
 

  

Abstract 
In this paper, we generalize the conventional minimum squared 
error (MSE) method to yield a new nonlinear learning machine by 
using the kernel idea and adding different regularization terms.  
We name it as kernel minimum squared error or KMSE algorithm, 
which can deal with linear and nonlinear classification and re-
gression problems.  With proper choices of the output coding 
schemes and regularization terms, we prove that KMSE is identical 
to the kernel Fisher discriminant (KFD) except for an unimportant 
scale factor, and it is directly equivalent to the least square version 
for support vector machine (LS-SVM).  For continuous real out-
put values, we find that KMSE is the kernel ridge regression (KRR) 
with a bias.  Therefore KMSE can act as a general framework 
that includes KFD, LS-SVM and KRR as its particular cases.  In 
addition, we simplify the formula to estimate the projecting direc-
tion of KFD.  Experiments on artificial and real world data sets 
in numerical computation aspects demonstrate that KMSE is a 
class of powerful kernel learning machines.  

I. INTRODUCTION 

In the last few years, support vector machine (SVM) is 
one of the most influential developments in the machine 
learning [1-4][14].  One of its prominent advantages is the 
idea of using kernels to realize the nonlinear transforms 
without knowing the detailed transforms.  According to this 
idea, other authors proposed a class of kernel-based algo-
rithms, such as the kernel Fisher discriminant analysis or 
KFD [5], the least square version for support vector ma-
chines or LS-SVM [6], and the kernel ridge regressions 
without bias term or KRR [7]. 

In classical linear classifiers, minimum squared error al-
gorithm (MSE) and Fisher linear discriminant (FLD) are still 
widely used in practice since they are simple and they can 
tackle linearly separable and non-separable cases [8-11].  It 
had been proved that with the proper choice of the output 
coding scheme, MSE is equivalent to FLD, and that MSE 
approaches a minimum mean-squared-error approximation to 
the Bayesian discriminant function as the number of samples 
approaches infinity [8][9].  Therefore MSE can be viewed 
as a more general classifier, which can fulfill other types of 
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classifiers.  Furthermore, for continuous real outputs, MSE 
directly is the least squares linear regression algorithm. 

In this paper, we generalize the conventional MSE method 
to yield a new type of nonlinear learning machine, by using 
the kernel idea and adding different regularization terms.  
Since the different regularization term gives the solution 
different properties, two regularization terms are used to 
generate two different algorithms.  We name the proposed 
learning machines as kernel minimum squared error or 
KMSE algorithm.  With properly chosen output coding 
schemes and regularization terms, we prove that KMSE is 
identical to KFD except for an unimportant scale factor and 
is directly equivalent to LS-SVM.  For the continuous out-
put values, we prove that KMSE is KRR with a bias.  
Therefore, KMSE can be viewed as a class of more general 
kernel algorithms, which can implement KFD, LS-SVM and 
KRR as its three special cases.  Also, we simplify the for-
mula to estimate the projecting direction of KFD.  In order 
to evaluate the performance of KMSE and the equivalence 
between different methods in computational aspects, we took 
three experiments (the two spirals problem, an image classi-
fication and a cancer classification).  The results demon-
strate that KMSE is a powerful kernel algorithm. 

This paper is organized as in the following way: In section 
Ⅱ, KMSE classifier is defined by using kernel ideas and 
defining different objective functions.  The equivalence 
between KMSE and KFD is proved in section Ⅲ.  In sec-
tion Ⅳ, the equivalence between KMSE and LS-SVM is 
discussed.  Section V analyses the relation between KMSE 
and KRR.  The experiment results of several artificial and 
real world data sets are reported and analyzed in section Ⅵ.  
Finally we present the conclusions and discussions.  

II. THE KERNEL MSE ALGORITHM 
In this section, we present the kernel MSE or KMSE algo-

rithm using the kernel idea and defining different objective 
functions.  For simplicity, we first consider the binary 
classification problem. 

Let { }11
1 1
,..., lxx=1x  and { }22

1 2
,..., lxx=2x  be the 
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training samples from two different classes 21 ,ωω , and 

denote { }lxx ,...1== 21 xxx t . Let [ ]T
lyy ,...,1=y  

be the output coding scheme of samples, where 
n

kji R∈xxx ,, 21 , Ryk ∈ , 1,...,1 li = , 2,...,1 lj = , 

lk ,...,1= , 21 lll +=  and 21 , ll  are the number of 

samples of classes 21 ,ωω  respectively. 
In the classical MSE approach, the objective function of 

the training phase is defined as the summation of squared 
errors between the output code and actual output for samples, 
i.e., 
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M ∈∈  and w stand for the weight vector and 
threshold respectively, and u  is a column vector with l  
ones.  The conventional MSE classifier is the solution of a 
set of linear equations derived from functional (1).  Obvi-
ously, MSE solution depends on the output coding schemes 
and different choices arrive at solutions with different prop-
erties [8].  There exist two well-studied choices for the 
output coding schemes.  One is 
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which results in that the MSE solution approaches an optimal 
mean-squared-error approximation to the Bayesian dis-
criminant function as the number of samples approaches 
infinity.  Another choice is 
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which cause the MSE is identical to FLD except for an un-
important scale factor.  If the output of MSE is continuous 
values but not class labels, MSE becomes a linear regression 
algorithm. 

Now we generalize the classical MSE algorithm by ap-
plying some kernel functions and adding a suitable 
regularization term in objective functional. 

Assume Φ  is a nonlinear mapping ( FnR →Φ : ), 
which transform the vectors in the input space into vectors in 
some new feature space F .  In the F  space, we build a 
linear MSE whose weight vector and threshold are denoted 
by Φw  and Mβ  respectively.  From the theory of re-
producing kernels we know that any solution in the feature 

space must lie in the span of all training samples in the fea-
ture space [5][14].  Therefore we can construct an expan-
sion for Φw  in the form, 
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where liRM
i ,....2,1, =∈α  are coefficients which 

describe significance of each sample in the weight vector.  
Thus, by using the expansion (5) and the kernel function 
[1-3][14] 
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We can define the objective function of the MSE algorithm 
in the feature space F  as, 
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where [ ]TM
l

M
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lji ,..1, = , is the positive semi-definite kernel matrix satisfy-
ing the Mercer condition.  A linear set of equations can be 
derived from (6), i.e., 
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Note that this coefficient matrix is always singular since we 
want to estimate 1+l  parameters from l  samples, which 
will cause multiple solutions. 

According to statistical learning theory, if two classifiers 
have the same training error, the classifier with smallest 
capacity is more likely to perform better [12].  In an effort 
to choose one solution among the many solutions of (8), 
additional regularization term can be added [12].  Smola 
and Scholkopf [13] pointed out that the regularization term 
can effectively reduce the model space and thereby control 
the complexity of the solution (i.e. control capacity and 
generalization).  There exist two usual regularization terms: 

M
T
Mαα  in KFD [5], and ΦΦwwT  in SVM [1][13][14], 

LS-SVM [6] and ridge regression [7]. 
Now, we add these terms in objective function (7) and 

construct different regularized objective functions, i.e.,  
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where 21   µµ and  are positve constants or regularization 
parameters and 
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Minimizing these objective functions, we obtian two new 
sets of linear equations, 
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Note that we asuumed the kernel matrix is not singular in 
derivation of equation (13).  From the viewpoint of 
numerical stability, if the constants (   and 21 µµ ) are large 
enough, the coefficient matrices in (12) and (13) become 
positve definite and the problem can be made more stable 
[13]. 

Now we obtained two linear machines in the feature space, 
or two nonlinear machines with kernels in the original input 
space, which are the solutions of two linear sets of equations.  
We gave these two algorithms one name, i.e., KMSE, to 
emphasize that they are two versions of implementation of 
the same idea. 

Like MSE, KMSE solutions depend on the output coding 
schemes and the different choices give the solutions different 
properties.  In the next section, we’ll prove that KMSE is 
identical to KFD when we choose (4), (8) and (12), and in 
section IV, we’ll prove the equivalence between KMSE and 
LS-SVM with (3) and (13) chosen.  In section V, we’ll see 
that for continuous real outputs and equation (13), KMSE is 
the KRR with a bias.  Therefore KMSE can be viewed as a 
general class of kernel learning machines which includes 
KFD, LS-SVM and KRR as its specific cases. 

III. EQUIVALENCE BETWEEN KMSE AND KFD 

For two class problem, the basic idea of FLD is to find an 
orientation for which the projected samples are well sepa-
rated [8][9].  Mika et al [5] generalized the classical FLD 
using kernel idea and defined the kernel Fisher discriminant 
(KFD).  The basic conception of this technique is that the 
features in the input space are transformed into some feature 
space nonlinearly and in this feature space an optimal pro-
jected direction is found by using FLD. 

The objective function in KFD [5] to be maximized is,  
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and I  is the identity matrix, 

jl1  is the matrix with all 

entries as )2,1(  1 =j
l j

. 

In the work of Mika et al [5], the solution vector Fα , 
which maximizes the functional (14), is to find the leading 
eigenvector of MN 1− .  In fact, like the derivation of FLD, 
we can simplify this computation and obtain, 

    )( 21
1 MMNα −= −

F                (20) 
Obviously, since we estimate the l dimensional covariance 
structures from l  samples, the proposed setting is ill posed 
[5].  In order to cope with numerical stability problem or to 
control the capacity, Mika et al simply substituted 

INN µµ +=  for N , where µ  is a positive constant.  

The threshold Fβ  usually can be represented as, 
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KFD is to find an optimal linear projected direction in some 
feature space.  However such a projected orientation is 
nonlinear in the original input space. 

Now, we prove that the KMSE algorithm (8) and (12) is 
equivalent to KFD when choosing the output codes as (4).  
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Let the output coding scheme be equation (4), i.e., 
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From this equation set, firstly we can obtain  
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The definition of formula (18) can be described in the form, 

1488



 

   )
2

1
( T

jjj
T
jj l

j
MMKKN −∑

=
=          (25) 

From (23)，we obtain 
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Since M

T αMM )( 21 −=γ  is a scalar, this equation can be 
further simplified,  
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which except for an unimportant scale factor is identical to 
the solution for KFD (20).  Especially when we substitute 

µN  for N , such KFD is identical to the solution of a linear 
set of equations (12). 

In this section, we have proved that KMSE is equivalent 
to KFD with choosing the output coding scheme (4) and ob-
jective functions (8) and (10).  This means that KFD is a 
special case of KMSE. 

IV. EQUIVALENCE BETWEEN KMSE AND LS-SVM 
The least square version of support vector machines [6] by 

formulating the classification problem can be described as 
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Thus the optimal problem can be turned into a linear set of 
equations, 
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Note that there exist some mistakes in definition of sym-
bols in paper [6].  In the least square version of support 
vector machine, only a linear set of equations has to be 
solved instead of the quadratic programming problem in 
original SVM. 

Now, we prove the equivalence between KMSE and 
LS-SVM with the outputs (3) and the linear set of equations 
(13). 

We define a diagonal matrix, 
),...,,( 21 lyyydiag=Y              (34) 

This matrix is symmetric and always non-singular.  Again, 
we rewrite 
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By multiplying Y  in (36) and applying (35), we obtain 
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where YKY=Ω , IYY = , yYu =  and uYy = .  

Now eliminating Mβu from (36) and (37), we obtain 
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From (38) and (39), a new linear set of equations is con-
structed 
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Comparing equation (40) with (30), we find out that the 
linear set of equations (30) is equivalent to (40) when 

1
2

−= γµ .  This equivalence between KMSE and 
LS-SVM indicates that LS-SVM can be viewed as a special 
case of KMSE too. 

V. RELATIONSHIP BETWEEN KMSE AND KRR 
In [7], Saunders et al proposed one dual form of the ridge 

regression, which does not involve a threshold.  A linear set 
of equations is built as, 

yαIK =+ R)( 3µ                 (41) 
In linear case, if we add a dimension in sample vectors and 
weight vector, the threshold or bias term can be hidden in the 
weight vector thus need not be considered in derivation pro-
cedure.  However in its dual form, if there is not a threshold, 
the dual form cannot be degenerated into the linear one by 
using the linear kernel.  When adding a threshold, the dual 
of ridge regression is the linear set of equations (13). 

Therefore for the continuous value output, KMSE is di-
rectly the dual form of ridge regressions.  Moreover the 
regression function with a threshold is more comprehensive. 

VI. EXPERIMENTS 
Since KMSE can approach to the performance of KFD, 

LS-SVM and KRR, we designed several experiments on 
artificial and real-world data sets to evaluate the performance 
of KMSE in the computation aspects. 
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A. The Two Spiral Problem 
For the two spiral problem, our task is to discriminate 

between two sets of sample points which lie in two spirals in 
a plane.  As shown in Figs. 1 and 2, in our experiment each 
category includes 108 samples.  The samples of the two 
classes are illustrated as “+”s and “.”s respectively. 

 
Fig.1 The separation hyperplane obtained with KFD (a) and KMSE (b).  
The KMSE algorithm was tuned to similate KFD. 

 
 
Fig.2  The separation hyperplane obtained with LS-SVM (a) and KMSE 
(b).  The KMSE algorithm was tuned to simulate LS-SVM. 
     

The performance of KMSE and KFD is illustrated in Fig.1, 
where Fig.1(a) shows the separation line by KFD and Fig.1(b) 
shows that of KMSE.  We adopted the RBF kernel function 
with 02.0=σ .  Both KMSE and KFD classify all 
samples correctly and obtain the central and smooth 
hyperplanes.  Fig.2 comparies the result of KMSE (Fig.2a) 
and that of LS-SVM (Fig.2b).  All samples are correctly 
classified too.  Again two smooth and centered hyperplanes 
between two category samples are found. 

Therefore for the two spiral problem, we can obtain very 
good decision functions by KMSE, which can approach the 
results of LS-SVM and KFD. 

 

B. An Image Segmentation Data Set 
The image segmentation data sets from the DELVE re-

positories [16] include seven classes: cement, brick face, 
grass, foliage, sky, path and window.  Each class consists of 
30 training samples and 300 test samples.  Every sample is 
characterized by eighteen attributes extracted from original 
images. 

We compared the correct rate of KFD with that of KMSE 
using RBF kernel.  In the numerical computation, we di-
vided the seven-class problem into six binary classification 
problems.  When the RBF parameter σ  varies from 0.1 to 
1.0 (with step 0.1), and µ and 1µ are two fixed constants 
respectively, at 25.0=σ  KMSE and KFD attain the 
maximum 85.86% and 87.29% respectively, and at 2.0=σ  
the same value 85.67.  The maximal difference between two 
classifiers is less than 4%, which possibly results from the 
fixed µ and 1 µ . 

Also using RBF kernel, we compared the correct rates of 
LS-SVM and KMSE.  With the RBF parameter σ  in-
creasing from 0.1 to 2.0 (with step 0.1), and 21 µλ = , the 
maximal distinction of correct rates between KMSE and 
LS-SVM is less than 1%, which maybe result from the nu-
merical computation.  At 0.1=σ , they reach the maxi-
mum 93.38 and 93.43 respectively.  Particularly the correct 
rates of two algorithms are lager than 90% when σ  ranges 
from 0.4 to 2.0. 

These experiments again proved our argument that KMSE 
can be viewed as a general classifier which can fulfill KFD 
and LS-SVM as its special cases. 

 

C. The Cancer (Leukemia) Classification Problem 
In [15], Golub et al introduced a generic approach to can-

cer classification based on gene expression monitoring by 
DNA microarrays and used a data set included 38 training 
samples and 34 test samples from two categories: acute 
lymphoblastic leukemia (ALL) and acute myeloid leukemia 
(AML).  Since there are 6817 genes, i.e., 6817 attributes, 
50 genes are selected to design and verify their classification 
approach.  The result of their classifier is two samples were 
rejected in the training procedure, and five samples were 
rejected in the test procedure.  (The decision would be error 
if these samples were not rejected). 

We also use the 38 samples as training set and the 34 
samples as test set to evaluate the performance of KFD, 
LS-SVM and KMSE.  The linear kernel function is used in 
this experiment.  The results are listed in table 1.  When 
KMSE and KFD classify all samples correctly, there is only 
a misclassified test sample.  For LS-SVM and the corre-
sponding KMSE, there is one misclassified sample in the 
training set, and two misclassified among the test samples. 

 
Table 1. Number of rejected/misclassified samples for the 

leukemia data set with different approaches 
Data Set Golub’s 

Approach 
KMSE & 
KFD  

KMSE & 
LS-SVM 

Training Set 2 0 1 
Test Set 5 1 2 
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VII. CONCLUSION 
In this paper, we extended the traditional MSE algorithm 

to nonlinear cases with kernels, and proposed the Kernel 
MSE or KMSE method.  A proper regularization term is 
added to the objective function besides the summation of 
squared errors between the actual output of kernel neuron 
and the desired output.  This can make the method more 
stable in the numerical computation and control its generali-
zation ability.  The relationships of KMSE with KFD, 
LS-SVM and KRR are discussed in detail, leading to the 
conclusion that KMSE can be viewed as a unified framework 
for the other methods.  With these results, a better under-
standing of the kernel method family can be achieved. 
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