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Abstract

Deep convolutional neural networks (CNNs), trained on

corresponding pairs of high- and low-resolution images,

achieve state-of-the-art performance in single-image super-

resolution and surpass previous signal-processing based

approaches. However, their performance is limited when

applied to real photographs. The reason lies in their train-

ing data: low-resolution (LR) images are obtained by bicu-

bic interpolation of the corresponding high-resolution (HR)

images. The applied convolution kernel significantly differs

from real-world camera-blur. Consequently, while current

CNNs well super-resolve bicubic-downsampled LR images,

they often fail on camera-captured LR images.

To improve generalization and robustness of deep super-

resolution CNNs on real photographs, we present a ker-

nel modeling super-resolution network (KMSR) that incor-

porates blur-kernel modeling in the training. Our pro-

posed KMSR consists of two stages: we first build a pool

of realistic blur-kernels with a generative adversarial net-

work (GAN) and then we train a super-resolution network

with HR and corresponding LR images constructed with

the generated kernels. Our extensive experimental vali-

dations demonstrate the effectiveness of our single-image

super-resolution approach on photographs with unknown

blur-kernels.

1. Introduction

Single-image super-resolution methods aim to recon-

struct a high-resolution (HR) image from a single, low-

resolution (LR) image by recovering high-frequency de-

tails. Classic super-resolution (SR) algorithms [40, 41, 57]

analytically model the blur-kernel and real-image proper-

ties in order to recover the HR images. In contrast, many

modern SR methods [21, 45, 49] attempt to learn a map-

ping from LR images to HR images. Lately, several convo-

lutional neural network (CNN) based SR models were de-

veloped [8, 17, 26, 31, 42, 55]. All these learning-based

methods require large sets of paired LR and HR images for

training.

Figure 1: Illustration of our proposed kernel modeling

super-resolution (KMSR) framework. The first stage con-

sists of blur-kernel estimation from real photographs, which

are used in training a GAN to generate a large pool of re-

alistic blur-kernels. These generated blur-kernels are then

utilized to create a paired dataset of corresponding HR and

LR images for the training of a deep CNN.

It is non-trivial to obtain such paired LR and HR ground-

truth images of real scenes. Current CNN-based SR net-

works thus rely on synthetically generated LR images [44].

The most common technique is to apply bicubic interpola-

tion [25] to the HR image. However, the bicubic convo-

lution kernel is different from real camera-blur [32]. The

loss of high-frequency details in camera-captured images

is due to several factors, such as optical blur, atmospheric

blur, camera shake, and lens aberrations [34]. As a result,

even though these CNN-based SR networks perform well

on bicubic-downsampled LR images, their performance is

limited on real photographs as they operate under a wrong
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kernel assumption [11, 32]. Generative adversarial network

(GAN) based methods [3, 30, 39, 47] can be extended to

train SR networks on unpaired datasets, but they still rely on

unrealistic blur-kernels. Super-resolution on real LR pho-

tographs with unknown camera-blur thus remains a chal-

lenging problem.

To generate synthetic LR images with real camera-blur,

we can use kernel-estimation algorithms [28, 29, 35] to

extract realistic blur-kernels from real LR photographs.

However, as each camera, lens, aperture, and atmospheric-

condition combination may result in a different blur-kernel,

it is challenging to generate a sufficiently large and diverse

dataset [28, 29] needed to train a SR network.

One approach is to generate synthetic LR images using

many blur-kernels [36], which will improve the generaliza-

tion ability of the SR network. Using a kernel estimator,

we first extract blur-kernels from real photographs and use

them for training a GAN. First proposed in [12], GANs

are a class of neural networks that learn to generate syn-

thetic samples with the same distribution as the given train-

ing data [2]. We thus augment the limited kernel-set we

obtained using kernel estimation by leveraging the GAN’s

ability to approximate complex distributions [24, 30, 38, 50]

to learn and generate additional blur-kernels.

Our Kernel Modeling Super-Resolution (KMSR) thus

consists of two stages, as shown in Fig. 1. We first generate

a GAN-augmented realistic blur-kernel pool by extracting

real blur-kernels from photographs with a kernel estimation

algorithm and by training a GAN to augment the kernel

pool. We then construct a paired LR-HR training dataset

with kernels sampled from the kernel pool, and train a deep

CNN for SR.

Our major contributions in this paper are as follows:

(1) we introduce KMSR to improve blind SR on real

photographs by incorporating realistic blur-kernels in the

framework, which improves the generalization capability

of the network to unseen blur-kernels, (2) we show that a

GAN can reliably generate realistic blur-kernels, and (3) we

demonstrate with experiments on real images that the pro-

posed KMSR achieves state-of-the-art results in terms of

both visual quality and objective metrics.

2. Related Work

2.1. CNNbased Image SuperResolution

Deep network architectures for super-resolution is an ac-

tive research topic as they show good performance on syn-

thetic LR images [44]. Dong et al. [8] adopt a 3-layer CNN

to learn an end-to-end mapping from interpolated LR im-

ages to HR images. They achieve comparative results to

conventional SR methods. Global [26] and local [17, 31]

residual learning strategies can be employed to reduce the

learning difficulty and simplify the training, and thus to op-

timize the performance of the SR networks. Shi et al. [42]

suggest a sub-pixel upscaling that further increases the re-

ceptive field of the network; this provides more contextual

information which helps to generate more accurate details.

All these networks are trained with paired LR-HR data,

and often use a fixed down-sampling procedure for gen-

erating synthetic LR images. This leads to poor network

generalization on real photographs as the actual image-

acquisition does not correspond to the learned model. Some

methods propose to capture real LR-HR image pairs by

using different optical zoom [5, 54], but the networks

trained on such datasets are limited to one specific cam-

era model. Recent methods do propose to incorporate the

degradation parameters including the blur-kernel into the

network [14, 43, 51, 52, 53]. However, these methods rely

on blur-kernel estimation algorithms only and thus have

limited ability to handle arbitrary blur-kernels. In this paper,

we solve the problem by modeling realistic kernels when

creating the training dataset, which improves the practical-

ity and generalization of the SR networks.

2.2. BlurKernel Estimation

In recent years, we have witnessed significant advances

in single-image deblurring, as well as blur-kernel estima-

tion. Efficient methods based on Maximum A Posteriori

(MAP) formulations were developed with different likeli-

hood functions and image priors [4]. In particular, heuristic

edge-selection methods for kernel estimation [7] were pro-

posed for the MAP estimation framework. To better recover

the blur-kernel and better reconstruct sharp edges for im-

age deblurring, some exemplar-based methods [16] exploit

the information contained in both the blurred input and ex-

ample images from an external dataset. More recently, the

dark-channel prior [19] was used by Pan et al. [35] to sim-

ply and efficiently estimate the blur-kernel of natural im-

ages. As they achieve significant performance on deblur-

ring tasks [29], we adopt their kernel-estimation algorithm

for collecting blur-kernels of real images.

2.3. Generative Adversarial Network

GANs were proposed to approximate intractable prob-

abilistic computations [24, 30, 38, 50, 59], and are used

in some SR networks to improve visual quality [30, 39,

47]. However, training a GAN can be tricky and unsta-

ble, and it is rather hard to generate artifact-free HR im-

ages [24, 38, 50]. DCGAN [37] provides some useful

guidelines for building and training GANs. WGAN [1, 15]

further improves GAN training by overcoming the diffi-

culties in maintaining training-balance between the gener-

ative network, the discriminative model, and the network

architecture design. Several applications also demonstrate

their ability to augment limited training data for deep learn-

ing [2, 6]. Therefore, we employ WGAN-GP [15], an im-
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proved version of WGAN, to generate a large pool of ker-

nels that are then employed to generate realistic LR images

for the training of our KMSR network.

3. Proposed Method

This section introduces our kernel modeling super-

resolution solution for real photos: KMSR. It is composed

of a kernel-pool creation stage and a CNN-type SR network

(See Fig. 1). We first introduce the imaging model under

which we obtain LR and HR images. Then, we discuss the

details of the kernel-pool generation and the SR network

architecture.

3.1. Kernel Modeling Blind SuperResolution

Let y be an HR image of size r1 × r2 pixels, and let x
be an LR observation of y of size ⌊r1/s⌋ × ⌊r2/s⌋, where

s > 1 is the downsampling factor. The relation between x
and y is expressed as in [11]:

x = (y ∗ k) ↓s + n, (1)

where k denotes an unknown blur-kernel, ↓s denotes a dec-

imation operator by a factor s, and n is the noise. We as-

sume here that there is no noise in the LR image acquisition

model, i.e., n = 0.

We upscale the LR image to a coarse HR image x′ with

the desired size r1×r2 with traditional bicubic interpolation

by the same factor s:

x′ = (x ∗ bs), (2)

where bs is the bicubic-upscaling kernel with scale s. Thus

we have

x′ = ((y ∗ k) ↓s) ∗ bs, (3)

Simplified,

x′ = y ∗ k′ (4)

where k′ = (k ∗ bs) ↓
s.

To train a blind CNN SR network, we need paired train-

ing data y and x′, obtained according to Eqn. 4 with differ-

ent kernels k′. We adopt a GAN to help solve this problem.

As discussed in Section 2.3, it is difficult to train a gen-

erative network to consistently recover HR images without

artifacts. Thus, alternatively, our GAN is trained to produce

blur-kernels rather than images.

3.2. BlurKernel Pool

Before building the paired training dataset, realistic blur-

kernels need to be estimated from real photographs. These

kernels are then used to better train the GAN for kernel

modeling and kernel generation. The combination of the

estimated kernels and the GAN-generated kernels forms the

large kernel-pool used in building paired LR-HR training

data.

3.2.1 Blur-Kernel Estimation

To generate a set of realistic blur-kernels K ′ =
{k′1, k

′

2, . . . , k
′

e}, we first randomly extract a patch p of size

d×d from the bicubic-upscaled LR image (or coarse HR im-

age) x′. We then estimate the blur-kernel k′ of size 25× 25
from p using the blur-kernel estimation algorithm of [35].

Their standard formulation for image deblurring, based on

the dark-channel prior [19], is as follows:

min
p,k′

‖∇p ∗ k′ −∇p‖+ θ ‖k′‖
2

2
+ µ ‖∇p‖

0
+
∥

∥∇pdark
∥

∥

0

(5)

p is the extracted patch from x′, and pdark is the dark chan-

nel [19] of the patch. Coordinate descent is used to al-

ternatively solve for the latent patch p and the blur-kernel

k′. The details can be found in [35]. To eliminate patches

that are lacking high-frequency details (such as patches ex-

tracted from the sky, walls, etc.) in which the blur-kernel

estimation algorithm might fail, we define constraints for p
as follows:

|Mean(p)− V ar(p)| ≥ α ·Mean(p) (6)

where Mean(p) and V ar(p) calculate the mean intensity

and the variance, respectively, and α ∈ (0, 1). If the con-

straint is satisfied, p will be regarded as a valid patch and

the estimated blur-kernel k′ from p is added to the set K ′.

We extract 5 patches from each bicubic-upscaled LR im-

age x′. We set the patch size d = 512 and α = 0.003.

3.2.2 Kernel Modeling with GAN

In practice, input LR images may be hard to obtain and

limited to a few camera models. In addition, the kernel-

estimation algorithm [35] is computationally expensive. As

such, the quantity and diversity of kernels collected in the

last subsection may be limited, and the results of train-

ing a deep CNN only with these kernels will not suffice.

We thus propose to model the blur-kernel distribution over

the estimated kernel set K ′, and to generate a larger blur-

kernel pool K+ that contains more examples of realistic

blur-kernels with more diversity. We use a GAN to generate

such realistic blur-kernels.

We use WGAN-GP [15], which is an improved version

of WGAN [1], for the objective function of our GAN:

L = E
f̃∼Pg

[D(f̃)]− E
f∼Pr

[D(f)]]+λ E
f̂∼P

f̂

[(
∥

∥

∥
∇D(f̂)

∥

∥

∥

2

−1)2]

(7)

where D is the discriminative network, Pr is the distribu-

tion over K ′, and Pg is the generator distribution. P
f̂

is

defined as a distribution sampling uniformly along straight

lines between pairs of points sampled from Pr and Pg . f ,

f̃ , f̂ are the random samples following the distribution Pr,

Pg and P
f̂

, respectively. For more details, see [15].
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Figure 2: The Convolutional Neural Network architecture of KMSR. We convolve the HR image y with a blur-kernel k′

randomly chosen from the blur-kernel pool K+ to generate the coarse HR image x′. The other units each have 64 filters

except for the last unit, where the filter number is equal to the number of output channels.

We adopt a similar network architecture to DCGAN [37].

The generative network G takes z ∼ N(0, 1), a vector of

length 100 and generates a blur-kernel sample. It contains

4 fractionally-strided convolutions [10] of filter size 4 × 4,

with batch normalization [23], ReLU [33], and a final con-

volution layer of filter size 8 × 8. The filter number of G
from the second to the last unit is 1025, 512, 256, 1, respec-

tively. The discriminative network D takes a kernel sample

as input and identifies if it is fake, it contains 3 convolu-

tion layers with instance batch-normalization [46] and leaky

ReLU [48]. The filter number of D from the first to the third

unit is 256, 512, 1024, respectively.

The trained GAN model G is used to generate blur-

kernel samples for augmenting K ′ until the final kernel pool

K+ = K ′ ∪ {G(z1), G(z2), G(z3), . . . } is obtained. Like

the normalization of kernels in [35], we apply sum-to-one

and non-negative constraints on the generated kernels.

3.3. SuperResolution with CNN

Previous approaches [8, 17, 31] propose to solve the SR

problem by training a CNN with large datasets, and these

methods have achieved impressive results on synthetic data.

Deep neural networks implicitly learn the latent model from

the paired training dataset, and thus do not require explicit

knowledge of image priors. Hence, we utilize a CNN in our

SR framework.

We create the training dataset in the following manner:

the HR images are divided into small patches of size m×m,

which form the set Y = {y1, y2, . . . , yt}. Blur-kernels in

K+ obtained in Section 3.2.1 are randomly chosen to con-

volve with patches in Y to obtain X ′ = {x′

1, x
′

2, . . . , x
′

t},

where x′

j = yj ∗ k
′

l. The sets X ′ and Y form a paired train-

ing dataset {X ′, Y }.

The network structure of the CNN, which consists of 16

residual blocks [20], is illustrated in Fig. 2. Zero padding

is adopted to ensure consistent input and output dimension.

The objective function of our network is L1 enabling the

network to obtain better performance [56].

4. Experiments

4.1. Implementation Details

We utilize the DPED [22] images to build the realistic

blur-kernel set K ′. DPED [22] is a large-scale dataset that

consists of over 22K real photos captured with 3 different

low-end phone models. We separate the dataset into two

parts, DPED-training and DPED-testing, according to the

camera models. DPED-training consists of photos taken

with the Blackberry Passport and Sony Xperia Z, and serves

as reference real-photography LR set for extracting the re-

alistic blur-kernels k′e in Sec. 3.2.1. DPED-testing consists

of photos captured with the iPhone3GS, and is used as a

validation dataset. We collect 1000 realistic blur-kernels

K ′ = {k′1, k
′

2, . . . , k
′

1000} from DPED-training by using

the kernel estimation codes from [35]. We use these ker-

nels in the training of the kernel modeling GAN G. We

set the batch size as 32 and λ = 10 for the loss function

(see Eqn. 5). G is trained for 20,000 epochs. The extended

blur-kernel pool K+ is obtained by generating 1,000 ker-

nels using the trained G and adding them to K ′.

We use the training set of DIV2K [44] as HR images,

from which we extract patches of size 128× 128. We build

the paired dataset {X ′, Y } during training of the SR net-

work: in each epoch, each HR patch is convolved with

a kernel k′ randomly chosen from K+ to obtain a coarse

HR patch. We train our SR network with ADAM opti-

mizer [27]. We set the batch size to 32. The learning rate

is initialized as 10−4 and is halved at every 10 epochs. The

source code is publicly available online1.

1https://github.com/IVRL/Kernel-Modeling-Super-Resolution
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Visualization of different blur-kernels for scale

s = 2 (×2 SR). To better visualize the kernels, we only

show a 15 × 15 patch cropped from the center. (a) the

bicubic kernel [25] with anti-aliasing implemented in Mat-

lab [13]; (b), (c) and (d) three isotropic Gaussian kernels

g1.25, g1.6 and g1.7, respectively, which are widely used in

×2 SR [9, 18, 58]. (e), (f) two kernel samples k′e estimated

from real photos, (g) and (h) two blur-kernels G(zi) gener-

ated with the KMSR GAN.

4.2. Estimated Kernels

We first study the distributions of blur-kernels. We show

examples of kernels k′e generated with KMSR in Fig 3 and

Fig. 4. We also visualize the Matlab bicubic-kernel and

three isotropic Gaussian kernels gsigma with sigmas (g1.25,

g1.6 and g1.7) that are commonly used to synthesize LR im-

ages in ×2 SR. Note that the bicubic-kernel is band-pass

compared to the low-pass shape of the other kernels. The

bicubic-kernel is designed to keep the sharpness of the im-

age and to avoid aliasing during the down-sampling oper-

ation [25]. As stated in [11], the bicubic-kernel is not a

proper approximation of the real blur-kernel in image ac-

quisition, as camera-blur is low-pass and often attenuates

the high-frequency information of the scene more. In Fig. 4,

also notice that the kernels generated by by KMSR encom-

pass a wide range of distributions, including the Gaussian

kernels that are a better approximation of the real camera-

blur [34] than the bicubic-kernel. KMSR is thus able to

generate very diverse coarse HR images.

4.3. Experiments on Bicubic and Gaussian Blur
Kernels

In this section, we evaluate KMSR and other CNN-based

SR networks on synthetic LR images by applying different

blur-kernels to the validation set of the DIV2K [44] dataset.

We test on two upscaling factors, s = 2 (×2 SR) and

s = 4 (×4 SR) and on four synthetic LR datasets that are

generated using four different kernels on the DIV2K [44]

validation set. We include the anti-aliasing bicubic kernel,

Figure 4: Plot of different blur-kernels. The solid line shows

the mean kernel shape from the blur-kernel pool K+ gener-

ated with KMSR. The shadow area illustrates the variance.

The dashed lines show the shape of the bicubic kernel [25]

and three Gaussian kernels that are commonly used in syn-

thesizing LR images [9, 18, 58].

as it is used by many algorithms even though it is not a

physically feasible camera-blur for real images [11]. We

also test on 3 isotropic Gaussian kernels, g1.25 [58], g1.6 [9]

and g1.7 [18]; they are commonly used as blur-kernels in the

generation of synthetic LR images [34]. The four kernels

are visualized in the first row of Fig. 3.

We compare our proposed KMSR with the state-of-the-

art CNN-based SR methods: SRCNN [8] (we use the 9-

5-5 model), VDSR [26], EDSR [31] and DBPN [17]. We

use the published codes and models from the respective au-

thors. Note that these four networks are trained using only

the bicubic-kernel in the generation of corresponding LR

images from HR images.

The quantitative results of the different SR networks on

the different LR datasets are provided in Table 1. Although

KMSR produces worse results on LR images generated

with the bicubic kernel, it outperforms all other networks

on all other experimental settings on both upscaling factors

s = 2 and s = 4. We can also observe that the perfor-

mance of SR networks that are trained using only bicubic

LR images is limited when the bicubic kernel deviates from

the true blur-kernel. These networks gain less than 0.4dB

improvement in PSNR compared to simple bicubic inter-

polation (column 3 in Table 1). Even with deeper layers,

EDSR [31] and DBPN [17] do not outperform shallow net-

works SRCNN [8] and VDSR [26]. By modeling realistic

kernels, our KMSR outperforms them all by up to 1.91dB.

A visual comparison using g1.6 as blur-kernel and s = 2 as

upscaling factor is given in Fig. 5. Note that KMSR pro-

duces results that visually appear sharper than other meth-

ods, as it is trained using more realistic blur-kernels.
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Blur-Kernel Scale Bicubic SRCNN [8] VDSR [26] EDSR [31] DBPN [17] KMSR

bicubic

×2

29.94 31.89 32.63 33.58 33.84 33.52

g1.25 26.14 26.56 26.54 26.58 26.60 27.94

g1.6 25.49 25.72 25.72 25.69 25.70 27.63

g1.7 25.11 25.30 25.34 25.28 25.28 27.15

bicubic

×4

26.28 27.89 28.04 28.95 29.03 27.99

g2.3 24.71 24.83 24.91 25.10 25.18 26.14

g2.5 24.34 24.30 24.34 24.39 24.42 25.64

g2.7 24.11 24.14 24.05 24.27 24.23 25.33

Table 1: Comparison on DIV2K [44] in terms of PSNR in the evaluation of bicubic and Gaussian blur-kernels. We highlight

the best results in red color and the second best in blue color. Note that our proposed KMSR outperforms other state-of-the-art

SR networks by up to 1.91dB on Gaussian kernels.

(a)

(b) SRCNN [8] (c) VDSR [26] (d) EDSR [31] (e) DBPN [17] (f) KMSR

Figure 5: Qualitative comparison of ×2 SR on image 0805 from DIV2K [44], using a Gaussian blur-kernel g1.6 (a) as the

blur-kernel and s = 2 as upscaling factor. Visual results of ×4 SR are in the supplementary material.

4.4. Experiments on Realistic Kernels

To validate the capability of the proposed KMSR on im-

ages with real unknown kernels, we conduct experiments on

synthesizing LR images with unseen realistic blur-kernels

on ×2 and ×4 SR. We collect 100 blur-kernels from the LR

images in the DEPD-testing dataset (i.e., the iPhone3GS

images), which is not seen in the training of KMSR. We

then apply these blur kernels to generate coarse HR images

using the DIV2K [44] validation set. Table 2 shows the re-

sulting PSNR and SSIM of the different SR networks. As

before, the performance of the SR networks trained using

only the bicubic-kernel is limited on these images. This

highlights the sensitivity of CNN-based SR networks to

wrong kernels in the creation of the training dataset. Blur-

kernel modeling is a promising venue for improving SR net-

works if the algorithm is to be applied to real camera data.

We present qualitative results in Fig. 6. KMSR success-

fully reconstructs the detailed textures and edges in the HR

images and produces better outputs.

4.5. Experiments on Real Photographs

We also conduct ×2 SR experiments on real pho-

tographs. Fig. 7 illustrates the KMSR output on one pho-

tograph captured by the iPhone3GS in the DEPD-testing

dataset. Perceptual-driven SR methods usually recover

Method Scale PSNR SSIM

bicubic interpolation

×2

25.06 0.72

SRCNN [8] 25.30 0.74

VDSR [26] 25.29 0.74

EDSR [31] 25.28 0.74

DBPN [17] 25.30 0.75

KMSR 27.52 0.79

bicubic interpolation

×4

23.32 0.69

SRCNN [8] 23.42 0.69

VDSR [26] 23.39 0.69

EDSR [31] 23.49 0.69

DBPN [17] 23.51 0.70

KMSR 25.13 0.74

Table 2: Comparison on DIV2K [44] in the evaluation of re-

alistic blur-kernels estimated from DEPD-testing. We high-

light the best results in red color and the second best in blue

color.

more detailed textures and achieve better visual quality than

previous SR networks. In addition to the four SR meth-

ods we compare to, we also show the output from the

perceptually-optimized SR network ESRGAN [47]. It is

noticeable that the networks trained using only the bicubic-

downsampled LR images tend to produce overly smooth
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(a)

(b) SRCNN [8] (c) VDSR [26] (d) EDSR [31] (e) DBPN [17] (f) KMSR

Figure 6: Qualitative comparison on ×2 SR on image 0847 from DIV2K [44], using a realistic blur-kernel (a) estimated from

DPED-testing. Visual results of ×4 SR are in the supplementary material.

(a) VDSR [26] (b) EDSR [31] (c) DBPN [17] (d) ESRGAN [47] (e) KMSR

Figure 7: ×2 SR qualitative comparison of different SR networks on image 83 from DPED-testing. Better viewed on screen.

EDSR [31] DBPN [17] KMSR

#preference 3 1 44

Table 3: Results of the psychovisual experiment.

#preference shows the number of SR results from the spe-

cific method that are chosen as ”the clearest and the sharpest

image” by more than 50% of the participants. For 44 out

of 50 images, results from our KMSR are favored over the

other two methods.

images, whereas KMSR can recover a sharp image with bet-

ter details.

As there are no reference HR images for this experiment,

we validate our methods with a psychovisual experiment on

a crowd-sourcing website2. We only compare to EDSR [31]

and DBPN [17] as they are the state-of-the-art CNN-based

SR networks. Note that because of the resolution limita-

tions of display devices, we could not show full-resolution

images. We randomly select 50 images from DEPD-testing

and crop patches of size 500 × 500 from each image. For

each patch, we show the participants the SR results from

EDSR [31], DBPN [17] and our KMSR. We ask them to

2www.clickworker.com

choose the clearest and the sharpest image among them3. To

avoid bias, the order of the three SR images are randomly

shuffled. In total, 35 users participated in the experiment

with each of them labeling all 50 images. The results of the

psychovisual experiment are in Table 3. For 44 of the 50

images, the output from KMSR are preferred over the two

other methods, which suggests that KMSR is able to pro-

duce visually better results than the other two SR networks.

4.6. Experiments on Zoomin SuperResolution

To further verify the performance of the proposed

KMSR, we conduct experiments on images captured with

the same camera, but different focal lengths. We use a 24-

70mm zoom lens to capture photo-pairs. The 35mm focal

length photo serves as LR image, and the photo taken at

the same position with the 70mm focal length serves as the

reference HR image for a ×2 SR of the LR image. We

capture all the photos with a small aperture (f/22) to mini-

mize the depth-of-field differences. We crop patches of size

250×250 from the LR image and patches of size 500×500
from the reference HR image. To align the patches, we do a

grid search for horizontal and vertical alignments, then we

apply the different SR networks on the LR patch.

3Experiment webpage: https://ivrlwww.epfl.ch/ruofan/exp/index.html
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(a) SRCNN [8] (b) VDSR [26] (c) EDSR [31] (d) DBPN [17] (e) KMSR (f) reference

Figure 8: Qualitative comparison of different SR networks on ×2 zoom-in. (a)-(e) The SR results on the LR image taken

with a 35mm focal length. (f) the reference HR image taken with a 70mm focal length. More examples are shown in the

supplementary material.

Method PSNR SSIM

bicubic interpolation 26.93 0.79

SRCNN [8] 27.07 0.80

VDSR [26] 27.11 0.80

EDSR [31] 27.45 0.81

DBPN [17] 27.42 0.81

KMSR 29.13 0.84

Table 4: Average PSNR and SSIM of different SR networks

on the ×2 zoom-in dataset. The evaluation is performed

only on the luminance channel to alleviate the effect of bias

caused by the color variations of the two images. We high-

light the best results in red color and the second best in blue

color.

Table 4 shows the results of different SR networks on this

zoom-in task. KMSR outperforms all other SR networks by

a large margin both in PSNR and SSIM. A visual result is

shown in Fig. 8. KMSR is capable of generating a sharper

image than the other SR networks.

4.7. Ablation studies

To demonstrate the effectiveness of using realistic ker-

nels and also to show the precision of the kernel estimation

algorithm [35] that we use, we train and test another ver-

sion of the proposed network, KMSRA1, without collecting

the realistic kernels. In building the kernel pool K ′

A1 for

KMSRA1, we use the bicubic-downsampled HR images as

LR images, i.e. we estimate the blur kernels k′A1 on the

bicubic-downsampled, bicubic-upscaled coarse HR images

X ′

A1. We then follow the same procedure as KMSR. We

train a GAN on K ′

A1 and generate the larger kernel pool

K+

A1
used to train KMSRA1. We test KMSRA1 on different

experimental settings, the quantitative results are shown in

Table 5. For the Gaussian and realistic kernels, KMSRA1

achieves comparative results with the state-of-the-art SR

networks (see Table 1), which implies that KMSRA1 is ca-

pable of learning the mapping from bicubic-downsampled

LR images to HR images. The results also shows that we

Blur-Kernel KMSRA1 KMSRA2 KMSR

bicubic 33.66 33.28 33.52

g1.25 26.47 27.42 27.94

g1.6 25.62 27.02 27.63

g1.7 25.28 27.90 27.15

realistic 25.29 27.10 27.52

Table 5: Evaluation of KMSR on ×2 SR in different train-

ing setting.

achieve significant performance gains with KMSR that is

trained with the realistic kernels of K+ (last column in Ta-

ble 1).

To test the contribution of the GAN in improving gen-

eralization, we trained KMSRA2, which is KMSR without

using the GAN but with simple data augmentation to ex-

pand the kernel pool. In this case, KMSRA2 is only trained

on K ′

A2 which contains the original estimated kernels k′

and their rotated, flipped, and scaled versions. Results are

shown in Table 5 On average, KMSR obtains 0.5dB im-

provements on KMSRA2. leading us to believe that using a

GAN to augment the kernel pool results in a more diverse

representation than simple data augmentation. This further

validates the effectiveness of incorporating a GAN in order

to augment the realistic kernel-pool.

5. Conclusion

We improve the performance of CNN-based SR net-

works on real LR images by modeling realistic blur-kernels.

In contrast to existing methods that use a bicubic-kernel in

the imaging model to obtain LR training images, we gen-

erate the SR training dataset by employing a set of realistic

blur-kernels estimated from real photographs. We further

augment the blur-kernel pool by training a GAN to output

additional realistic kernels. Our KMSR is able to produce

visually plausible HR images, demonstrated by both quanti-

tative metrics, qualitative comparisons, and a psychovisual

experiment. KMSR offers a feasible solution toward practi-

cal CNN-based SR on real photographs.
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