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ABSTRACT

The nonnegative matrix factorization (NMF) is widely used in

signal and image processing, including bio-informatics, blind

source separation and hyperspectral image analysis in remote

sensing. A great challenge arises when dealing with non-

linear NMF. In this paper, we propose an efficient nonlin-

ear NMF, which is based on kernel machines. As opposed

to previous work, the proposed method does not suffer from

the pre-image problem. We propose two iterative algorithms:

an additive and a multiplicative update rule. Several exten-

sions of the kernel-NMF are developed in order to take into

account auxiliary structural constraints, such as smoothness,

sparseness and spatial regularization. The relevance of the

presented techniques is demonstrated in unmixing a synthetic

hyperspectral image.

Index Terms— Kernel machines, nonnegative matrix fac-

torization, reproducing kernel Hilbert space, pre-image prob-

lem, unmixing problem, hyperspectral data

1. INTRODUCTION

The nonnegative matrix factorization (NMF) has been gaining

wide popularity in signal and image processing [1]. It consists

in approximating a nonnegative matrix with two low-rank

nonnegative matrices [2, 3]. By allowing a dimensionality

reduction with non-negativity constraints, it provides a phys-

ical interpretation to the factorization. The NMF has been

successfully applied to image classification [4], face expres-

sion recognition [5], objet recognition [6] and gene expres-

sion data [7]. For the hyperspectral image unmixing prob-

lem, the NMF provides a decomposition suitable for physi-

cal interpretation, where the high-rank matrix consists of pix-

els and the low-rank ones represent endmembers and abun-

dances [8, 9].

First proposed in [10], the NMF has gained popularity

thanks to the work of Lee and Seung [3, 11], with a mul-

tiplicative update rule investigated to solve the optimization
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problem. In [12], an alternating nonnegativity constrained

least squares method is applied. Smoothness is a frequently

considered constraint. It enables less spiky vectors either by

penalizing their ℓ2-norm [13], or by reducing the fluctuation

between neighboring values within a vector [14], or by con-

sidering a weighted-average term [15]. Sparseness, which al-

lows the uniqueness and enhances interpretation, is imposed

either with projections [16] or with ℓ1 regularization [17].

The NMF and most of its variants are based on a linear

mixing assumption. Kernel machines offer an elegant frame-

work to derive nonlinear techniques based on linear ones, by

mapping the data using some nonlinear function to a feature

space, and applying the linear algorithm on the mapped data.

The key idea is the kernel trick, where a kernel function al-

lows to evaluate the inner product between transformed data

without the need of an explicit knowledge of the mapping

function.

Recently, a few attempts have been made to apply NMF

in a feature space, in order to derive a nonlinear variant [18,

19]. Unfortunately, the results obtained in the feature space

cannot be exploited (except for a decisional problem such as

classification). One needs to get back from the feature space

to the input space. This is the curse of the pre-image problem,

a major drawback inherited from kernel machines [20, 21].

This ill-posed problem yields an even more difficult problem

when dealing with the non-negativity of the result [22, 23].

In this paper, we revisit the NMF within the framework of

kernel machines. We propose a novel kernel-NMF that does

not suffer from the curse of the pre-image problem, by solving

the problem in the input space. This is accomplished thanks

to the nature of the kernel function. We derive two iterative

algorithms: a gradient-based additive update rule and a multi-

plicative update rule. It turns out that the linear kernel yields

the conventional linear NMF. We also investigate the cases of

the polynomial and Gaussian kernels. Within the proposed

framework for kernel-NMF, several extensions are derived by

incorporating different constraints. The unconstrained (basic)

kernel-NMF and its extensions are applied to unmix the syn-

thetic hyperspectral image.



On applying the NMF in a feature space

Recently, several attempts have been made to derive nonlin-

ear, kernel-based, NMF. These methods originate in mapping,

with a nonlinear function Φ(·), the columns of the L by T in-

vestigated matrix X , thus transforming each column xt into

Φ(xt) for t = 1, . . . , T . Let κ(·, ·) be the reproducing kernel

associated with the nonlinear map, and H the induced feature

space. Written in the feature space, the NMF model is

Φ(xt) ≈
N∑

n=1

ant e
Φ
n . (1)

Here, the elements eΦn lie in the feature space H. Let

X
Φ =

[
Φ(x1),Φ(x2), · · · ,Φ(xT )

]
, then we obtain in ma-

trix form X
Φ ≈

[
eΦ1 , e

Φ
2 , · · · , eΦN

]
A. Essentially, all kernel-

based NMF proposed so far have been considering this model

[18, 19]. Unfortunately, the model (1) suffers from an im-

portant weakness, inherited from kernel machines: one has

no access to the elements in the feature space, but only to

their inner products with the kernel function. The fact that

the elements eΦn lie in the feature space H leads to several

drawbacks, as shown next.

The aforementioned model satisfies: 〈Φ(xt′),Φ(xt)〉 ≈∑N

n=1 ant 〈Φ(xt′), e
Φ
n 〉, for all t, t′ = 1, . . . , T . Here, the

left-hand-side is equivalent to κ(xt′ ,xt). Unfortunately, the

inner product 〈Φ(xt′), e
Φ
n 〉 cannot be evaluated using the ker-

nel function. To circumvent this difficulty, one should restrict

the form of eΦn , as given in [18] by writing them as a linear

combination of Φ(xt). By rearranging the coefficients of the

linear combination in a matrix W , the problem takes the form

X
Φ ≈ X

Φ
WA. However, this expression is quiet different

from the conventional NMF problem. Another downside is

that one cannot impose the non-negativity of the elements in

the feature space, namely eΦn . Thus, the constraint eΦn ≥ 0
should be dropped. Only the coefficients ant can be set to

nonnegative. This yields to the semi-NMF problem, where

only the constraint A ≥ 0 is forced [19].

The most important drawback is that one has no access

to the elements eΦn . Having a given matrix X , only the

matrix A is determined. To estimate a matrix E such as

X
Φ ≈ EA, one needs to solve the so-called pre-image prob-

lem [20]. This ill-posed problem consists of estimating an

input vector whose image, by the nonlinear map Φ(·), is as

close as possible to a given element in the feature space. In

other words, one determines each column en of E by solving

Φ(en) ≈ eΦn , for all n = 1, . . . , N . This problem is obvious

in all previous work on kernel-based NMF [24]. Including

the non-negativity constraint to the pre-image problem is a

challenging problem, as investigated recently in [23].

For all these reasons, applying the nonnegative matrix fac-

torization in the feature space has been limited so far. Next,

we propose a new kernel-NMF, where the resulting matrices

are defined in the input space, and therefore without the pain

of solving the pre-image problem.

2. THE PROPOSED KERNEL-NMF

We consider the following matrix factorization problem:

X
Φ ≈ E

Φ
A.

where E
Φ = [Φ(e1),Φ(e2), · · · ,Φ(eN )]. The non-

negativity constraint is imposed to A and en for all n =
1, . . . , N . Therefore, we have the following model:

Φ(xt) ≈
N∑

n=1

ant Φ(en).

This means that we are estimating the elements en directly in

the input space, as opposed to the model given in (1) where

the elements eΦn lie in the feature space.

To estimate all en and ant, we consider a simple alternat-

ing to minimize the following cost function:

J =
1

2

T∑

t=1

‖Φ(xt)−
N∑

n=1

ant Φ(en)‖2H, (2)

where ‖ · ‖H is the norm in the feature space H, i.e., ‖ · ‖2H =
〈·, ·〉. By expanding the above expression, the optimization

problem becomes:

min
ant,en

T∑

t=1

(
−

N∑

n=1

antκ(en,xt)+
1

2

N∑

n=1

N∑

m=1

antamtκ(en, em)
)
,

where κ(xt,xt) is removed from the expression since it is

independent of ant and en. By taking its derivative with re-

spect to ant, we obtain the following expression: ∇ant
J =

−κ(en,xt) +
∑N

m=1 amt κ(en, em). By taking the gradient

of J with respect to the vector en, we obtain:

∇en
J =

T∑

t=1

ant

(
−∇en

κ(en,xt)+

N∑

m=1

amt ∇en
κ(en, em)

)
.

(3)

Here, ∇en
κ(en, ·) denotes the gradient of the kernel with re-

spect to its argument en. Expressions can be easily derived

using most valid kernels, as given in Section 2.3. But be-

fore, we derive two iterative algorithms for solving the above

kernel-NMF, by alternating the estimation of ant and en.

2.1. Additive update rule

By using a gradient descent scheme, we update ant according

to ant = ant − ηnt ∇ant
J , where the stepsize ηnt can take

different values for each pair (n, t). Replacing ∇ant
J with its

expression, we get the following update rule:

ant = ant − ηnt

(∑N

m=1 amt κ(en, em)− κ(en,xt)
)
. (4)

A similar procedure is applied to estimate the elements en.

The obtained update rule is given by

en = en − ηn∇en
J, (5)



where the stepsize ηn can depend on n. To impose the non-

negativity of the matrices, the negative values obtained by the

above update rules are set to zero at each iteration.

2.2. Multiplicative update rule

The additive update rule is a simple procedure, however, the

convergence is generally slow, and is directly related to the

stepsize value used. In order to overcome these issues, we

propose a multiplicative update rule.

To derive a multiplicative update rule for ant, the stepsize

ηnt in (4) is chosen such that the first and the third terms in

its right-hand-side cancel. Therefore, we get:

ant = ant ×
κ(en,xt)∑N

m=1 amt κ(en, em)
. (6)

A similar procedure is applied to estimate the elements en, for

n = 1, . . . , N . The trick is that the expression of the gradient

(3) can always be decomposed as ∇en
J = P − Q, where

P and Q have nonnegative entries. This is called the split

gradient method [25]. It is obvious that this decomposition is

not unique. Still, one can provide a multiplicative update for

a given kernel function, as shown next.

2.3. Kernels

In this section, expressions from the three most known kernels

are provides.

2.3.1. Back to the conventional linear NMF

A key property of the proposed kernel-NMF framework is that

the conventional NMF is a special case, when the linear kernel

is used with κ(en, z) = z⊤en, for any vector z from the

input space. By substituting ∇en
κ(en, z) = z in the above

expressions, we get the additive update rules





ant = ant − ηnt

(∑N

m=1 amt e
⊤
men − x⊤

t en

)
;

en = en − ηn
∑T

t=1 ant

(
− xt +

∑N

m=1 amt em

)
,

as well as the multiplicative update rules





ant = ant ×
x
⊤
t en∑N

m=1 amt e
⊤
men

;

en = en ⊗
∑T

t=1 ant xt∑T

t=1ant
∑N

m=1 amt em

.

(7)

In the latter expression for updating en, the element-wise op-

erations are used with the division and multiplication, the lat-

ter being the Hadamard product given by ⊗.

2.3.2. The polynomial kernel

The polynomial kernel is defined as κ(en, z) = (z⊤en +
c)d. Here, c is a nonnegative constant. Concerning the most

common quadratic polynomial kernel with d = 2, the additive

update rules are





ant= ant − ηnt

(∑N

m=1 amt(e
⊤
men + c)2 − (x⊤

t en + c)2
)
;

en = en − ηn
∑T

t=1 ant

(
− 2(x⊤

t en + c)xt

+ 2
∑N

m=1 amt(e
⊤
men + c)em

)
,

and the multiplicative update rules are





ant = ant ×
(x⊤

t en + c)2
∑N

m=1 amt (e⊤
men + c)2

;

en = en ⊗
∑T

t=1 ant(x
⊤
t en + c)xt∑T

t=1ant
∑N

m=1 amt(e⊤
men + c)em

.

(8)

2.3.3. The Gaussian kernel

The Gaussian kernel is defined by κ(en, z) = exp( −1
2σ2 ‖en−

z ‖2), with the gradient ∇en
κ(en, z) = − 1

σ2 κ(en, z)(en −
z ). The update rules of ant can be easily derived, in both

additive and multiplicative cases. For the estimation of en,

the additive rule is

en = en − ηn

(
+ 1

σ2

∑T

t=1 ant κ(en,xt)(en − xt)

− 1
σ2

∑T

t=1

∑N

m=1 antamt κ(en, em)(en − em)
)
,

and the multiplicative algorithm is

en = en⊗
∑T

t=1 ant

(
xt κ(en,xt) +

∑N

m=1 amt en κ(en, em)
)

∑T

t=1ant

(
en κ(en,xt) +

∑N

m=1 amt em κ(en, em)
) ,

(9)

where the division is component-wise.

3. EXTENSIONS OF KERNEL-NMF

Our approach for kernel-NMF can be easily extended to in-

clude constraints on the endmember and abundance matrix

when taking into account the structure of the investigated

data, i.e., the hyperspectral image. When flattening such

three-dimensional image into a matrix X , the t-th column of

X is filled with the (i, j)-th spectrum from the original im-

age of size a by b, with i = ⌈ t
b
⌉ and j = t− (i− 1)b. Recall

that E = [e1, e2, · · · , eN ] represents the endmember matrix,

where column en is the n-th estimated endmember. The n-

th row an of the abundance matrix A = [a1,a2, · · · ,aN ]⊤

is used to construct the abundance map, denoted Mn. In the

following, we outline several extensions. It is worth noting



that we can certainly acquire more desirable unmixing per-

formances with the proposed extensions, simply because that

they will return to basic kernel-NMF when the regularization

parameter is null. Due to space limitation, only the multi-

plicative updates are given in the following.

3.1. Kernel-NMF with constraints on the endmembers

In this subsection, constraints are added on the endmembers.

Since the derivatives with respect to ant remain unchanged,

update rules for ant are identical to the ones given in Sec-

tion 2. Update rules for en are given next, for three different

regularizations.

3.1.1. Smoothness with 2-norm regularization

In the similar spirit of [13], we introduce an input-space

penalty term λ
2

∑N

n=1 ‖en‖2 to the cost function (2), thus

making each endmember less spiky. The balance between

the reconstruction accuracy and the smoothness term is ad-

justable with the positive parameter λ. Using the split gradi-

ent method [25], we get the corresponding multiplicative up-

date rules for each kernel function. It turns out that one gets

similar expressions as in the unconstrained case, with (7), (8)

or (9), where the term λen is added to the denominator.

We can also consider a similar constraint in the feature

space by including the term λH

2

∑N

n=1 ‖en‖2H to (2). This

leads to update rules similar to the above expressions, where

λen is replaced by λH∇en
κ(en, en).

3.1.2. Smoothness with fluctuation regularization

Following [14], we add γ

2

∑N

n=1

∑L−1
l=2 |eln − e(l−1)n| to (2)

in order to force small fluctuations between neighboring val-

ues within each endmember. The derivative of the penalty

term with respect to eln equals to:




+γ if eln < e(l−1)n and eln < e(l+1)n;
−γ if eln > e(l−1)n and eln > e(l+1)n;
0 otherwise.

Incorporating the above expression into ∇en
J (see (3)), we

easily get the corresponding modified update rules.

3.1.3. Smoothness with weighted-average regularization

Another smoothness regularization raised by Chen and Ci-

chocki [15] aims to reduce the difference between eln and a

weighted average eln = αe(l−1)n + (1 − α)eln. The penalty

term ρ
2L

∑N

n=1 ‖(I − T)en‖2 describes the sum of such ef-

fect over n, and its gradient with respect of en takes the form

ρQen. The additive update rule of the endmembers is easy

to derive using the descent gradient method. The multiplica-

tive update rule depends on the used kernel, with expressions

similar to (7), (8) and (9), by adding the term ρQen to the

denominator.

3.2. Kernel-NMF with constraints on the abundances

As for the constraints on the abundances, it turns out that the

added penalty has no influence on the update rules of the end-

members. Update rules of ant are given next for sparseness

and spatial regularizations.

3.2.1. Sparseness regularization

Sparseness has been proved to be very attractive in many dis-

ciplines, namely by penalizing with the ℓ1-norm of the weight

coefficients [16]. Introducing a sparseness term of abundance

matrix µ
∑N

n=1 ant to the cost function (2), each spectrum

xt tends to be represented by using a few endmembers. The

corresponding multiplicative update rule is obtained as:

ant = ant ×
κ(en,xt)∑N

m=1 amt κ(en, em) + µ
.

3.2.2. Spatial regularization

In [15], the authors take a one-direction spatial effect into con-

sideration. Here, we extend the idea to the abundance map

Mn (constructed by an), n = 1, 2, ..., N . For any inner ele-

ment Mn(i, j) belonging to the n-th abundance map, the spa-

tial effects from its geographical neighboring directions will

count. We use the term
∑N

n=1 Rn to reflect this spatial effect,

where Rn denotes the cost brought by the abundance map an.

The multiplicative update rule of this variant is:

ant = ant ×
κ(en,xt)∑N

m=1 amt κ(en, em) + G(i, j)
.

Here, G is a matrix that controls the spatial effect. The expres-

sion of this matrix is not given here due to space limitation.

4. EXPERIMENTAL RESULTS

The relevance of the proposed kernel-NMF and its extensions

is studied on a synthetic image generated from the general-

ized bilinear model with endmembers Water, Cedar and Brick

Building chosen from the USGS Digital Spectral Library. We

apply seven metrics to assess the unmixing performance, in

both input and feature spaces:

• Reconstruction error:

RE =
√

1
TL

∑T

t=1 ‖xt −
∑N

n=1 antet‖2

REφ =
√

1
TL

∑T

t=1 ‖φ(xt)−
∑N

n=1 antφ(et)‖2H

• Root mean square error for endmember estimation:

RMSEE =
√

1
NL

∑N

n=1 ‖en − ên‖2

RMSE
φ
E =

√
1

NL

∑N

n=1 ‖φ(en)− φ(ên)‖2H



• Spectral angle mapper:

SAM = 1
N

∑N

n=1 arccos
(

e
⊤

n
ên

‖en‖ ‖ên‖

)

SAMφ = 1
N

∑N

n=1 arccos

(
κ(en,ên)√

κ(en,en)
√

κ(ên,ên)

)

• Root mean square error for abundance estimation:

RMSEA =
√

1
NT

‖A− Â‖2

For the studied image, experiments are firstly conducted

with the unconstrained (basic) kernel-NMF multiplicative al-

gorithm to determine the parameter of each kernel. The

values of the parameters c = 0.5 and σ = 6.0 are then

fixed for all kernel-NMF extensions. In the search for ap-

propriate regularization parameter for the different kernel-

NMF extensions, the candidate regularization parameter set

{0, 2−5, 2−4, . . . , 220} is used. The number of iterations is

fixed to 100. The results are given in Table 1. As it can be ob-

served, the Gaussian kernel enables the optimal results in the

feature space, while the polynomial kernel mainly improves

the results in the input space. Additionally, the kernel-NMF

outperforms the conventional linear NMF. Moreover, exten-

sions are more efficient for appropriate regularization param-

eters.

5. CONCLUSION

In this paper, we presented a new kernel-based NMF, where

the matrices are estimated in the input space. This approach

circumvents the curse of the pre-image problem. Several ex-

tensions including regularization constraints were proposed

within this framework. The relevance of these techniques was

illustrated on synthetic data. As for future work, extensive

experiments are conducted on real hyperspectral images. We

also aim to extend this work to provide pre-image-free meth-

ods for principal component analysis and tensor decomposi-

tion.
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Table 1: Unmixing performance

Reconstruction Endmember Abundance

RE

(×10−2)
REφ

(×10−2)
RMSEE

(×10−2)
RMSE

φ
E

(×10−2)
SAM

(×10−2)
SAMφ

(×10−2)
RMSEA

(×10−2)

FCLS [26, 8] 3.08 - 17.83 - 33.21 - 45.93

Semi-NMF [27, 9] 1.90 - 26.11 - 35.56 - 30.51

K-Hype [27, 28] 3.20 - 26.11 - 35.56 - 24.23

MinDisCo [29] 1.76 - 23.93 - 70.78 - 19.06

K
er

n
el

-N
M

F
an

d
it

s
ex

te
n
si

o
n
s

J

Lin-Multi 1.50 1.50 28.20 28.20 37.63 37.63 26.25

Poly-Multi 6.52 64.21 24.91 201.37 34.24 89.73 47.27
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