,k andσj,k are the standard deviations for the

time seriesVi,k andVj,k respectively. Although other divergence measures exist inthe

literature, the divergence represented in (1.9) is commonly used when the distribution

of the time series is Gaussian.

Another parameter to be determined isσ, the kernel width parameter. Note that

the kernel width parameter,σ is a global parameter which depends on the pair-wise

measurements of the APs and is independent of the RSS measurement of the tag. In

our evaluation in Section 1.4,σ is determined using the cross-validation approach de-

scribed in Section 1.2.2.

Example 1.2 Revisit Example Framework

Let’s return to the example wireless network of Fig. 1.2. Estimate the tag’s coodinate,

x̂t, using the Gaussian kernel localization algorithm.
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Solution: Note that the Gaussian kernel localization algorithm uses the AP mea-

surements over time, which is used to determine the subset ofAPs that have mini-

mum redundancy in their measured RSS. Our example frameworkcannot provide

information about this redundancy because of the pairwise i.i.d. nature of RSS sim-

ulation model used in this example. For the purposes of this example, let us assume

the setHd(t) = {1, 2, 4}.

The next parameter we need to determine is the width of the kernel, σ, which is

estimated using the cross validation approach described inSection 1.2.2. Based on

the experimental evaluation in Section 1.4, the value of thekernel width is found to

beσ = 30 dB.

Using the RSS values from Table 1.1 along withHd = {1, 2, 4}, σ = 30 dB, and

T = 1 in (1.7), the values of normalized kernel functions,φi(. . .), corresponding

to AP i, ∀ i ∈ {1, 2, 3, 4}, are determined to be:

φ1(st) = 0.16, φ2(st) = 0.16, φ3(st) = 0.42, φ4(st) = 0.27.

Using these values of the kernel functions and their corresponding coordinates in

(1.6), the estimated tag coordinate,x̂t, (in m) is:

x̂t = [2.6, 2.2]T .

Compared to the actual tag coordinate, the Gaussian kernel-based coordinate esti-

mate has an error of 0.5 m.

1.2.5 Radial Basis Function Based Localization Algorithm

In the statistical learning literature, radial basis functions have been widely used as the

kernel functionsφi(·). Radial basis functions were introduced for the purpose ofexact

function interpolation. Given a set of training inputs and their corresponding outputs,

the purpose of radial basis function interpolation is to create a smooth function that fits

training data exactly [22].

Functions of this class have a property that the basis functions depends only on the

radial distance(typically Euclidean) from a centerµi, such that,

φi(st) = h(||st − µi||),

whereh(·) is a radial basis function. Typically, the number of basis functions and the

position of their centers,µi, are based on the input data set{si}i=1,...,N . A straight-
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forward approach is to create a radial basis function centered at every{si}i=1,...,N .

In the context of tag localization, the use of radial basis functions was proposed

by Krumm et al. [15]. Primarily, the authors of [15] introduced interpolation using

radial basis functions as a way to reduce the calibration effort of RADAR positioning

[11] at the same time maintaining an acceptable location error. Specifically, the authors

construct an interpolation function using radial basis functions that gives the location

of a tagt, x̂t, as a function of its RSS vectorst.

Using the same notation as in Section 1.2.1, the coordinate estimate of a tag,̂xt,

using radial basis functions can be written in our common framework usingf(x̂t) = x̂t,

H̃(t) = 1, . . .N , along with

α0 =
1

N

N
∑

j=1

xj , (1.10)

and,

φi(st) = exp

(−||st − si||2
2σ2

RBF

)

, (1.11)

whereN denotes the total number of deployed APs, andσRBF is the width of the

kernel. Applying these relations in (1.1), we have,

x̂t =
N
∑

i=1

αiφi(st) +α0, (1.12)

The parameters{αi}i∈{1,...,N} are estimated. Unlike LANDMARC and the Gaussian

kernel positioning algorithm, in whichαi = xi is theactualAP location, in the radial

basis function localization algorithm, the parameters{αi}i∈{1,...,N} are “artificial”

coordinates for each AP set such thatx̂t in (1.12) minimizes the location error for all

training measurements.

Estimation of Parameters: There are two parameters that need to be estimated in

the radial basis function based localization algorithm:

• Coordinate weights,{αi}i∈{1,...,N}, and,

• Width of the radial basis function kernel,σRBF .

We begin with the estimation and optimization of coordinateweights{αi}i∈{1,...,N}.

Specifically, the coordinate weights{αi}i∈{1,...,N} are the coordinates in “location

space”. There is no need to make them equal to the coordinatesof APs. In radial

basis function localization, these parameters are optimized such that the information

given by the AP pairwise RSS measurements best matches the known AP locations.
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Substituting the AP pairwise RSS measurements and their corresponding coordinates

in (1.12) and expressing them in matrix, we get,

Z = ΦA, (1.13)

whereA is the coordinate weight matrixA = [α1, . . . ,αN ]T , andZ is a matrix whose

ith row,zi, is given as,

zi = [xi −α0]
T ,

andΦ is the kernel design matrix whosei, j element,Φ(i, j), is given as,

Φ(i, j) = φi(sj) = exp

(−||sj − si||2
2σ2

RBF

)

(1.14)

An optimal solution can be found by using the method ofleast-squares[27]. Within

the framework of least squares, the coordinate weight matrix, A = [α1, . . . ,αN ]T ,

can be estimated as,

A = (ΦT
Φ)−1

Φ
TZ, (1.15)

The term

Φ
† = (ΦT

Φ)−1
Φ

T

in (1.15) is known as thepseudo-inverseof the matrixΦ. The psuedo-inverse is a

generalized matrix inverse for non-square matrices [28].

The other parameter that needs to be estimated is the radial basis function kernel

width, σRBF . Estimation of this parameter, similar to the estimation ofkernel width

for Gaussian kernel position algorithm described in Section 1.2.4, is done via cross-

validation.

Example 1.3 Revisit Example Framework

Consider the wireless network of Fig. 1.2. In this example, we will estimate the tag’s

coordinate,x̂t, using the radial basis function based localization algorithm.

Solution: The first step is to estimate the value of parameterσRBF , which is es-

timated using cross-validation as explained in Section 1.2.2. Based on the experi-

mental evaluation in Section 1.4, the value (in dB) of kernelwidth is found to be

σRBF = 30 dB.
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Using the AP pairwise RSS from Table 1.1, the kernel design matrix, Φ, is deter-

mined using (1.14) as,

Φ =













1 0.20 0.35 0.18

0.20 1 0.27 0.06

0.35 0.27 1 0.24

0.18 0.06 0.24 1













The next step is to determine the coordinate weight matrix,A using (1.15). In

our example,α0 = [2, 2]T , using (1.10). The coordinate weight matrixA is

determined to be

A =













−2.24 −2.28

−1.81 1.43

2.43 2.32

1.43 −1.74













,

in which rowi corresponds to the coordinates of the APsi in “location space”,αT
i .

Using the estimated values of{α1,α2,α3,α4}, the coordinate estimate of the tag

according to radial basis function based localization algorithm is computed from

(1.12) as,

x̂t = [2.8, 2.1]T

Compared to the actual tag location, the radial basis function-based coordinate es-

timate has an error of 0.25 m.

1.2.6 Linear Signal-Distance Map Localization Algorithm

The linear signal-distance map localization algorithm differs from the kernel-based

localization algorithms discussed so far in which the physical coordinate of a device

(tag/AP) is ‘directly’ expressed as a weighted nonlinear function of the RSS vectorst.

In other words, the function of coordinate estimate,f(x̂t), in (1.1) was the coordinate

estimate itself,i.e., f(x̂t) = x̂t. In the linear signal-distance map algorithm,f(x̂t) is

the log of the distance betweenx̂t and each AP inH(t), i.e.,

f(x̂t) = [log ||x̂t − xi1 ||, . . . , log ||x̂t − xin ||]T

where{ii, . . . , in} = H(t) [20]. In this algorithm, we first estimatef(x̂t), and then

use the estimatedf(x̂t) and the known coordinates of the APs to position the tag, using

methods like multilateration. Specifically, multilateration can be viewed as inversef−1



1.2. KERNEL METHODS 17

function. In this section, we present a mathematical formulation of this algorithm in

the framework of kernel methods developed in Section 1.2.2.

A key aspect of this localization algorithm is determing therelationship between the

pair-wise RSS measurements between the APs and their geographical distances. Let

the log-distance estimate between a tag,t, and AP,k, be represented byδk,t, such that

the estimated log-distance vector of the tag to the in-rangeAPs,H(t), be represented

by δt = [δ1,t, . . . , δ|H(t)|,t]. Following the same notation of Section 1.2.1 and using

(1.1), the estimated log-distance vector of the tag,δ̂t, is given by,

f(x̂t) = δ̂t =

N
∑

i=1

αiφi(st), (1.16)

whereαi ∈ R
|H(t)|,N denotes the total number of deployed APs,H̃(t) = {1, . . . , N}

and,

α0 = 0, (1.17)

φi(st) = e
T
i st

whereei is a column vector whosejth element,ei(j), is given as,

ei(j) =

{

1, if i = j

0, otherwise
(1.18)

Note thatαi is a column vector of the same length asδt. Once the log-distance to

every known location AP in the setH(t) is estimated, the coordinate of the tag can be

determined using techniques like multilateration.

From (1.16), we can observe that the log-distance estimate of between a tag and

AP is alinear function of the raw RSS. The basis for this linearity comes from existing

radio propagation models such as the log-distance path-loss model [29]. A typical log-

distance path-loss model represents the received powerPr at a distanced from the

transmitter as,

Pr = Π0 − 10n log10 d.

So, one might represent the log-distance as

log10 d =
Π0 − Pr

10n
(1.19)

which shows that the log-distance is linear with respect to the received signal strength
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Pr. Technically, (1.19) is affine while (1.16) is linear, however, (1.19) shows some

motivation for the formulation of log-distance as linear with RSS.

Estimation of Parameters: In the linear signal-distance map algorithm the only pa-

rameters that need to be estimated are the coordinate weights{αi}, ∀ i ∈ {1, . . . , N}.

A least-squares approach is used. As in the radial basis function localization algorithm,

let the coordinate weight matrix,A, be represented as,A = [α1, . . . ,αN ]T . The least

squares solution gives the estimate of coordinate weight matrix as,

A = (STS)−1ST log(D), (1.20)

whereS denotes the signal strength matrix such that,

S = [si1 , . . . , sin ], where {i1, . . . , in} = H(t)

and,D is the Euclidean AP distance matrix, whosei, j element is the Euclidean dis-

tance between APi and APj, ||xi − xj ||, andlog(D) is element-wise logarithm on

elements of the matrixD.

Example 1.4 Revisit Example Framework

Consider the wireless network of Fig. 1.2. The goal of this example is to estimate the

coordinate of the tag,̂xt using the linear signal-distance map localization algorithm.

Solution:As in the previous examples, we start with the estimation of parameters.

Using known coordinates of the APs, the distance matrixD is:

D =













0 3.0 4.2 3.0

3.0 0 3.0 4.2

4.2 3.0 0 3.0

3.0 4.2 3.0 0













.

Note: Typically, before taking the logarithm of matrixD, the diagonal is replaced

by a small positive valueǫ, in order to avoid taking logarithm of zero. It has been

recommended in [20] to take the value ofǫ = dmin/e, wheredmin is the minimum

value of the off-diagonal elements of the matrixD. In our example,dmin = 3.0 m

and, hence,ǫ = 1.1 m.

The RSS matrixS in (1.20) is constructed from Table 1.1. Using the matricesS
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andD, the coordinate weight matrixA is determined using (1.20) as,

A =













−0.032 0.001 0.015 −0.004

−0.005 −0.025 −0.006 0.002

0.014 0.003 −0.031 0.009

−0.006 0.006 −0.006 −0.021













,

in which rowi corresponds to the optimized coordinates of APi in the “data space”,

αT
i . Using the estimated values of{α1,α2,α3,α4} in (1.16), the estimated log-

distance of the tag to the four APs,δ̂t is:

δ̂t = [1.48, 1.11, 0.75, 0.84]T .

Using this estimated log-distance to the APs, the coordinate estimate of the tag

is determined using methods of multilateration, which are discussed in the other

chapters of this book. Instead, in this example, we use a simple grid search method

in which distances are computed between each grid point and the four APs. The

grid point which gives the least squared error with the estimated distances to the

four APs,δ̂t, is the desired coordinate of the tag. Using this method, thecoordinate

estimate of the tag is computed as,

x̂t = [3.5, 2.1]T

Compared to the actual tag coordinate, the linear signal distance map-based coor-

dinate estimate has an error of 0.51 m.

1.2.7 Summary

This section first presented a mathematical framework for localization using kernel

methods. Next, we showed through four RSS-based localization algorithms, how the

common framework, represented in (1.1), can be applied to different positioning algo-

rithms. The various parameters and their differences and similarities are presented in

Table 1.3.

1.3 Numerical Examples

For the purposes of obtaining an intuitive understanding ofthe advantages of kernel

methods in localization algorithms, we show some numericalexamples. Specifically,
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LM GK RBF SDM
f(x̂t) x̂t x̂t x̂t δ̂t

αi Actual AP Actual AP Optimized Coords Optimized Coords
coords,xi coords,xi in “Loc. space” in “Data space”

φi(st) Unitless weight Unitless weight Unitless weight RSS (dBm) from
determined by determined by determined by tag to APi

(1.2) (1.5) (1.11)
α0 0 0 Centroid of 0

all deployed APs
H̃(t) Topk APs All APs All APs All in-range APs

length of N d using lengthN lengthN
st (1.8)

Table 1.3: Table summarizing the similarities and dissimilarities of LANDMARC
(LM), Gaussian kernel (GK), radial basis function (RBF) andlinear signal-distance
map (SDM) localization algorithms.

we compare the coordinate estimation of kernel-based localization algorithms, in an

example setting, with that of a maximum likelihood coordinate estimation (MLE) using

the log-normal shadowing model. Before we proceed with the example, we briefly

describe the MLE algorithm.

1.3.1 Maximum Likelihood Coordinate Estimation

A commonly used statistical model for radio propagation is the log-distance path-loss

model, in which the shadowing is modeled as log-normal (i.e., Gaussian if expressed in

dB). Within this model, the dB RSS between devicesi andj is represented as [29],[30],

si,j = Π0 − 10np log10 ||xi − xj ||+Xi,j (1.21)

whereΠ0 represents the RSS at a reference distance of one meter,np represents the

path-loss exponent, andXi,j (in dB) is the fading error, modeled as a Gaussian random

variable with a standard deviation (in dB) ofσdB.

Estimating Coordinate from RSS: Given the path-loss model parameters in (1.21),

the coordinate of the tag can be estimated by maximizing the likelihood ofst or mini-

mizing the negative log-likelihood. The negative log-likelihood ofst is given by (1.22),

L(st|xt, np,Π0) = C +
1

2σ2
dB

∑

j∈H(t)

[st,j − (Π0 − 10np log10 ||xt − xj ||)]2 (1.22)
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whereC is a constant. Note that the negative log-likelihood equation (1.22) assumes

that the shadowing on links are mutually independent. This is a simplifying assumption

as it has been observed that geographically proximate linksexhibit correlated shadow-

ing [13].

The maximum likelihood coordinate estimate of the tag,x̂
MLE
t , can be determined

by minimizing the negative log-likelihood function of (1.22),

x̂
MLE
t = argmin

xt

∑

j∈H(t)

[st,j − [Π0 − 10np log10 ||xt − xj ||]]2 (1.23)

In the likelihood equation of (1.22), the path-loss parametersnp andΠ0 were as-

sumed to be known. These parameters can be estimated using the pair-wise RSS mea-

surements between APs and their known locations. Specifically, a linear regression is

performed on the pair-wise RSS measurements and log-distances, computed using the

known locations, to give the path-loss parametersnp andΠ0 [31].

Implementation Details: Due to the lack of an analytical solution to (1.23), the min-

imum is computed by using abrute-forcegrid search over possible coordinates ofxt.

The deployment area is divided into a grid of predetermined size, which determines

the resolution of the coordinate estimate. At each grid point the value of negative log-

likelihood,L(st|xt, np,Π0), is determined by using (1.22). The grid point which has

the minimum negative log-likelihood is the MLE coordinate estimate of the tag,̂xMLE
t .

The maximum likelihood coordinate estimation of (1.23) suffers from computa-

tional disadvantage. Compared to the coordinate estimation of (1.1) using kernel meth-

ods, there is no closed form solution for minimizing the the negative log-likelihood of

(1.23). Typically, for real-time implementation, one mustuse numerical optimization

methods [31].

1.3.2 Description of Comparison Example

In this section, we illustrate through example the advantages of kernel-based position

estimation over model-based estimation. Consider a simplenetwork of four APs placed

at the corners of a square with a wall separating them, as shown in Fig. 1.3. We consider

two tag positions, one at the center of the network and the other at the edge. Using this

AP placement, we generate RSS values using (1.21) whereXi,j includes the wall loss

if the line between transmitter and receiver crosses through the wall. Specifically, the

RSS,si,j , between devicesi andj is computed using (1.21) withnp = 2 andXi,j
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Figure 1.3: Position of APs and tags. There is a wall separating the network, repre-
sented by a black vertical line.

given as,

Xi,j =

{

Lw + Yi,j , if link (i, j) passes through the wall

Yi,j , otherwise
(1.24)

whereYi,j is the shadowing loss, modeled as a zero mean i.i.d. Gaussianin dB random

variable,i.e.,

Yi,j [dB] ∼ N (0, σ2
dB)

andLw is the additional loss incurred when passing through a wall.The channel pa-

rameters used for generating the RSS vectors are tabulated in Table 1.4.

parameter Description Value
np Path-loss exponent 2
Lw Loss across wall 5.0 dB
σdB Fading std. deviation 0 dB and 6.0 dB
Π0 Reference RX Power -40 dBm

Table 1.4: Parameter description and values used in the simulation of network. The
values are assumed to bea priori unknown to the localization algorithm.

Note that the channel parameters given in Table 1.4 are assumed to bea priori

unknown to the MLE algorithm. The path-loss parameters,np andΠ0 in (1.23), are
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estimated using the pairwise RSS measurements between the APs and their known lo-

cations. Specifically, a linear regression is performned onthe pair-wise RSS measure-

ments and log-distances, determined using the known locations of the APs [31, 32]. In

determining the path-loss, the most recent RSS measurementbetween the AP pair is

used.

Example 1.5

Consider the scenario when the shadowing standard deviation,σdB = 0. A noise vari-

ance of zero dB is practically not possible, but, nevertheless, it helps in understanding

the effects of shadowing on coordinate estimation, with no other other fading losses.

Links that pass through the wall suffer an additional loss ofLw dB due to transmission

through the wall.

Solution:The coordinate estimates for different kernel algorithms discussed in the

previous section are shown in Fig. 1.4. In addition to kernel-based algorithms,

we plot the coordinate estimate using MLE, described in Section 1.3.1. For a fair
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Figure 1.4: Plot showing the coordinate estimates for different localization algorithms
along with the position of the tag. In (a) the tag is at the center of the network and in
(b) the tag is at the edge of the network.

comparison between algorithms, we keep the set of the APs that contribute to the

kernel, for different algorithms, the same and equal to four, i.e., |H̃(t)| = 4 for all

algorithms.

We also studied the performance of the coordinate estimation algorithms when differ-

ent sets of APs contribute to the kernel. We observed that 1.)the Gaussian kernel and

2.) the radial basis function based algorithms have the bestperformance when all the

in-range APs contribute to the kernel. However, for the LANDMARC localization al-
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gorithm, the best AP set̃H(t) depends on the relative location of the tag in the network.

For tags located at the center of the network, (e.g., Fig. 1.4(a)), taking all in-range APs

as the set̃H(t) performs best. On the other hand, for tags located on the edgeof the

network, taking the top three APs as the setH̃(t) performs the best.

We observe that the kernel-based algorithms for coordinateestimation perform bet-

ter compared to the MLE. One can also observe that the MLE coordinate estimates have

errors in the direction away from the wall. This is intuitive, because the presence of a

wall between an AP and a tag, would lower the RSS of the transmitting tag. Conse-

quently, the log-normal propagation model would predict that the tag is further away

from the AP, which is behind the wall. For example, in Fig. 1.3, APs 1 and 2 are be-

hind the wall for the two tag locations and these APs would think the tag is further away

from them. Consequently, the coordinate estimate would point in the direction away

from the wall. Statistically, the coordinate estimate of the tag is said to have a bias,

pointing away from the wall. More bias analysis is performedin the next example.

This example clearly demonstrates the effect of shadowing and how kernel-based

methods can overcome these effects. Specifically, shadowing due to walls or obstacles

causes a reduction in RSS from the mean RSS. General propagation models, like the

one in (1.21), would account this loss to the loss suffered because of distance, in order

to minimize the errorXi,j . Consequently, even in the absence of noise variance, the

estimates are biased in the direction away from the source ofobstruction. Kernel-

based algorithms, on the other hand, “learn” to adapt to thisloss because they have

more freedom in the parameters than a pure model-based approach and thus, overcome

the limitations of the model. Kernel methods interpolate the RSS and the physical

coordinate using the AP pair-wise RSS measurements and AP known coordinates.

Example 1.6

In this example, in addition to the wall loss of Example 1.5, the effect of shadowing

variance is added in the path-loss equation (1.24),i.e., σdB > 0. Independent Monte

Carlo trials are run and the coordinate of the tag is estimated in each trial. A one stan-

dard deviation covariance ellipse and bias performance of the location estimates is then

determined. The one-standard deviation covariance ellipse is a useful representation of

the magnitude and variation of the coordinate estimates [33].

Solution: The covariance ellipse along with the bias performance is shown in

Fig. 1.5 and Fig. 1.6. In the Fig. 1.5, the tag is located at thecenter of the net-

work (at[2, 2]T m) and in the Fig. 1.6, the tag is located at the edge of the network

(at [3, 2]T m).

One of the most important lessons learned from this example is that the kernel-based
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Figure 1.5: Bias plot showing the mean (×) of tag location estimates over 500 trials
for LANDMARC (LM), Gaussian kernel (GK), radial basis function (RBF) and linear
signal-distance map (SDM) localization algorithms. Actual tag location (•) is con-
nected to the mean location estimate (——). Plot also shows 1-σ covariance ellipse
(—) for the coordinate estimates. The APs (•) are at the corners of the grid. The tag is
located at the center of the network.
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Figure 1.6: Bias plot showing the mean (×) of tag location estimates over 500 trials
for LANDMARC (LM), Gaussian kernel (GK), radial basis function (RBF) and linear
signal-distance map (SDM) localization algorithms. Actual tag location (•) is con-
nected to the mean location estimate (——). Plot also shows 1-σ covariance ellipse
(—) for the coordinate estimates. The APs (•) are at the corners of the grid. The tag is
located at the edge of the network.
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localization algorithms perform better than the MLE in terms of average RMSE. This

can be easily observed in Fig. 1.5 and Fig. 1.6, where the MLE coordinate estimates,

Fig. 1.5(e) and Fig. 1.6(e), suffer from both high bias and high variance. The per-

formance improvement for kernel-based localization algorithms can be explained as

follows. In the kernel-based methods, the estimated coordinate of a tag is a weighted

average of some function of the coordinates of the APs that are in range of the tag.

These weights are distinct for the distinct APs and each AP maintains a table of its

weights for all the other APs in the network. The determination of the weights are

different for different algorithms. Consequently, the APsthat are on a particular side of

the wall would have lower weights for the APs that are on the other side. For example,

in Fig. 1.5 and Fig. 1.6, APs 1 and 2 have lower weights assigned to them by AP 3 as

compared to the weight assigned to AP 4.

On the other hand, maximum likelihood coordinate estimation algorithm assumes a

commonstatistical channel model for all the links in the network. Consequently, when

minimizing the overall error, the path-loss exponent, which signifies the slope of the

decay in RSS with respect to log-distance, is higher, similar to Example - 1. Since

all the links are weighted equally, this causes a high bias inthe maximum likelihood

coordinate estimates, pointing away from the wall.

In summary, the advantage of the kernel-based localizationalgorithms over MLE is

that in the kernel-based algorithms the APs which naturallyhave significantly different

RSS values compared to the tag are weighted less compared to the other APs. On the

other hand, in maximum likelihood coordinate estimation, all the in-range APs have

equal weights when computing the likelihood ratio and thus,the APs which have sig-

nificantly different RSS values compared to the tag dominatethe coordinate estimates

pushing the tag further away from its actual location.

1.4 Evaluation Using Measurement Data Set

In this section, we compare the performance of the differentkernel-based localization

algorithms introduced and formulated in the previous sections. Performance is quanti-

fied using two related measures:

• Bias: Bias is the difference between the average coordinate estimate (over many

trials) and the actual coordinate. In this chapter, we show the bias using a bias

plot, in which the actual coordinate and average coordinateestimate are plotted

together for each tag. Bias is a consistent error in the coordinate estimate.

• Root-mean squared error (RMSE): The RMSE is used to summarize both bias
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and variance effects. The “squared error” is the differencebetween the coordi-

nate estimate and the actual location, squared, with units of m2. The RMSE is

then the square root of the average squared error (averaged over all tags in the

deployment). Bias and error variance are two components of RMSE. The two

together, quantified by RMSE, provide a good summary metric for quantifying

localization performance.

In the rest of this section, we describe the environment along with the processing

of the experimental data and the evaluation procedure for each data set.

1.4.1 Measurement Campaign Description

The measurement data consists of the pairwise RSS measured between 224 known-

location wireless APs deployed on a single floor of a hospitalwith an area of 16,700

square meters. These APs are wireless transceivers which operate in the 2.4 - 2.48

GHz frequency band and transmit at a constant power. The APs have a limited range,

and as such, the network formed by the deployed APs is not fully connected. Each

AP has a limited set of neighboring APs to which it can hear andmake RSS measure-

ments. The RSS values were collected for a period of 10 minutes during which 40 RSS

measurements were collected for each measurable link.

Since there are no “tags” in the measurement data, we simulate an unknown loca-

tion tag using leave-one-out (LOO) procedure. In the LOO procedure, whenever we

need to “create” a known-location tag, we “change” an AP intoa tag for purposes of

evaluation. We expect the RMSE for the leave-one-out procedure to be higher than

would be seen in deployed systems with tags. APs are deployedpurposefully to be

spatially separated from one another, for purposes of achieving coverage with a small

number of APs. So when one AP is converted to a tag, its nearestneighboring APs are

relatively far from it, compared to the nearest neighbors ofan actual tag that would be

used in the system when no APs were “left out”.

1.4.2 Evaluation Procedure

It was mentioned in Section 1.4.1 that the measurement data consists of pairwise RSS

between APs only. In order to simulate a tag measurement, we employ the leave-one-

out approach. As mentioned before, an AP is assumed as a tag and its position is

estimated based on the remaining APs in the deployment. Whenwe refer to a “tag” in

this section, we mean the left-out AP which is used as a known-location tag.
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The RMSE for each particular tag is computed based on the RSS collected over a

period of 10 minutes. This procedure is repeated for all the APs in the deployment.

When reporting an average RMSE, we provide two numbers. First, we average over

all the tag (left-out AP) locations. Second, we average over just the APs in what we

consider to be the “sweet spot”, that is, APs in the middle of the largest section of the

floor plan shown by (∗) in Fig. 1.7. These APs should have lower bias because they

are not at the edge of the building and therefore the edge of the network. The RMSE in

the sweet spot provides intuition about location estimation in “good” areas, while the

RMSE for all APs provides the average error result.
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Figure 1.7: Coordinates of APs in the measurement analysis.The APs represented by
(∗) are said to be in “sweet spot” of the deployment.

1.4.3 Results

In this section, we present the results of applying the four kernel-based localization

algorithms, discussed in Section 1.2, on the measurement data set. Specifically, we

quantify the algorithms with the two related measures namely, 1.) bias, and 2.) root-

mean squared error.



30CHAPTER 1. KERNEL METHODS FOR RSS-BASED INDOOR LOCALIZATION

Bias Results

Figure 1.8 shows the bias plot for the four kernel-based localization algorithms and

maximum-likelihood coordinate estimation. As mentioned before, bias is a consistent

error in the coordinate estimates. In addition, we compute the average bias for each

localization algorithm, which is shown in Table 1.5. We observe that the lowest bias is

observed for the signal-distance map localization algorithm. Specifically, the average

bias is 3.72 m. The coordinate estimates are more biased for the maximum-likelihood

coordinate estimation algorithm, with an overall bias of 5.41 m and 5.01 m for the

sweet spot region. Moreover, as one would expect, the average bias for the APs located

in the sweet spot of the deployment region is lower compared to the overall average

bias.

RMSE Results

In most cases, the average RMSE provides a good metric for quantifying the localiza-

tion performance. The average RMSE results for different localization algorithms are

tabulated in Table 1.5. From the table, we observe that all the kernel-based localization

algorithms perform better than the MLE, which is a pure modelbased approach. In

fact, the linear signal distance map localization algorithm performs the best with an

overall improvement of 37% over the MLE, while the improvement is 55% for the APs

in the sweet spot region.

Algorithm Avg. bias (m) Avg. RMSE (m)
O.A. S.S. O.A. S.S.

LANDMARC 5.01 3.28 5.48 4.06
Gaussian Kernel 5.25 3.30 5.87 4.04

Radial basis function 4.16 2.75 4.87 3.53
Linear SDM 3.72 2.49 4.31 3.18

MLE 5.41 5.01 6.87 7.04

Table 1.5: Table showing the overall (O.A.) and sweet spot (S.S.) performance of dif-
ferent localization algorithms for the real-world measurement data.

1.5 Discussion and Conclusion

This chapter explores the advantages and features of a classof statistical learning al-

gorithms, called kernel methods, as used in RSS-based localization. Kernel methods
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Figure 1.8: Bias plot showing the mean (×) of location estimates of the APs when it is
emulated as a tag using (a) LANDMARC, (b) Gaussian kernel, (c) radial basis function,
(d) linear signal-distance map, and (e) Maximum-likelihood localization algorithms. In
all the plots, actual AP location (•) is connected to the mean location estimate (——).
The APs in “sweet spot” are marked with (•) and are inside the box.
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provide a simplified framework for localization without anya priori knowledge of the

complicated relationship between the RSS and position. Instead, these relationships are

encapsulated in parametrized nonlinear functions. Algorithms based on kernel meth-

ods inherently account for spatial correlation in the RSS, which most model-based

approaches fail to capture. Kernel methods do not rely solely on a database of train-

ing measurements, like RSS fingerprinting algorithms, which must be measured very

densely in space. In this chapter, a calibration scheme is presented which attempts to

minimize the calibration requirements of kernel-based algorithms. Specifically, in this

scheme, training is performed simultaneously while the system is online, using the AP

pairwise measurements.

A simulation example of a simple four AP network is presentedto provide better

understanding of kernel methods. The results show that the kernel-based algorithms

provide better location accuracy compared to the model-based algorithms, in terms of

average RMSE. This is because kernel methods provide an adaptive weighting scheme

for the APs. Within this weighting scheme, the APs that have significantly different

RSS values compared to the tag are weighted less compared to the other APs.

An extensive experimental evaluation is performed for all the kernel-based algo-

rithms and the MLE using a data set collected from a large hospital facility. These

real-world experimental results indicate that all four kernel-based algorithms perform

better than the MLE. In fact, the linear signal-distance maplocalization algorithm has

the best performance in terms of average RMSE. The linear signal distance map lo-

calization algorithm has an overall RMSE reduction of 37% over the MLE, while the

RMSE reduction is as high as 55% for the “sweet spot” areas of the deployment re-

gion. The complexities of the fading environment and the complicated nature of the

large-scale real-world deployment require more parameters than are available to a sin-

gle log-distance path-loss model. In particular, even though the linear signal-distance

map localization algorithm assumes a linear with respect tolog distance relationship

for RSS, the parameters of the linear relationship are learned and adapted locally to the

RSS measured at each AP.

Another perspective of this analysis is that spatial correlation in the RSS can be

particularly useful in wireless localization. Typically,geographically proximate links

would encounter similar environmental obstructions and the shadowing loss suffered

on these links would be correlated. Better understanding ofthe area can be obtained

when considering spatial correlations. Kernel methods area strong candidate because

thekernelin a kernel-based algorithm provides a spatial similarity measure. Addition-

ally, kernel models are typically linear with respect to theparameters, allowing good

analytical properties, yet are nonlinear with respect to the RSS measurements.
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[8] T. Roos, P. Myllymäki, H. Tirri, P. Misikangas, and J. Sievänen, “A Probabilistic

Approach to WLAN User Location Estimation,”International Journal of Wire-

less Information Networks, vol. 9, no. 3, pp. 155–164, 2002.

[9] M. Youssef and A. Agrawala, “The Horus Location Determination System,”Wire-

less Networks, vol. 14, no. 3, pp. 357–374, 2008.

33



34 BIBLIOGRAPHY

[10] T. King, S. Kopf, T. Haenselmann, C. Lubberger, and W. Effelsberg, “COMPASS:

A Probabilistic Indoor Positioning System based on 802.11 and Digital Com-

passes,” inProceedings of the 1st International Workshop on Wireless Network

Testbeds, Experimental Evaluation & Characterization. ACM, 2006, p. 40.

[11] P. Bahl and V. Padmanabhan, “RADAR: An In-building RF-based User Location

and Tracking System,” inIEEE INFOCOM, vol. 2, 2000, pp. 775–784.
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[21] T. Roos, P. Myllymäki, and H. Tirri, “A Statistical Modeling Approach to Loca-

tion Estimation,”IEEE Transactions on Mobile Computing, pp. 59–69, 2002.

[22] C. Bishop,Pattern Recognition and Machine Learning. Springer New York:,

2006.

[23] Y. Gwon and R. Jain, “Error Characteristics and Calibration-free Techniques for

Wireless LAN-based Location Estimation,” inProceedings of the Second Inter-

national Workshop on Mobility Management & Wireless AccessProtocols. ACM

New York, NY, USA, 2004, pp. 2–9.

[24] C. Bishop,Neural Networks for Pattern Recognition. Oxford Univ Pr, 2005.

[25] M. Brunato and R. Battiti, “Statistical Learning Theory for Location Fingerprint-

ing in Wireless LANs,”Computer Networks, vol. 47, no. 6, pp. 825–845, 2005.

[26] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin,“The Elements of Statistical

Learning: Data Mining, Inference and Prediction,” vol. 27,no. 2, pp. 83–85,

2005.

[27] S. Kay, “Fundamentals of Statistical Signal Processing: Estimation Theory,”

Prentice-Hall Signal Processing Series, p. 595, 1993.

[28] G. Strang, “Linear Algebra and its Applications, 1988,” Hartcourt Brace Jo-

vanovich College Publishers.

[29] T. Rappaport,Wireless Communication: Principles and Practice, 2nd ed. Print-

ice Hall, 1996.

[30] H. Hashemi, “The indoor radio propagation channel,”Proccedings of the IEEE,

vol. 81, no. 7, pp. 943–968, July 1993.

[31] N. Patwari, A. Hero, M. Perkins, N. Correal, and R. O’Dea, “Relative Location

Estimation in Wireless Sensor Networks,”IEEE Transactions on Signal Process-

ing, vol. 51, no. 8, pp. 2137–2148, 2003.

[32] N. Patwari, Y. Wang, and R. O’Dea, “The importance of themultipoint-to-

multipoint indoor radio channel in ad hoc networks,” inIEEE Wireless Commu-

nications and Networking Conference,, vol. 2, 2002, pp. 608–612.



36 BIBLIOGRAPHY

[33] L. Paradowski, M. Acad, and P. Warsaw, “Uncertainty ellipses and their applica-

tion to interval estimation of emitter position,”IEEE Transactions on Aerospace

and Electronic Systems, vol. 33, no. 1, pp. 126–133, 1997.


