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Abstract

Methods from learning theory are used in the state space of linear dynamical and control systems in order to estimate 
relevant matrices and some relevant quantities such as the topological entropy. An application to stabilization via alge-
braic Riccati equations is included by viewing a control system as an autonomous system in an extended space of states 
and control inputs. Kernel methods are the main techniques used in this paper and the approach is illustrated via a series 
of numerical examples. The advantage of using kernel methods is that they allow to perform function approximation 
from data and, as illustrated in this paper, allow to approximate linear discrete-time autonomous and control systems 
from data.
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1 Introduction

This paper discusses several problems in dynamical sys-
tems and control, where methods from learning theory are 
used in the state space of linear systems. This is in contrast 
to previous approaches in the frequency domain [10, 11]. 
We refer to [11] for a general survey on applications of 
machine learning to system identification where similar 
problems have been treated using different techniques.

Basically, learning theory allows to deal with problems 
when only data from a given system are given. Reproduc-
ing Kernel Hilbert spaces (RKHS) allow to work in a very 
large dimensional space in order to simplify the underly-
ing problem. We will discuss this in the simple case when 
the matrix A describing a linear discrete-time system is 
unknown, but a time series from the underlying linear 
dynamical system is given. We propose a method to esti-
mate the underlying matrix using kernel methods. Appli-
cations are given in the stable and unstable case and for 
estimating the eigenvalues and topological entropy for a 

linear map. Furthermore, in the control case, estimation 
of the relevant matrices for a linear control system is done 
by viewing a linear control system as a dynamical system 
in the extended space of states and control inputs. Stabi-
lization via linear-quadratic optimal control is discussed.

The emphasis of the present paper is on the formulation 
of a number of problems in dynamical systems and control 
and to illustrate the applicability of our approach via a 
series of numerical examples. This paper should be viewed 
as a preliminary step to extend these results to nonlinear 
discrete-time systems within the spirit of [3, 4] where the 
authors showed that RKHSs act as “linearizing spaces” and 
that this approach offers tools for a data-based theory for 
nonlinear (continuous-time) dynamical systems. The 
approach used in these papers is based on embedding a 

nonlinear system in a high (or infinite) dimensional reproduc-

ing kernel Hilbert space (RKHS) where linear theory is applied. 
To illustrate this approach, consider a polynomial in ℝ , 

p(x) = � + �x + �x2 where �, � , � are real numbers. If we 
consider the map �∶ℝ → ℝ

3 defined as �(x) = [1 x x
2]T 
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then p(x) = � ⋅ [1 x x2]T = � ⋅ �(x) is an affine polynomial 
in the variable �(x) . Similarly, consider the nonlinear dis-
crete-time system x(k + 1) = x(k) + x2(k) . By rewriting it 

as x(k + 1) = [1 1]

[

x(k)

x(k)2

]

 , the nonlinear system becomes 

linear in the variable [x(k) x(k)2].
The contents are as follows: In Sect. 2, the problem is 

stated formally and an algorithm based on kernel meth-
ods is given for the stable case. In Sect. 3, the algorithm is 
extended to the unstable case. In particular, the topologi-
cal entropy of linear maps is computed (which boils down 
to computing unstable eigenvalues). In Sect. 4, identifi-
cation of linear control systems is considered and Sect. 5 
discusses their stabilization. Every section contains several 
numerically computed examples (via MATLAB) illustrating 
the approach. Section 6 draws some conclusions from the 
numerical experiments. For the reader’s convenience we 
have collected in the appendix basic concepts from learn-
ing theory as well as some hints to the relevant literature. A 
preliminary version of this article appeared in Hamzi and 
Colonius [9]

2  Statement of the problem

Consider the linear discrete-time system

where A = [ai,j] ∈ ℝ
n×n . We want to estimate A from the 

time series x(1) + �
1
 , … , x(N) + �

N
 where the initial condi-

tion x(0) is known and �
i
 are distributed according to a 

probability measure �
x
 that satisfies the following condi-

tion (this is the Special Assumption in [18]).
Assumption The measure �

x
 is the marginal on X = ℝ

n 
of a Borel measure � on X ×ℝ with zero mean supported 
on [−M

x
,M

x
],M

x
> 0.

One obtains from (1) for the components of the time 
series that

For every i we want to estimate the coefficients 
aij , j = 1,… , n . They are determined by the linear maps 
f ∗
i
∶ℝ

n
→ ℝ given by

This problem can be reformulated as a learning problem 
as described in the “Appendix” where f ∗

i
 in (3) plays the role 

of the unknown function (74) and (x(k), x
i
(k + 1) + �

i
) are 

the samples in (76).

(1)x(k + 1) = Ax(k),

(2)xi(k + 1) =

n
∑

j=1

aijxj(k).

(3)(x1,… , xn) ↦

n
∑

j=1

aijxj .

We note that in [18], the authors do not consider time 
series and that we apply their results to time series.

In order to approximate f ∗
i

 , we minimize the criterion in 
(79). For a positive definite kernel K, let fi be the kernel expan-
sion of f ∗

i
 in the corresponding RKHS H

K
 . Then fi =

∑

∞

j=1
ci,j�j 

with certain coefficients cij ∈ ℝ and

where (�j ,�j) are the eigenvalues and eigenfunctions 
of the integral operator L

K
∶L

2

�
(X) → C(X) given by 

(LK f )(x) = ∫ K (x, t)f (t)d�(t) with a Borel measure � on X  . 
Thus LK�j = �j�j for j ∈ ℕ

∗ and the eigenvalues �j ≥ 0.
Then we consider the problem of minimizing over (c

i,1, 
… , c

i,N) the functional

where yi(k) ∶= xi(k + 1) + �i = f ∗
i
(x(k)) + �i and �

i
 is a regu-

larization parameter.
Since we are dealing with a linear problem, it is natural to 

choose the linear kernel k(x, y) = ⟨x, y⟩ . Then the solution 
of the above optimization problem is given by the kernel 
expansion of x

i
(k + 1) , i = 1,… , n,

where the cij satisfy the following set of equations:

with

This is a consequence of Theorem 2.
From (2), we have

(4)‖fi‖HK
=

∞�

j=1

c2
i,j

�j

,

(5)Ei =
1

N

N�

k=1

(yi(k) − fi(x(k)))
2 + �i‖fi‖2HK

,

(6)yi(k) ∶= xi(k + 1) =

N�

j=1

cij⟨x(j), x(k)⟩,

(7)

⎡
⎢⎢⎣

xi(1)

⋮

xi(N)

⎤⎥⎥⎦
=

�
N�Id + �

�⎡⎢⎢⎣

ci1

⋮

ciN

⎤⎥⎥⎦
,

(8)

� ∶ =

⎡
⎢⎢⎣

∑n

𝓁=1
x𝓁(1)x𝓁(0) ⋯

∑n

𝓁=1
x𝓁(N)x𝓁(0)

⋮ ⋯ ⋮∑n

𝓁=1
x𝓁(1)x𝓁(N − 1) ⋯

∑n

𝓁=1
x𝓁(N)x𝓁(N − 1)

⎤
⎥⎥⎦
.

xi(k + 1) =

N�

j=1

cij⟨x(j), x(k)⟩ =
N�

j=1

cijx(j)
T
⋅ x(k)

=

N�

j=1

n�

𝓁=1

cijx𝓁(j)x𝓁(k)

=

n�

𝓁=1

N�

j=1

cijx𝓁(j)x𝓁(k).
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Then an estimate of the entries of A is given by

This discussion leads us to the following basic algorithm.
Algorithm A If the eigenvalues of A are all within the 

unit circle, one proceeds as follows in order to estimate 
A. Given the time series x(1),… , x(N) solve the system 
of Eq. (7) to find the numbers cij and then compute â

i�
 

from (9).
Before we present numerical examples and modifica-

tions and applications of this algorithm, it is worthwhile 
to note the following preliminary remarks indicating 
what may be expected.

The stability assumption in algorithm A is imposed, 
since otherwise the time series will diverge exponen-
tially. Then, already for a moderately sized number of 
data points ( N ≈ 102 ) Eq.  (7) will be ill conditioned. 
Hence for unstable A, modifications of algorithm A are 
required.

While for test examples one can compare the entries 
of the matrix A and its approximation Â , it may appear 
more realistic to compare the values x(1),… , x(N) of the 
data series and the values x̂(1),… , x̂(N) generated by the 
iteration of the matrix Â.

In general, one should not expect that increasing the 
number of data points will lead to better approxima-
tions of the matrix A. If the matrix A is diagonalizable, for 
generic initial points x(0) ∈ ℝ

n the data points x(k) will 
approach, for N → ∞ , the eigenspace for the eigenvalue 
with maximal modulus. For general A and generic initial 
points x(0) ∈ ℝ

n , the data points x(N) will approach for, 
N → ∞ , the largest Lyapunov space (i.e., the sum of the 
real generalized eigenspaces for eigenvalues with maxi-
mal modulus). Thus in the limit for N → ∞ , only part of 
the matrix can be approximated. A detailed discussion 
of this (well known) limit behavior is, e.g., given in Colo-
nius and Kliemann [6]. A consequence is that a medium 
length of the time series should be adequate.

This problem can be overcome by choosing the regu-
larization parameter � in (5) and (7) using the method 
of cross validation described in [12]. Briefly, in order to 
choose � , we consider a set of values of regularization 
parameters: we run the learning algorithm over a sub-
set of the samples for each value of the regularization 
parameter and choose the one that performs the best 
on the remaining data set. Cross validation helps also in 
the presence of noise and to improve the results beyond 
the training set.

A theoretical justification of our algorithm is guaran-
teed by the error estimates in Theorem 5. In fact, for the 

(9)âi� =

N
∑

j=1

ci,jx�(j).

linear dynamical system (1), we have that f ∗ in (74) is the 
linear map f ∗(x) = fi(x) in (3) and the samples � in (76) 
are (x(k), x

i
(k + 1) + �

i
) . Moreover, by choosing the linear 

kernel k(x, y) = ⟨x, y⟩ we get that f ∗ ∈ HK  . In this case, 
(84) has the form

where ‖xi(k + 1)‖HK
=
∑∞

j=1

c2
i,j

�j

 . See [3] for more details 

about error estimates in the general nonlinear case.
The first term in the right hand side of inequality (10) 

represents the error due to the noise (sampling error) 
and the second term represents the error due to regu-
larization (regularization error) and the finite-number of 
samples (integration error).

Next, we discuss several numerical examples, begin-
ning with the following scalar equation.

Example 1 Consider x(k + 1) = �x(k) with � = 0.5 . With the 
initial condition x(0) = − 0.5 , we generate the time series 
x(1),… , x(100) . Applying algorithm A with the regulariza-
tion parameter � = 10−6 we compute 𝛼̂ = 0.4997 . Using 
cross validation, we get that 𝛼̂ = 0.5 with regularization 
parameter � = 1.5259 × 10−5 . When we introduce an i.i.d 
perturbation signal �

i
∈ [− 0.1, 0.1] , the algorithm does not 

behave well when we fix the regularization parameter. 
With cross validation, the algorithm works quite well and 
the regularization parameter adapts to the realization of 
the s ignal  �

i
 .  Here,  for  e(k) = x(k) − x̂(k) with 

x(k + 1) = �x(k) and x̂(k + 1) = 𝛼̂x̂(k) ,  we get that 

‖e(300)‖ =

�∑300

i=1
e2(i) = 0.0914  and 

�

∑300

i=100
e2(i) =

1.8218 × 10−30.
We obser ve an analogous behavior of the  

algorithm when the data are generated from 
x(k + 1) = �x(k) + �x(k)2 where the algorithm works well 
in the presence of noise and structural perturbations when 
using cross validation. When � = 0.1 and with an i.i.d per-
turbation signal �

i
∈ [− 0.1, 0.1] , 𝛼̂ varies between 0.38 and 

0.58 depending on the realization of �
i
 but 

‖e(300)‖ =

�∑300

i=1
e2(i) = 0.2290 and 

�

∑300

i=100
e2(i) =

2.8098 × 10−30 which shows that the error e decreases 
exponentially and the generalization properties of the 
algorithm are quite good.

Example 2 Consider x(k + 1) = Ax(k) with matrix A given 
by

(10)

‖x̂i(k + 1) − xi(k + 1)‖2 ≤ 2Cx̄E samp + 2‖x(k + 1)‖2
K
(𝛾 + 8Cx̄𝛥),

(11)A ∶=

⎡
⎢
⎢
⎢
⎣

− 0.5 1 0 0

0 0.6 1 0

0 0 0.7 1

0 0 0 − 0.8

⎤
⎥
⎥
⎥
⎦

.
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For the initial condition x = [− 0.9, 0.1, 15, 0.2]� and with 
N = 100 data points, we get

We then simulate x(k + 1) = Ax(k) and x̂(k + 1) = Âx̂(k) 
for k = 0,… , 200 to test the accuracy of our approxima- 
tion beyond the interval k = 0,… , 100 . Then the norm  
of  the error  ej(k) = xj(k) − x̂j(k) ,  for  j = 1,… , 4  , 

‖ej(300)‖ =

�∑300

i=1
e2
j
(i) is of the order of 10−3 and 

�

∑300

i=100
e2
j
(i) is of the order of 10−11 which shows that the 

error e decreases exponentially and the generalization 
properties of the algorithm are quite good. The regulariza-
tion parameters are �

i
= 0.9313 × 10−9 for i = 1,… , 4.

Also in the presence of small noise �
i
∈ [− 0.01, 0.01] , 

the algorithm behaves well and the regularization parame-
ters adapt to the realization of �

i
 . For example, for a certain 

realizations of �
i
 , we obtain the regularization parameters

and the error ‖ej(300)‖ =

�∑300

i=1
e2
j
(i) is of the order of 

10−1 and 
�

∑300

i=100
e2
j
(i) is of the order of 10−9 .

Suppose that in addition to a small  noise 

�
i
∈ [−0.01, 0.01], there is a quadratic structural perturba-

tion, i.e.,

Then with cross validation for � = 0.001 the algorithm 
behaves well. For a particular realization of � , the error 

‖ej(300)‖ =

�∑300

i=1
e2
j
(i)  is between 5 and 15 but 

�

∑300

i=100
e2
j
(i) is of the order of 10−9 and the regularization 

parameters are

These examples show a very good behavior of the 
algorithm.

(12)

Â =

⎡
⎢
⎢
⎢
⎣

− 0.5000 1.0000 0.0000 − 0.0000

0.0000 0.6000 1.0000 0.0000

0.0000 − 0.0000 0.7000 0.9994

− 0.0000 0.0000 − 0.0000 − 0.7995

⎤
⎥
⎥
⎥
⎦

.

(13)
�1 = 0.0039, �2 = 2.4114 × 10−4,

�3 = 9.3132 × 10−10, �4 = 2 × 10−3

(14)x(k + 1) = Ax(k) + �

⎡
⎢
⎢
⎢
⎣

x
1
(k)2

x
2
(k)2

x
3
(k)2

x
4
(k)2

⎤
⎥
⎥
⎥
⎦

.

(15)
�1 = 0.5, �2 = 9.3132 × 10−10, �3 = 9.3132 × 10−10,

�4 = 9.3132 × 10−10.

3  Unstable case

Consider

where some of the eigenvalues of A are outside the unit 
circle. Again, we want to estimate A when the following 
data are given,

which are generated by system (16), thus x(k) = Ak−1x(1).
As remarked above, a direct application of the algo-

rithm A will not work, since the time series diverges fast. 
Instead, we construct a new time series from (17) associ-
ated to an auxiliary stable system.

For a constant 𝜎 > 0 we define the auxiliary system by

Thus

and with y(1) = x(1) one finds

If we choose 𝜎 > 0 such that the eigenvalues of A
�

 are in the 
unit circle, we can apply algorithm A to this stable matrix 
and hence we would obtain an estimate of A

�

 and hence 
of A. However, since the eigenvalues of the matrix A are 
unknown, we will be content with a somewhat weaker 
condition than stability of A

�

.
The data (17) for system (16) yield the following data 

for system (18):

We propose to choose � as follows: Define

Clearly, the inequality � ≤ ‖A‖ holds. We apply algorithm 
A to the time series y(k). This yields an estimate of A

�

 and 
hence an estimate Â of A.

For general A, this choice of � certainly does not guar-
antee that the eigenvalues of A

�

 are within the unit circle. 
However, as mentioned above, a generic data sequence 
x(k), k ∈ ℕ , will converge to the eigenspace of the eigen-

value with maximal modulus. Hence ‖x(k+1)‖
‖x(k)‖

 will approach 

the maximal modulus of an eigenvalue, thus this choice 
of � will lead to a matrix A

�

 which is not “too unstable”.

(16)x(k + 1) = Ax(k)with A ∈ ℝ
n×n,

(17)x(1), x(2),… , x(N),

(18)y(k + 1) = Ãy(k)with Ã ∶=
1

𝜎
A.

(19)y(k) =
(

A

�

)k−1

y(1)

(20)y(k) =
1

�
k−1

Ak−1x(1) =
1

�
k−1

x(k).

(21)y(1) ∶= x(1), y(2) ∶=
1

�

x(2),… , y(N) ∶=
1

�
N−1

x(N).

(22)� ∶= max

�
‖x(k + 1)‖
‖x(k)‖

, k ∈ {0, 1,… ,N}

�
.
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Example 3 Consider x(k + 1) = �x(k) with � = 11.46 . 
With the initial condition x(0) = − 0.5 , we generate the 
time series x(1),… , x(100) . The algorithm above with 
the regularization parameter � = 10−6 yields the esti-
mate 𝛼̂ = 11.4086 . Cross validation leads to the regu-
larization parameter � = 9.5367 × 10−7 and the esti-
mate 𝛼̂ = 11.4599 . In the presence of a small noise 

� ∈ [− 0.1, 0.1] , cross validation yields the regularization 
parameter � = 0.002 and the slightly worse estimate 
𝛼̂ = 11.1319.

We observe the same behavior in higher dimensional 
systems where the eigenvalues are of the same order of 
magnitude.

Example 4 Consider x(k + 1) = Ax(k) with

Using cross validation, we get that

for �
i
= 0.9313 × 10−9 , i = 1,… , 4.

For different realizations of a noise �
i
 of magnitude 

0.5 × 10−4 , cross validation gives a good approximation 
of A and the eigenvalues of A − Â are all within the unit 
disk with amplitude of the order of 10−3 showing that the 
dynamics of the error e(k) = x(k) − x̂(k) is asymptotically 
stable. For example, for a particular realization of �

i
 of mag-

nitude 0.5 × 10−4 , we get

with regularization parameters

The algorithm fails in the presence of quadratic structural 
perturbations. This is due to the choice of a linear kernel. A 
polynomial kernel, for example, would allow for nonlinear 

(23)A =

⎡
⎢
⎢
⎢
⎣

20 0 0 0

0 − 10 0 0

0 0 15 0

0 0 0 − 25

⎤
⎥
⎥
⎥
⎦

(24)

Â =

⎡
⎢
⎢
⎢
⎣

20.0000 0.0000 0.0001 0.0000

− 0.0000 − 10.0000 0.0000 − 0.0000

0.0000 − 0.0000 14.9998 0.0000

− 0.0000 − 0.0000 − 0.0000 − 25.0003

⎤
⎥
⎥
⎥
⎦

(25)

Â =

⎡
⎢
⎢
⎢
⎣

19.9635 0.0086 0.1365 − 0.0007

− 0.0177 − 10.0025 0.0379 − 0.0007

− 0.0177 − 0.0025 15.0376 − 0.0007

− 0.0132 − 0.0167 0.0065 − 25.0000

⎤
⎥
⎥
⎥
⎦

(26)

�1 = 1.9073 × 10−6, �2 = 9.3132 × 10−10, �3 = 9.3132 × 10−10,

�4 = 1.2207 × 10−4.

perturbations but this would require a complete reformu-
lation of our algorithm. We leave the extension of our algo-
rithm to the nonlinear case for future work.

The next example is an unstable system with a large 
gap between the eigenvalues.

Example 5 Consider the system x(k + 1) = Ax(k) with

With the initial condition x(0) = [− 1.9, 1] , we generate the 
time series x(1),… , x(100) . The algorithm above yields the 
(excellent) estimate

In the presence of noise of maximal amplitude 10−4 , the 
algorithm approximates well only the large entry a

11
= 20 : 

For a first realization of �
i
 and with cross validation, we get

with �
1
= 1.5259 × 10−5 and �

2
= 220 . However another 

realization of �
i
 leads to

with �
1
= 3.0518 × 10−5 and �

2
= 2.8147 × 1014 . This is 

due to the fact that the data converge to the eigenspace 
generated by the largest eigenvalue � = 20 . However, the 
eigenvalues of A − Â are within the unit disk with small 
amplitude which guarantees that the error dynamics of 
e(k) = x(k) − x̂(k) converges to the origin quite quickly. We 
observe the same phenomenon with

Here, in the absence of noise, we obtain the estimate

with �
1
= �

2
= 0.9313 × 10−9 . In the presence of noise �

i
 

with amplitude 10−4 , the data converge to the eigenspace 
corresponding to the largest eigenvalue � = 25 : for some 
realization of �

i
 one obtains the estimate

(27)A =

[

20 0

0 − 0.1

]

.

(28)Â =

[

20.0000 0.0000

− 0.0000 − 0.1000

]

,

(29)Â =

[

19.9997 − 0.0111

0.0000 − 0.1104

]

,

(30)Â =

[

19.9994 − 0.0011

0.0000 − 0.0000

]

,

(31)A =

[

− 0.5 0

0 25

]

.

(32)Â =

[

− 0.5000 0.0000

− 0.0000 25.0000

]

,
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while for another realization of �

The regularization parameters �
1
 and �

2
 adapt to the reali-

zation of the noise.

As already remarked in the end of Sect. 2, we see that 
“more data” does not always necessarily lead to bet-
ter results, since the data sequence converges to the 
eigenspace generated by the largest eigenvalue. How-
ever, whether with or without noise, the approxima-
tions of A are good enough to reduce the error between 
x(k + 1) = Ax(k) and x̂(k + 1) = Âx̂(k) outside of the train-
ing examples, since cross-validation determines a good 
regularization parameter � that balances between good 
fitting and good prediction properties.

The next example has an eigenvalue on the unit circle.

Example 6 Consider x(k + 1) = Ax(k) with

T h e  s e t  o f  e i g e n v a l u e s  o f  A  i s 

spec (A) = {− 1.5000, 1.0000, 10.4000,− 21.9000} . In the 
absence of noise and initial condition x = [− 0.9, 15, 1.5.2.5] 
with N = 100 points, we compute the estimate

and regularization parameters �
1
= �

2
= 0.9313 × 10−9 . In 

this case, the set of eigenvalues of Â is

For a given realization of � ∈ [−10−4, 10−4] , we obtain the 
estimate

(33)Â =

[

− 0.4809 0.0008

0.0164 24.9960

]

,

(34)Â =

[

− 0.0000 − 0.0000

− 1.0067 24.8696

]

.

(35)

A =

⎡
⎢
⎢
⎢
⎣

2.2500 − 1.2500 1.2500 − 49.5500

3.7500 − 2.7500 13.1500 − 20.6500

0 0 10.4000 − 32.3000

0 0 0 − 21.9000

⎤
⎥
⎥
⎥
⎦

.

(36)

Â =

⎡
⎢
⎢
⎢
⎣

2.2500 − 1.2500 1.2498 − 49.5499

3.7500 − 2.7500 13.1498 − 20.6499

0.0000 0.0000 10.3998 − 32.2999

0.0000 0.0000 − 0.0001 − 21.8999

⎤
⎥
⎥
⎥
⎦

,

(37)spec (Â) = {−21.9000, 10.3999,−1.5000, 1.0000}.

with �
1
= 0.0745 × 10−7 and �

2
= 0.1490 × 10−7 . The 

eigenvalues of A − Â are of the order of 10−4 which guar-
antees that the error dynamics converges quickly to the 
origin. However, the set of eigenvalues of Â is

Hence an additional unstable eigenvalue occurs.

Example 7 Consider x(k + 1) = Ax(k) with

The eigenvalues of A are given by

For an initial condition x = [− 0.9;15;1.5;2.5] and with 
N = 100 data points, we get

with eigenvalues given by

Here we used �
i
= 10−12 , i = 1,… , 4 . Moreover, the eigen-

values of A − Â are quite small and such that the error 
dynamics converges quickly to the origin. In the presence 
of noise � , the algorithm approximates the largest eigen-
values of A but does not approximate the smaller (stable) 
ones. For example, for a particular realization of noise with 
amplitude 10−4 , we get the estimate

(38)

Â =

⎡
⎢
⎢
⎢
⎣

2.2551 − 1.2490 1.2187 − 49.5304

3.7554 − 2.7489 13.1175 − 20.6297

0.0055 0.0011 10.3669 − 32.2794

0.0053 0.0010 − 0.0325 − 21.8797

⎤
⎥
⎥
⎥
⎦

(39)spec (Â) = {−21.8996, 10.3999,−1.5026, 1.0134}.

(40)

A =

⎡
⎢
⎢
⎢
⎣

− 0.8500 0.4500 − 0.4500 − 77.8500

− 1.3500 0.9500 14.3500 − 11.6500

0 0 15.3000 − 55.3000

0 0 0 − 40.0000

⎤
⎥
⎥
⎥
⎦

.

(41)spec (A) = {− 0.4000, 0.5000, 15.3000,− 40.0000}.

(42)

Â =

⎡
⎢
⎢
⎢
⎣

− 0.8498 0.4501 − 0.4499 − 77.8504

− 1.3499 0.9500 14.3501 − 11.6502

0.0001 0.0001 15.3001 − 55.3004

− 0.0004 − 0.0002 − 0.0004 − 39.9987

⎤
⎥
⎥
⎥
⎦

(43)spec (Â) = {− 40.0000,− 0.3974, 0.4982, 15.3008}.

(44)

Â =

⎡
⎢
⎢
⎢
⎣

− 2.1100 − 0.0993 − 1.3259 − 74.4543

− 1.7053 0.7777 13.9397 − 10.5308

− 0.8277 − 0.3692 14.6466 − 52.9920

− 0.8283 − 0.3694 − 0.6539 − 37.6904

⎤
⎥
⎥
⎥
⎦
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and spec (Â) = {− 40.0009, 0.1620 ± 0.8438i, 15.3008}.
For another realization of noise with amplitude 10−2 , 

we get the estimate

and spec (Â) = {− 40.1391, 3.9326, 0.9601, 15.3002}.

The algorithm introduced above also allows us to com-
pute the topological entropy of linear systems, since it is 
determined by the unstable eigenvalues. Recall that the 
topological entropy of a linear map on ℝn is defined in the 
following way:

Fix a compact subset K ⊂ ℝ
n , a time � ∈ ℕ and a constant 

𝜀 > 0 . Then a set R ⊂ ℝ
n is called (� , �)-spanning for K if for 

every y ∈ K  there is x ∈ R with

By compactness of K, there are finite (� , �)-spanning 
sets. Let R be a (� , �)-spanning set of minimal cardinality 

#R = rmin(� , �, K ) . Then

(the limits exist). Finally, the topological entropy of A is

where the supremum is taken over all compact subsets 
K of ℝn.

A classical result due to Bowen (cf. [21, Theorem 8.14]) 
shows that the topological entropy is determined by the 

sum of the unstable eigenvalues, i.e.,

where summation is over all eigenvalues of A counted 
according to their algebraic multiplicity.

Hence, when we approximate the unstable eigenvalues 
of A by those of the matrix Â , we also get an approximation 
of the topological entropy.

Example 8 For Example 6, we get that htop(A) = 34.80 while 
for the estimate Â one obtains htop(Â) = 34.7999 . For Exam-
ple 7, we get that htop(A) = 55.30 and htop(Â) = 55.3008 . 
These estimates appear reasonably good.

(45)

Â =

⎡
⎢
⎢
⎢
⎣

− 138.0893 − 60.7052 − 105.8111 301.5029

− 0.2435 0.9101 12.9638 − 12.6745

− 71.1408 − 31.9557 − 40.3842 142.3170

− 71.1408 − 31.9557 − 55.6843 157.6172

⎤
⎥
⎥
⎥
⎦

(46)
‖
‖
‖
Ajy − Ajx

‖
‖
‖
< 𝜀 for all j = 0,… , 𝜏 .

(47)

htop(K ,A, �) ∶= lim
�→∞

1

�

log rmin(� , �, K ), htop(K ,A) ∶= lim
�→0+

htop(K , �).

(48)htop(A) ∶= sup
K

htop(K ,A),

(49)htop(A) =
∑

max(1, |�|),

4  Identification of linear control systems

Consider the linear control system

with A ∈ ℝ
n×n and B ∈ ℝ

n×1 . We want to estimate 
the matrices A and B from the time series x(1) + �1, 

… , x(N) + �
N

 where � satisfies the Assumption in Sect. 2. 
The initial condition x(0) and the control sequence u(0),  
… , u(N) are assumed to be known.

In order to estimate A and B, we will extend algorithm 
A . The ith component of system (50) is given by

For every i we want to estimate the coefficients bi and 
aij , j = 1, … , n . Thus the linear map fi ∶ ℝ

n
→ ℝ given by

is unknown. To extend algorithm A , we will view system 
(51) as a system of the form (2) where the state x is the 
extended state x = (x, u) ∈ ℝ

n ×ℝ for (50). Hence, the 
kernel expansion (6) becomes

where x
n+1

= u and the cij satisfy the following set of 
equations:

with

Let us emphasize that u = x
n+1

 does not appear on the left 
hand side of (53)–(54).

In reference to the case when A has eigenvalues out-
side the unit circle, we adopt the same method as in 
Sect. 3 and define

(50)x(k + 1) = Ax(k) + Bu(k),

(51)xi(k + 1) =

n
∑

j=1

aijxj(k) + biu(k).

(52)(x1,… , xn, u) ↦

n
∑

j=1

aijxj + biu

(53)xi(k + 1) =

N�

j=1

cij⟨x(j), x(k)⟩

(54)

⎡
⎢⎢⎣

xi(1)

⋮

xi(N)

⎤⎥⎥⎦
=

�
N�Id + �

�⎡⎢⎢⎣

ci1

⋮

ciN

⎤⎥⎥⎦
,

(55)

� =

⎡
⎢⎢⎣

∑n+1

𝓁=1
x
𝓁
(1)x

𝓁
(0) ⋯

∑n+1

𝓁=1
x
𝓁
(N)x

𝓁
(0)

⋮ ⋯ ⋮∑n+1

𝓁=1
x
𝓁
(1)x

𝓁
(N − 1) ⋯

∑n+1

𝓁=1
x
𝓁
(N)x

𝓁
(N − 1)

⎤
⎥⎥⎦
.

(56)� ∶= max

{‖‖x(k + 1)‖‖
‖‖x(k)

‖‖
, k ∈ {0, 1,… ,N}

}

.
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E x a m p l e  9  ( O n e  d i m e n s i o n a l  c a s e )  C o n -
s i d e r  x(k + 1) = − 0.9x(k) + 3.5u  .  Fo r  a n  i n p u t 
u(k) = sin(k) + cos(k) and for 100 points we obtain the 
estimate Â = − 0.9 and B̂ = 3.5 when there is no noise �

i
 . 

Here cross validation gives �
1
= 1.5259 × 10−05 and �

2
= 1 . 

For a certain realization of the noise �
i
 with amplitude 0.1, 

we get Â = − 0.9008 and B̂ = 3.4983 . Here cross validation 
gives �

1
= 0.0078 and �

2
= 1.

Example 10 (Three dimensional stable case) Consider con-
trol system (50) with

With the input u(k) = sin(k) + cos(k) and 100 points, one 
computes the estimates

Here cross validation gives the regularization parameters 

�
i
= 0.1526 × 10−4 for i = 1,… , 4 . For some realization of 

perturbations �
i
 with amplitude 0.1, one computes the 

estimates

Here cross val idation gives �
1
= 9.7656 × 10−4  , 

�
2
= 9.7656 × 10−4 , �

3
= 1.5259 × 10−5 , �

4
= 4.

Example 11 (Three dimensional unstable case) Consider 
control system (50) with

The input u(k) = sin(k) + cos(k) and 100 points give the 
estimates

(57)A =

⎡
⎢
⎢
⎣

− 0.9 1 0

0 − 0.1 1

0 0 0.8

⎤
⎥
⎥
⎦
and B =

⎡
⎢
⎢
⎣

− 2.5

− 3.5

4.5

⎤
⎥
⎥
⎦
.

(58)

Â =

⎡
⎢
⎢
⎣

− 0.9000 1.0000 0.0000

0.0000 − 0.1000 1.0000

− 0.0000 − 0.0000 0.8000

⎤
⎥
⎥
⎦
and B̂ =

⎡
⎢
⎢
⎣

− 2.5000

− 3.5000

4.5000

⎤
⎥
⎥
⎦
.

(59)

Â =

⎡
⎢
⎢
⎣

− 0.9047 0.9984 − 0.0029

− 0.0047 − 0.1016 0.9971

− 0.0048 − 0.0018 0.7971

⎤
⎥
⎥
⎦
and B̂ =

⎡
⎢
⎢
⎣

− 2.5326

− 3.5321

4.4661

⎤
⎥
⎥
⎦
.

(60)A =

⎡
⎢
⎢
⎣

− 20 1 0

0 1 1

0 0 20

⎤
⎥
⎥
⎦
and B =

⎡
⎢
⎢
⎣

1

2

3

⎤
⎥
⎥
⎦
.

(61)

Â =

⎡
⎢
⎢
⎣

− 19.9945 1.0009 − 0.0137

0.0013 0.9995 0.9919

0.0155 − 0.0171 19.7835

⎤
⎥
⎥
⎦
and B̂ =

⎡
⎢
⎢
⎣

0.9898

1.9898

2.9333

⎤
⎥
⎥
⎦
.

Here cross validation yields the regularization parameters 

�
i
= 0.8882 × 10−15 for i = 1,… , 4 . For some realization of 

perturbations �
i
 with amplitude 10−4 , one computes the 

estimates

Here cross validation gives �
1
= �

2
= 0.2384 × 10−6 , 

�
3
= �

4
= 0.0596 × 10−6.

These results show that algorithm A works quite well in 
these cases.

5  Stabilization via linear‑quadratic optimal 
control

A basic problem for linear control systems is stabilization by 
state feedback. A standard method is to use linear quadratic 
optimal control, where the feedback is computed using the 
solution of an algebraic Riccati equation. In this section, we 
propose to replace in the algebraic Riccati equation the sys-
tem matrix A by the estimate Â obtained by learning theory.

The linear quadratic optimal control problem has the fol-
lowing form:

Minimize over all (continuous) inputs u

with x(⋅) given by

here Q ∈ ℝ
n×n is positive semidefinite and R ∈ ℝ

m×m is 
positive definite, and A ∈ ℝ

n×n, B ∈ ℝ
n×m.

Consider the discrete algebraic Riccati equation DARE

Obviously, every solution P is positive semi-definite. We 
cite the following theorem from [1].

Theorem  Suppose that for every x
0
∈ ℝ

n there is an 
input u, such that J(x0, u) < ∞ . Then the following holds:

 (i) There is a unique solution P of the DARE.
 (ii) For every x

0
∈ ℝ

n one has J∗(x0) ∶= inf{J(x0, u)|u an 
input} = x

⊤

0
Px

0
 and there is a unique optimal input 

u∗ with J∗(x0) = J(x0, u
∗) . This optimal input is gen-

erated by the feedback F = (R + BTPB)−1B⊤PA and

(62)

Â =

⎡
⎢
⎢
⎣

− 20.0000 0.9334 − 0.0058

− 0.0008 0.9382 0.9939

− 0.0008 − 0.0590 19.9937

⎤
⎥
⎥
⎦
and B̂ =

⎡
⎢
⎢
⎣

0.9819

1.9814

2.9811

⎤
⎥
⎥
⎦
.

(63)J∞(x0;u) =

∞
∑

k=0

[

x(k)⊤Qx(k) + u(k)⊤Ru(t)
]

(64)x(k + 1) = Ax(k) + Bu(k), k ≥ 0, x(0) = x0;

(65)A
⊤
(

P − PB(R + B
T
PB)−1B⊤P

)

A + Q = P.

(66)u(k) = −Fx(k), k ≥ 0.
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In particular, the feedback F stabilizes the system, i.e., 
x(k + 1) = (A − BF)x(k) is stable.

Now we use an estimate Â and B̂ (obtained by kernel 
methods) instead of A and B in the algebraic Riccati equation 
and obtain the solution P̂ . Will the corresponding feedback 
u = F̂x ∶= −B⊤P̂x also stabilize the system, i.e., is the follow-
ing system stable:

Example 12 Consider the one-dimensional system 
x(k + 1) = − 0.9x(k) + 3.5u in Example 9. In the absence 
of noise, we get Â = − 0.9 and B̂ = 3.5 . We have that 
A − BF̂ = Â − B̂F̂ = − 0.0643 . When there is noise of ampli-
tude 0.1, we get that Â = − 0.9002 and B̂ = 3.4929 and 
A − BF̂ = − 0.0643 while Â − B̂F̂ = − 0.0610 . Hence, the 
controller improves stability.

Example 13 Consider control system (50) with

As illustrated in Example  10, without noise we get 
excellent approximations of A and B. For both cases, 
the set of eigenvalues of the closed-loop system is 

{− 0.6172, 0.4049,− 0.0018} . With a noise of maximal 
amplitude 0.1, the estimates Â and B̂ are given in Example 
10. For the feedback system one finds

In this example the feedback based on the estimate also 
stabilizes the original system.

Example 14 Consider control system (50) with

As Example 11 illustrates, without noise we get excellent 
approximations of A and B. For the feedback system one 
finds

(67)x(k + 1) = (A − BB
⊤
P̂)x(k)?

(68)A =

⎡
⎢
⎢
⎣

− 0.9 1 0

0 − 0.1 1

0 0 0.8

⎤
⎥
⎥
⎦
and B =

⎡
⎢
⎢
⎣

− 2.5

− 3.5

4.5

⎤
⎥
⎥
⎦
.

spec (Â − B̂F̂) = {− 0.6204, 0.4053,− 0.0018},

spec (A − BF̂) = {− 0.6240,− 0.0062, 0.4111}.

(69)A =

⎡
⎢
⎢
⎣

− 20 1 0

0 1 1

0 0 20

⎤
⎥
⎥
⎦
and B =

⎡
⎢
⎢
⎣

1

2

3

⎤
⎥
⎥
⎦
.

spec (Â − B̂F̂) = {0.1994, 0.0483,−0.0501},

spec (A − BF̂) = {−0.1234 ± 2.0777i, 0.5279}.

When there is noise of amplitude 10−4 , one computes the 
estimates

This are bad approximations for A and B. Furthermore, for 
the feedback system one finds

Thus the stabilizing controller for the approximate system 
does not stabilize the true system.

6  Conclusions

This paper has introduced the algorithm A based on kernel 
methods to identify a stable linear dynamical system from 
a time series. The numerical experiments give excellent 
results in the absence of noise and structural perturba-
tions. In the presence of noise and structural perturbations 
the algorithm works well in the stable case. In the unstable 
case, a modified algorithm works quite well in the pres-
ence of noise but cannot handle structural perturbations.

Then we have extended algorithm A to identify linear 
control systems. In particular, we have used estimates 
obtained by kernel methods to stabilize linear systems 
using linear-quadratic control and the algebraic Riccati 
equation. Here the numerical experiments seem to indi-
cate that the same conclusions on applicability of the algo-
rithm apply.

Extensions of the considered algorithms to nonlinear 
systems appear feasible and are left to future work.
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(70)

Â =

⎡
⎢
⎢
⎣

− 19.9805 0.7484 0.0135

− 0.0062 0.7969 1.0107

− 0.0229 0.9851 19.6776

⎤
⎥
⎥
⎦
and B̂ =

⎡
⎢
⎢
⎣

1.0194

2.0114

2.6673

⎤
⎥
⎥
⎦
.

spec (Â − B̂F̂) = {0.1929, 0.0477,−0.0501},

spec (A − BF̂) = {1.4510 ± 3.0103i,−2.5232}.
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Appendix: Elements of learning theory

In this section, we give a brief overview of Reproducing 
Kernel Hilbert Spaces (RKHS) as used in statistical learning 
theory. The discussion here borrows heavily from Cucker 
and Smale [7], Wahba [20], and Schölkopf and Smola [16]. 
Early work developing the theory of RKHS was undertaken 
by Schoenberg [13–15] and then Aronszajn [2]. Histori-
cally, RKHS came from the question, when it is possible to 
embed a metric space into a Hilbert space.

Definition 1 Let H be a Hilbert space of functions on a set 
X  which is a closed subset of ℝn . Denote by ⟨f , g⟩ the inner 
product on H and let ‖f‖ = ⟨f , f ⟩1∕2 be the norm in H , for 
f and g ∈ H . We say that H is a reproducing kernel Hilbert 
space (RKHS) if there exists K ∶ X × X → ℝ such that

 (i) K  has  the  reproducing proper t y,  i .e . , 
f (x) = ⟨f (⋅), K (⋅, x)⟩ for all f ∈ H.

 (ii) K spans H , i.e., H = span {K (x, ⋅)|x ∈ X}.

K will be called a reproducing kernel of H and H
K

 will 
denote the RKHS H with reproducing kernel K.

Definition 2 Given a kernel K ∶ X × X → ℝ and inputs 

x1,… , x
n
∈ X  , the n × n matrix

is called the Gram Matrix of k with respect to x1,… , x
n
 . If 

for all n ∈ ℕ and distinct x
i
∈ X  the kernel Kgives rise to 

a strictly positive definite Gram matrix, it is called strictly 
positive definite.

Definition 3  (Mercer kernel map) A function 

K ∶ X × X → ℝ is called a Mercer kernel if it is continuous, 
symmetric and positive definite.

The important properties of reproducing kernels are 
summarized in the following proposition.

Proposition 1 If K is a reproducing kernel of a Hilbert space 

H , then

(i) K(x, y) is unique.

(ii) For all x, y ∈ X  , K (x, y) = K (y, x) (symmetry).

(iii) 
∑m

i,j=1
�i�jK (xi , xj) ≥ 0 for �

i
∈ ℝ and x

i
∈ X  (positive 

definitness).

(71)k ∶= (K (xi , xj))ij ,

(iv) ⟨K (x, ⋅), K (y, ⋅)⟩H = K (x, y).
(v) The following kernels, defined on a compact domain 

X ⊂ ℝ
n , are Mercer kernels: K (x, y) = x ⋅ y⊤ (Lin-

ear), K (x, y) = (1 + x ⋅ y⊤)d , d ∈ ℕ (Polynomial), 
K (x, y) = e

−
‖x−y‖2

𝜎2 , 𝜎 > 0 (Gaussian).

Theorem 1 Let K ∶ X × X → ℝ be a symmetric and positive 

definite function. Then there exists a Hilbert space of func-

tions H defined on X  admitting K as a reproducing Kernel. 

Moreover, there exists a function � ∶ X → H such that

� is called a feature map.

Conversely, let H be a Hilbert space of functions 
f ∶ X → ℝ , with X  compact, satisfying

Then H has a reproducing kernel K.

Remark 1 

 (i) The dimension of the RKHS can be infinite and cor-
responds to the dimension of the eigenspace of 
the integral operator L

K
∶ L

2

�
(X) → C(X) defined as 

(LK f )(x) = ∫ K (x, t)f (t)d�(t) if K is a Mercer kernel, 
for f ∈ L

2

�
(X) and � a Borel measure on X .

 (ii) In Theorem 1, and using property [iv.] in Proposi-
tion 1, we can take �(x) ∶= K

x
∶= K (x, ⋅) in which 

case F = H—the “feature space” is the RKHS. This 
is called the canonical feature map.

 (iii) The fact that Mercer kernels are positive definite 
and symmetric shows that kernels can be viewed 
as generalized Gramians and covariance matrices.

 (iv) In practice, we choose a Mercer kernel, such as the 
ones in [v.] in Proposition 1, and Theorem 1, that 
guarantees the existence of a Hilbert space admit-
ting such a function as a reproducing kernel.

RKHS play an important role in learning theory whose 
objective is to find an unknown function

from random samples

In the following we review results from [18] (for a more 
general setting, cf. [7]) in the special case when the data 
samples � are such that the following assumption holds.

Assumption 1 The samples in (75) have the special form

(72)K (x, y) = ⟨�(x),�(y)⟩H for x, y ∈ X.

(73)

For all x ∈ X there is 𝜅x > 0, such that �f (x)� ≤ 𝜅x‖f‖H.

(74)f
∗
∶ X → Y

(75)� = (xi , yi)|
m
i=1

,

(76)S¬ � = (x, yx)|x∈x̄ ,
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where x̄ = {xi}|
d+1

i=1
 and yx  is drawn at random from 

f ∗(x) + �x , where �
x
 is drawn from a probability measure �

x
.

Here for each x ∈ X  , �
x
 is a probability measure with 

zero mean, and its variance �2

x
 satisfies 𝜎2

∶=
∑

x∈x̄
𝜎
2

x
< ∞ . 

Let X be a closed subset of ℝn and t̄ ⊂ X is a discrete subset. 
Now, consider a kernel K ∶ X × X → ℝ and define a matrix 
(possibly infinite) K

t̄,t̄ ∶ �
2(t̄) → �

2(t̄) as

where �2(t̄) is the set of sequences a = (a
t
)
t∈t̄ ∶ t̄ → ℝ with 

⟨a, b⟩ = ∑
t∈t̄

atbt defining an inner product. For example, 
we can take X = ℝ and t̄ = {0, 1,… , d}.

In the case of a linear dynamical system (1), we are inter-
ested in learning the map x(k) ↦ x(k + 1) . Here we can 
apply the following results.

The problem to approximate a function f ∗ ∈ HK from 
samples � of the form (75) has been studied in [18, 19]. It is 
reformulated as the minimization problem

where � ≥ 0 is a regularization parameter. Moreover,when 
x̄ is not defined by a uniform grid on X, the authors of [18] 
introduced a weighting w ∶= {w

x
}
x∈x̄ on x̄ with w

x
> 0

.1 Let D
w

 be the diagonal matrix with diagonal entries 

{w
x
}
x∈x̄ . Then, ‖D

w
‖ ≤ ‖w‖

∞
.

In this case, the regularization scheme (78) becomes

Theorem  2  Assume  f ∗ ∈ HK ,t̄  and the standing 

hypotheses with X, K, t̄ , � as above, y as in (76). Suppose 
K
t̄,x̄Dw

K
x̄,t̄ + 𝛾K

t̄,t̄ is invertible. Define L to be the linear opera-

tor L = (K
t̄,x̄Dw

K
x̄ ,t̄ + 𝛾K

t̄,t̄)
−1K

t̄,x̄Dw
 . Then problem (79) has 

the unique solution

Assumption 2 For each x ∈ X  , �
x
 is a probability 

measure with zero mean supported on [−M
x
,M

x
] with 

B
w
∶= (

∑

x∈x̄ wx
M2

x
)
1

2 < ∞.

The next theorems give estimates for the different 
sources of errors.

(77)(K
t̄,t̄a)s =

∑

t∈t̄

K (s, t)a
t
, s ∈ t̄, a ∈ �

2(t̄),

(78)f̄
�,𝛾 ∶= arg min f∈HK ,t̄

��

x∈x̄

(f (x) − yx)
2 + 𝛾‖f‖2

K

�
,

(79)

f̄
�,𝛾 ∶= arg min f∈HK ,t̄

��

x∈x̄

wx(f (x) − yx)
2 + 𝛾‖f‖2

K

�
,

(80)f
�,𝛾 =

∑

t∈t̄

(Ly)tKt

Theorem  3 (Sample error) [18, Theorem  4,  Proposi-
tions 2 and 3] Let Assumptions 1 and 2 be satisfied, suppose 

that K
t̄,x̄Dw

K
x̄,t̄ + 𝛾K

t̄,t̄ is invertible and let f
�,𝛾 =

∑

t∈t̄
ctKt be 

the solution of (79) given in Theorem 2 by c = Ly . Define

Then for every 0 < 𝛿 < 1 , with probability at least 1 − � we 

have the sample error estimate

where �(u) ∶= (u − 1) log u for u > 1 .  In particular, 
E samp → 0 when � → ∞ or �2

w
→ 0.

Theorem 4 (Regularization error and integration error) 
[18, Proposition 4 and Theorem 5] Let Assumptions 1 and 2 
be satisfied and let X̄ = (X

x
)
x∈x̄ be the Voronoi cell of X associ-

ated with x̄ and w
x
= �

X
(X

x
) . Define the Lipschitz norm on a 

subset X ′
⊂ X as ‖f‖ Lip (X �) ∶= ‖f‖L∞(X �) + sups,u∈X

�f (s)−f (u)�

‖s−u‖
�∞(ℝn)

 

and assume that the inclusion map of H
K ,t̄ into the Lipschitz 

space satisfies2

Suppose that x̄ is �−dense in X, i.e., for each y ∈ X  there is 

some x ∈ x̄ satisfying ‖x − y‖
�∞(ℝn) ≤ �.

Then for f ∗ ∈ HK ,t̄

Theorem  5 (Sample, regularization and integration 
errors) [18, Corollary 5] Under the assumptions of Theorems 
3 and 4, let X̄ = (X

x
)
x∈x̄ be the Voronoi cell of X associated 

with x̄ and w
x
= �

x
(X

x
) . Suppose that x̄ is �−dense, C

x̄
< ∞ , 

and f ∗ ∈ HK ,t̄ . Then, for every 0 < 𝛿 < 1 , with probability at 

least 1 − � there holds

where E samp is given in (81).

L
w
∶= (K

t̄,x̄Dw
K
x̄ ,t̄ + 𝛾K

t̄,t̄)
−1
K
t̄,x̄D

1∕2
w

𝜅 ∶= ‖K
t̄,t̄‖ ‖(K

t̄,x̄Dw
K
x̄,t̄ + 𝛾K

t̄,t̄)
−1‖2.

(81)

‖f
�,𝛾 − fx̄,𝛾‖2K ≤ E samp ∶= 𝜅𝜎2

w
𝛼−1

�
2‖Kt̄,t̄Lw‖ ‖Lw‖ B

2
w

𝜅𝜎2
w

log
1

𝛿

�
,

(82)Cx̄ ∶= sup
f∈HK ,t̄

∑
x∈x̄ wx‖f‖2Lip (Xx )

‖f‖2
K

< ∞.

(83)‖fx̄,𝛾 − f
∗‖2 ≤ ‖f ∗‖2

K
(𝛾 + 8Cx̄𝛥)

(84)‖f
�,� − f

∗‖2 ≤ 2Cx̄E samp + 2‖f ∗‖2
K
(𝛾 + 8Cx̄𝛥),

1 A suggestion in [18] is to consider the �
X
-volume of the Voronoi 

cell associated with x̄ . Another example is w = 1 or if |x̄| = m < ∞ , 
w =

1

m
.

2 This assumption is true if X is compact and the inclusion map 
of H

K ,t̄ into the space of Lipschitz functions on X is bounded 
which is the case when K is a C2 Mercer kernel [22]. In fact, if 
‖f‖ Lip (X) ≤ C0‖f‖K for each f ∈ HK ,t̄ , then Cx̄ ≤ C

2

0
𝜌
X
(X).
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