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Abstract

Detecting samples from previously unknown classes is
a crucial task in object recognition, especially when deal-
ing with real-world applications where the closed-world as-
sumption does not hold. We present how to apply a null
space method for novelty detection, which maps all training
samples of one class to a single point. Beside the possibil-
ity of modeling a single class, we are able to treat multi-
ple known classes jointly and to detect novelties for a set
of classes with a single model. In contrast to modeling
the support of each known class individually, our approach
makes use of a projection in a joint subspace where training
samples of all known classes have zero intra-class variance.
This subspace is called the null space of the training data.
To decide about novelty of a test sample, our null space ap-
proach allows for solely relying on a distance measure in-
stead of performing density estimation directly. Therefore,
we derive a simple yet powerful method for multi-class nov-
elty detection, an important problem not studied sufficiently
so far. Our novelty detection approach is assessed in com-
prehensive multi-class experiments using the publicly avail-
able datasets Caltech-256 and ImageNet. The analysis re-
veals that our null space approach is perfectly suited for
multi-class novelty detection since it outperforms all other
methods.

1. Introduction
Many of today’s real-world applications deviate from the

traditional assumption of pattern recognition that all rele-

vant classes are known. Identifying samples from currently

unknown classes is hence an essential step in visual object

recognition. Instead of assuming a closed-world environ-

ment comprising a fixed number of classes, modern pat-

tern recognition systems need to recognize outliers, iden-

tify anomalies, or discover entirely new classes that are cur-

rently not part of the assumed model. Especially the latter

is essential in lifelong learning, where the system evolves
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Figure 1. Novelty detection in the null space of a three-class-

example: training samples of the known classes bonsai, lemon,

and vase are projected to a single point, respectively (colored
dots). Colored crosses indicate projections of test samples that be-

long to one of the known classes, black crosses are projections of

samples from unknown classes which are considered as novelties.

over time and the number of object categories can grow. In

this scenario, new objects should by detected automatically

in order to learn object categories incrementally. Despite

its importance, however, novelty detection is an often ne-

glected part in visual recognition systems.

The definition of novelty detection can be summarized

as follows. Based on a fixed set of training samples from a

fixed number of categories, novelty detection is a binary de-

cision task to determine for each test sample whether it be-

longs to one of the known categories or not. A common as-

sumption for novelty detection is that in feature space, sam-

ples occurring far away from the training data most likely

belong to a new category.

However, we assume that objects of new categories oc-

cur far away from the training data in the null space. In

this specific subspace, the training samples of each known

category have zero intra-class variance, since they are pro-

jected to a single point, respectively. As a consequence, a

whole class is represented as a single point and we can di-

rectly use distances between the projection of a test sample

and the class representations to obtain a novelty measure.

An example of our null space approach using three cate-

gories of the ImageNet dataset [3] is shown in Figure 1. In
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the null space, test samples of known categories have small

distances to the corresponding class representations. In con-

trast, test samples of unknown object categories are mapped

far away. The difference between samples of the known cat-

egories and samples of novel ones is clearly observable in

terms of distances to class representations.

Related work on novelty detection mainly focuses on

modeling the distribution of a single class with arbitrary

complex models (see Sect. 4). With our proposed approach,

we circumvent the estimation of complex class distribu-

tions by totally removing the intra-class variances using

null space projections. Furthermore, current multi-class ap-

proaches have to pool the scores of individual class models.

This is nothing else but combining projections in different

one-dimensional subspaces, which is a crucial step if the

scores are not scaled properly. In contrast, our novelty de-

tection approach yields a score obtained from a single sub-

space computed jointly for all known categories.

Therefore, the contribution of this paper is the following.

We provide a method for novelty detection where we build

on the Null Foley-Sammon transform (NFST) [7] due to its

inherent properties explained later in this paper. With this

transform, we are able to model all known training classes

jointly and obtain a single novelty score for multiple classes

allowing for joint multi-class novelty detection. We are not

aware of any existing method that is able to perform multi-
class novelty detection with a single model. Additionally,

we show how to apply our method for one-class classifica-

tion, where the training set only consists of samples from a

single class.

The remainder of this paper is organized as follows.

Since our approach is based on the theory of null spaces

which is not widely-used in our community, we give a de-

tailed review of null space methods and a kernelization

strategy in Sect. 2 in order to make this paper self-contained.

Our multi-class novelty detection approach as well as the

derived one-class classification method using null space

methods is explained in Sect. 3. An overview of related

work on novelty detection is given in Sect. 4. Experimen-

tal results are presented in Sect. 5 showing the suitability

of null space methods for multi-class novelty detection. A

summary of our findings and suggestions for future research

directions conclude the paper.

2. Reviewing null space methods
In the following, we review NFST in detail, since it lies

at the core of our approach and is not widely-used so far.

Our resulting novelty detection method based on null spaces

is carried out in Sect. 3.

Generally, NFST allows for mapping input features X =[
x(1), . . . ,x(N)

] ∈ IRD×N of C different classes to a rep-

resentation with zero within-class scatter. This idea is visu-

alized in Figure 2. NFST is limited to problems with small

Figure 2. Visualization of NFST using three classes mapped from

the input space (left) to the null space (right), adapted from [7].

sample size (see Sect. 2.1). Thus, we also review the corre-

sponding kernelized method, which is beneficial especially

when using kernel functions with an infinite-dimensional

reproducing kernel Hilbert space, e.g., the Gaussian kernel.

2.1. Null Foley-Sammon transform

In the field of subspace methods, the linear discriminant

analysis, also known as Fisher transform, is sometimes re-

ferred to as Foley-Sammon transform (FST) [4]. Our ap-

proach is based on a special case of this technique: the Null

Foley-Sammon transform [7]. Generally, FST aims at com-

puting discriminative features for multi-class data by maxi-

mizing the Fisher discriminant criterion:

J (ϕ) =
ϕTSbϕ

ϕTSwϕ
, (1)

where ϕ ∈ IRD is one direction in a discriminative sub-

space. Maximization of the Fisher criterion leads to simul-

taneously maximizing the between-class scatter using the

between-class scatter matrix Sb and minimizing the within-

class scatter using the within-class scatter matrix Sw [1].

Optimization of (1) can be done by solving the generalized

eigenproblem:

Sbϕ = λSwϕ . (2)

The eigenvectors ϕ(1), . . . ,ϕ(k) according to the k largest

eigenvalues λ1, . . . , λk are collected as columns of a matrix

Q and discriminative features of FST are computed by:

x̃(i) = QTx(i) ∀ i = 1, . . . , N . (3)

For NFST in contrast to FST, each solution ϕ should have

zero within-class scatter and positive between-class scatter:

ϕTSwϕ = 0 , (4)

ϕTSb ϕ > 0 . (5)

In [7], such a ϕ is called null projection direction. The con-

straints (4) and (5) lead to J (ϕ) = ∞ and thus to the best

separability with respect to the Fisher discriminant criterion

from Eq. (1). Only in the case of small sample size, i.e.,
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N ≤ D, and linear independent training data, it can be

shown that one can compute C−1 null projection directions

ϕ(1), . . . ,ϕ(C−1) with C being the number of classes [7].

This is due to the singularity of the within-class scatter ma-

trix Sw. If Eq. (4) holds, the inequality (5) boils down to:

ϕTStϕ > 0 , (6)

with St = Sb +Sw being the total scatter matrix. To addi-

tionally guarantee (6), we first define the null spaces of the

matrices St and Sw:

Zt = {z ∈ IRD | St z = 0} , (7)

Zw = {z ∈ IRD | Swz = 0} , (8)

and denote their orthogonal complements as Z⊥t and Z⊥w .

With these definitions, it is easy to verify the correctness of

the following statement:

ϕ ∈ (
Z⊥t ∩Zw

)⇒ (
ϕTSwϕ = 0 ∧ ϕTSbϕ > 0

)
. (9)

Therefore, we need to compute directions

ϕ(1), . . . ,ϕ(C−1) ∈ (
Z⊥t ∩ Zw

)
. It can be shown [7] that

Z⊥t is exactly the subspace spanned by zero-mean data

x(1)−μ, . . . ,x(N)−μ with μ = 1
N

∑N
i=1 x

(i). To ensure

ϕ ∈ Z⊥t , we can represent each ϕ as:

ϕ = β1b
(1) + . . .+ βnb

(n) = Bβ (10)

using an orthonormal basis B =
[
b(1), . . . , b(n)

]
for the

zero-mean data with n ≤ N . Such a basis can be obtained

by Gram-Schmidt orthonormalization or standard PCA.

Replacing ϕ in (4) with its basis expansion (10), we need

to compute β according to βT
(
BTSwB

)
β = 0. This is

equivalent to solving the eigenproblem:
(
BTSwB

)
β = 0 (11)

of size n, which is much smaller than the size of Sw for

small sample size cases. Having solutions β(1), . . . ,β(C−1)

of problem (11), we can compute null projection directions

ϕ(1), . . . ,ϕ(C−1) by (10), again collect them as columns of

a matrix Q and calculate discriminative features of NFST

using (3). Let Xw be the matrix consisting of column vec-

tors x̄(i) = x(i)−μ(ci) with μ(ci) being the mean vector of

all data points belonging to the class ci of sample i. Now,

we are able to write Sw = 1
NXwX

T
w. Thereby, Eq. (11)

can be rewritten as:

HHTβ = 0 (12)

with H = BTXw only consisting of inner products be-

tween basis vectors and data points corrected by their class

mean. The use of inner products in H suggests a kernelized

algorithm, which will be reviewed in the next section.

2.2. Kernel Null Foley-Sammon transform

A fundamental assumption for NFST is the small sam-

ple size, i.e., the number of training samples N is smaller

than their dimension D. To overcome this problem and

to allow for more flexibility in the model, we can use

the kernel trick and perform NFST in high-dimensional

spaces. This leads to Kernel Null Foley-Sammon trans-

form (KNFST) [12, 26] and we map features implicitly to

a kernel feature space with a kernel function κ given by

κ
(
x(i),x(j)

)
= 〈Φ(x(i)),Φ(x(j))〉. These pairwise inner

products of mapped training data are collected in a kernel

matrix K ∈ IRN×N . To incorporate kernels, we first note

that an orthonormal basis of the subspace Z⊥t is needed,

which can be calculated by Kernel PCA as done in [26].

The Kernel PCA algorithm requires the centered ker-

nel matrix K̄ = (I − 1N )K (I − 1N ), where I is the

N×N identity matrix and 1N is a N×N matrix with all

entries equal to 1
N . The elements of K̄ are considered to be

pairwise inner products of zero-mean mapped data points

Φ̄(x(i)) = Φ(x(i)) − 1
N

∑N
j=1 Φ(x

(j)). The eigendecom-

position of K̄ is given by K̄ = V EV T with E being

the diagonal matrix containing n ≤ N non-zero eigenval-

ues and V containing the corresponding eigenvectors in its

columns. The scaled eigenvectors Ṽ = V E−
1
2 contain

coefficients for the eigenbasis B:

b(j) =
N∑
i=1

ṽijΦ̄
(
x(i)

)
∀ j = 1, . . . , n . (13)

However, the eigenbasis does not have to be calculated

directly. Instead of (11), we can equivalently solve (12).

Therefore, we just need to compute the matrix H using in-

ner products with the eigenbasis B, which leads to:

H =
(
(I − 1N ) Ṽ

)T

K (I −L) . (14)

The normalization of the basis vector coefficients Ṽ using

(I − 1N ) is necessary, since basis vectors in B are lin-

ear combinations of zero-mean mapped data points Φ̄(x(i)).
Normalizing the kernel matrix K using (I −L) is due to

the fact that Xw contains mapped data points corrected by

their specific class mean. Without loss of generality we can

assume that data points x(1), . . . ,x(N) are sorted accord-

ing to their class labels, such that the rows and columns of

K are ordered as well. In this case, L is a block diagonal

matrix with block sizes equal to the number of data points

Nc in each class c ∈ {1, . . . , C} and the value 1
Nc

at each

position. Using matrix H computed by (14), we are able

to solve (12) and obtain solutions β(1), . . . ,β(C−1). Sim-

ilar to (10), we calculate C − 1 null projection directions

ϕ(1), . . . ,ϕ(C−1) but using coefficients in Ṽ . Therefore,

the coefficients for null projection directions are:

ϕ̃(j) =
(
(I − 1N ) Ṽ

)
β(j) ∀ j = 1, . . . , C−1 . (15)
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A data point x∗ is mapped to (kT
∗ ϕ̃

(1), . . . ,kT
∗ ϕ̃

(C−1))T

in the null space, where k∗ contains values of the kernel

function calculated between x∗ and all N training samples.

2.3. Related approaches

Beside NFST and KNFST, there exist further null space

approaches. The null eigenspace of principal component

analysis is analyzed in [11] to select features for one-class

SVM. In order to obtain the common features of a single

class, the input data is projected on principal components

associated with zero eigenvalue. However, it is not guar-

anteed that such principal components exist, especially in

large-scale settings (which is in contrast to the null space

of KNFST we use in our approach). Therefore, the author

of [11] proposes to use the principal components associated

with the small eigenvalues.

There also exists a metric learning approach [5] that is

closely related to null space methods. The authors approxi-

mate an ideal case, where the metric assigns zero distance to

samples of the same class and samples of different classes

are infinitely far. The approximation is carried out by a

probabilistic formulation together with a convex optimiza-

tion problem. Again, it is not guaranteed that all samples of

the same class are mapped to a single point, since the pro-

posed algorithm only approximates the ideal case. How-

ever, combining such a “null space metric” with NFST or

KNFST is an interesting topic for future work.

Another metric learning approach [17] has recently been

introduced for large-scale image classification, which is

able to generalize to new classes. The authors study how

their learned metric deals with samples of unseen classes.

However, they do not detect those samples of unknown

classes automatically. To bridge this gap, we propose a nov-

elty detection method in the next section.

3. Novelty detection with null space methods
In the previous section, we have described NFST and its

kernelization based on already existing work [7, 12, 26].

This section explains how to adapt null space methods for

novelty detection in both one-class and multi-class scenar-

ios. Instead of creating a multi-class model out of several

one-class models as done in previous work (see Sect. 4),

we introduce our approach working the other way round.

We therefore first show how to perform multi-class novelty

detection and then apply this idea to the one-class case. Ad-

ditionally, we characterize the advantages of our novelty de-

tection approach that come from the model properties.

3.1. Multi-class novelty detection using null spaces

In multi-class novelty detection, we want to calculate a

novelty score indicating whether a test sample belongs to

one of C known classes, no matter to which class. Through-

out the rest of this paper, we refer to the classes known dur-

class 3

class 2

class 1

x∗

t(1)

t(2)

t(3)�� t∗︸︷︷︸
novelty score

(distance in the null space)

Figure 3. Overview of our multi-class novelty detection approach

using projections in the joint null space: the novelty score of a test

sample x∗ is the smallest distance between its projection t∗ and

the class projections in the null space.

ing training as target classes. We calculate a null space of

dimension C−1 and determine target points t(1), . . . , t(C),

one point for each target class, corresponding to the projec-

tion of class samples in the null space (see Sect. 2).

To obtain a single novelty score of a test sample x∗, we

first map x∗ to t∗ by projecting x∗ into the null space. Ap-

plying a pooling step directly in the joint null space of all

C classes, we use the smallest distance between t∗ and the

target points t(1), . . . , t(C) as a novelty score (Figure 3):

MultiClassNovelty(x∗) = min
1≤i≤C

dist(t∗, t(i)) . (16)

The larger the score and thus the minimum distance in the

null space, the more novel is the test sample. A hard deci-

sion can be found by using a threshold between zero and the

minimum distance between two target points. Note that an

arbitrary distance measure can be incorporated and we use

Euclidean distances in our experiments.

It is important to note that: (1) our null space approach

is able to perform joint learning of multiple classes and

joint novelty detection with a single model since it is de-

rived from a true multi-class classification technique using

a single subspace and (2) our null space approach is able to

separate the known classes from every currently unknown
class caused by the method specific properties. Training

a binary SVM for each known class using the samples of

the other classes as negatives only leads to separations from

other known classes and not from currently unknown ones.

In contrast, the separation from every currently unknown

class is possible with our approach due to the simple class

representations in the null space. Additionally, we are able

to treat all classes jointly with their true class labels, while

training a binary SVM for each known class treats remain-

ing known classes as a single negative class, which contra-

dicts to the idea of novelty detection. The novelty detection

formulation of SVM [20] is only derived for one-class set-

tings (see Sect. 4.1) and multi-class solutions based on this

model are discussed in Sect. 4.2.
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Φ(X)

Φ(x∗)
0 t∗ t

︸ ︷︷ ︸

novelty score
(distance in the null space)

(a) Separation of the target class from

the origin in the kernel feature space.

-X

X

x∗ t′ t∗ t
︸︷︷︸

novelty score
(distance in the null space)

(b) Separation of the target class from

negative data in the input space.

Figure 4. Our one-class classification approaches: all samples of

the target class are mapped on a single point t in a one-dimensional

subspace and the novelty score of a test sample x∗ is the distance

of its projection t∗ to t.

3.2. One-class classification using null spaces

At first glance, one-class classification is not possible

with null space methods, because we only have a single

target class in a one-class setting. This leads to zero null

projection directions, since the number of these directions

is C − 1 (see Sect. 2.1). Therefore, the adaptation to one-

class classification settings is not straightforward.

Due to this reason, we propose separating the samples

of the target class from the origin in the high-dimensional

kernel feature space similar to one-class SVM [20]. Using

this idea, we are able to compute a single null projection di-

rection and all class samples are mapped on a single target

value t along this direction. To check whether a test sample

x∗ belongs to the target class, we compute its projection on

the null projection direction and obtain the value t∗. As a

novelty score of x∗ we propose using the absolute differ-

ence between t and t∗:

OneClassNovelty(x∗) = |t− t∗| (17)

similar to the multi-class case, where a large score indicates

novelty. This score is a soft assignment and can be used

in experimental evaluations. For practical applications, we

obtain a hard decision using a threshold between 0 and |t|.
As an alternative strategy, we can also compute a sin-

gle null projection direction by separating the class sam-

ples from “minus data”. Following [19], all class samples

are replicated with opposite sign to create a second class.

Again, all true class samples are mapped on a single target

value t and we compute the novelty score similar to our first

approach using Eq. (17). Note that all points of the second

class are mapped to a second value t′ �= t, which is of no

interest for computing the novelty score. For practical ap-

plications, a threshold between 0 and |t− t′| can be used to

get a final decision.

Both one-class approaches are visualized in Figure 4.

Their asymptotic runtime for learning is O(N3) and thus

equal to those of other kernel based methods, such as one-

class Gaussian process techniques [8]. Computing the nov-

elty score of a new sample can be done in linear time. How-

ever, separating from the origin in the kernel feature space is

more suitable when dealing with histogram kernels like the

histogram intersection kernel and we use this method for

our experiments. In additional experiments with Gaussian

kernels, both methods achieved comparable performance.

3.3. Advantages of our novelty detection approach

Our proposed novelty detection approach benefits from

the null space, a joint subspace of all training samples where

each known class is represented by a single point. In con-

trast to other subspace methods such as Kernel PCA, addi-

tional density estimation or clustering within the obtained

subspace can be avoided and a simple distance measure can

be applied to get a novelty score. Whereas a pooling step

is necessary to combine scores of individual class models

from different subspaces, e.g., when applying the one-vs-

rest SVM framework, null space methods offer the possi-

bility to treat several classes in a joint manner with a sin-

gle subspace model. Additionally, our approach separates

known classes from every currently unknown class without

the necessity of negative samples by using simple represen-

tations of known classes in the null space. This is in contrast

to binary classifiers treating samples of one class as posi-

tives and samples of remaining known classes as negatives.

Using null space methods for novelty detection, we are

able to calculate a single feature for each class of the tar-

get data and thus are able to compute features with zero
intra-class variance. This ability is exactly what the au-

thors in [23] claim to be needed for one-class classification.

They suggest using features leading to zero variance in tar-

get data, if available. Such features are computable with

null space methods, even for multiple classes.

In addition, computing features of zero variance within

a class totally removes potentially large and complex intra-

class variations of the training samples. This means nothing

but extracting features that are identical within each class

by determining the common properties of class samples.

The transformed features obtained using null space meth-

ods can therefore be treated as class-specific features, since

the transformation preserves the joint characteristics within

each class. As previously mentioned, such features are per-

fectly suited for novelty detection from a theoretical point

of view [23]. Additionally, this goes beyond the feature se-

lection scheme proposed by [11] for one-class SVM already

mentioned in Sect. 2.3, where it is proposed to use principal

components associated with small eigenvalues in order to

preserve the common features of a single class.

Furthermore, we benefit from the absence of additional

hyperparameters such as the outlier ratio in the support vec-

tor based methods [20, 21] or the noise variance in the Gaus-

sian process framework [8]. The only parameter that can

occur within our approach is the one related to the kernel

function, an issue shared by all kernel methods. Hence, ad-

ditional parameter tuning beyond kernel hyperparameters is

not necessary for our proposed novelty detection method.
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4. Related work on novelty detection

An overview of basic concepts for novelty detection

in signal processing is provided by the review papers of

Markou and Singh [15, 16]. In visual object recognition,

novelty detection should not be confused with the detection

of unseen classes in zero shot learning [9], where knowl-

edge about new objects is used explicitly, e.g., via attributes.

Generally, novelty detection problems can be divided

into one-class and multi-class settings depending on the

number of known classes during training. Recent work on

novelty detection focuses on one-class classification. How-

ever, the derived methods can also be used for the multi-

class case if combined properly. In the following, we give a

short overview of related work for both one-class and multi-

class novelty detection scenarios.

4.1. One-class classification

The one-class classification paradigm assumes that the

whole data stems from a single underlying class. One-class

methods are particularly useful for latent binary classifica-

tion problems, where only samples from a single class are

available. These methods model the distribution of a single

class similar to Parzen density estimation [1], where known

samples are assumed to be located in high density regions.

An alternative strategy is to enclose class samples with

a boundary and measure the distance to it, e.g., the sup-

port vector data description (SVDD) [21] estimates the min-

imal enclosing hypersphere of a class, where the margin be-

tween class samples and outliers can additionally be maxi-

mized [25]. Note that one-class SVM (1SVM), which sep-

arates the samples of a single class from the origin with

maximum margin, achieves results equivalent to SVDD

when using a kernel that leads to constant self-similarities

κ(x,x) [20]. Since we apply such kernels in our experi-

ments, both methods achieve identical results (see Sect. 5).

The Gaussian process (GP) framework is a probabilis-

tic methodology [18] and it has been shown that Gaussian

process regression can be applied for one-class classifica-

tion problems using the predictive mean (GP-Mean) and the

predictive variance (GP-Var) as one-class scores [8].

4.2. Approaches for dealing with multiple classes

In many practical applications, not only a single class but

a set of classes is given. For dealing with multiple classes,

previous approaches can be divided in three main groups:

(1) treating the training data of all given classes as one ar-

tificial super-class [10], (2) combining the results of several

one-class classifiers learned with training data from each

class separately [22], and (3) using the results of multi-class

classifiers. The latter has not been studied so far and and we

apply the one-vs-rest SVM framework as a baseline. In the

following, we give more details about those groups.

Artificial super-class A simple way to perform multi-

class novelty detection is to train a single one-class classifier

for all available samples of all known categories [10]. This

means nothing else but treating multiple classes as one large

artificial super-class, which seems unsuitable for categories

that are far away from each other in feature space.

Combination of one-class classifiers The authors of [22]

propose training a multi-class classification model by com-

bining one-class classifiers learned for each category and

define the rejection of a test sample based on a pooling strat-

egy for the individual one-class scores. In this setting, each

one-class classifier discriminates a single class from each

possible other class. This is in contrast to binary classi-

fiers such as SVM that only discriminate between known

classes, e.g., in the one-vs-rest setting. Therefore, the rejec-

tion method used in [22] can be applied to novelty detection

and we compare our approach to this strategy.

Multi-class classifiers Reject strategies for multi-class

classification are related to novelty detection but differ in

treating regions between classes. Samples could also be re-

jected when being close to the decision boundaries between

known classes, which is obviously contradicting with the

idea of novelty detection and which is a severe problem es-

pecially when classes overlap in feature space. Note that

this is also the case when pooling binary SVM classifiers.

Since these classifiers distinguish between a single class and

a fixed set of negative classes, it is not clear how such mod-

els behave for samples of unseen categories, i.e., whether

such samples always occur in the “negative” half-spaces in-

dicated by the SVM hyperplanes. However, we also com-

pare our approach to the one-vs-rest SVM framework.

5. Experiments
We evaluate our novelty detection approach1 in visual

object recognition on two datasets, Caltech-256 [6] and Im-

ageNet [3]. For the latter, we choose exactly the same 1,000
object classes as done for ILSVRC 20102 using the training

set (100 samples per class) for learning the models and the

validation set (50 samples per class) for testing. We com-

pare the performances of our approach to those of several

state-of-the-art approaches reviewed in Sect. 4 using the

area under the ROC curve (AUC). In the experiments, we

focus on multi-class novelty detection. We also performed

experiments in one-class classification treating each class

of both datasets as a single target class once. The results of

all methods are comparable and do not differ significantly.

However, this is not the case when multiple classes are con-

sidered and we show that our null space approach outper-

forms all other methods in this typical scenario important

for lifelong learning and automatic object discovery.

1
MATLAB source code available at: http://www.inf-cv.uni-jena.de/Forschung/

paperProjects/Kernel+Null+Space+Methods+for+Novelty+Detection.html
2
http://www.image-net.org/challenges/LSVRC/2010
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Figure 5. Performance in multi-class novelty detection on the Caltech-256 dataset.

5.1. Experimental setup

Multi-class setup We use either five or ten target classes

that are known during training. Samples of Caltech-256 tar-

get classes are split in training and test set of equal size and

all samples not belonging to the target classes are consid-

ered as novelties. For each set of target classes, we average

over 20 random splits. The experiments on the ImageNet

dataset are done with 100 samples per target class for train-

ing and 50 samples from each of the 1,000 classes (includ-

ing the target classes) for testing. Final results are achieved

by computing median AUC scores using 50 and 100 ran-

domly picked training sets of the Caltech-256 and ImageNet

dataset, respectively.

Features To represent images, we use bag-of-visual-words

histograms from densely sampled SIFT [13] features. These

are publicly available for both datasets, Caltech-2563 and

ImageNet4, which allows for easy reproducibility.

Kernels The similarity between two histograms is mea-

sured using the histogram intersection kernel (HIK) [14]:

κHIK(x,x
′) =

∑D
d=1 min (xd, x

′
d) or the correspond-

ing generalized rbf-kernel [24]: κEXPHIK(x,x
′) =

exp (2 · κHIK(x,x
′)− κHIK(x,x)− κHIK(x

′,x′)).
Methods for comparison As one-class classifiers, we

apply the methods reviewed in Sect. 4.1 using code pro-

vided by the corresponding authors. We compare our ap-

proach with previous work using either a single one-class

classifier [10] or combine models separately trained for

each class [22] (see Sect. 4.2). Additionally, we apply

binary SVM in the one-vs-rest framework representing a

standard technique in visual object recognition [14] using

LIBSVM [2]. The outlier ratio ν of 1SVM and SVDD, the

parameter C of binary SVM as well as the noise variance of

the Gaussian process techniques is set to 0.1.

3
http://homes.esat.kuleuven.be/˜tuytelaa/unsup_features.html

4
http://www.image-net.org/download-features

5.2. Multi-class novelty detection results

The results on the Caltech-256 dataset and the ImageNet

dataset are shown in Figure 5 and Figure 6, respectively.

First of all, we empirically verify that modeling multiple

classes with a single one-class classifier as proposed in [10]

is not appropriate, since learning individual one-class clas-

sifiers for each category according to [22] leads to better

performances in all our experiments.

Interestingly, the binary SVM approach seems to be

more suitable for the task of multi-class novelty detection

in terms of higher median AUC scores compared to most

approaches based on one-class classifiers. The GP-Var

method combined with the pooling approach of [22] is the

best among the one-class based methods.

However, our proposed approach with KNFST even out-
performs SVM and GP-Var with a benefit of more than 5%
in median AUC on both the Caltech-256 dataset (see Fig-

ure 5) and the ImageNet dataset (see Figure 6). KNFST

achieves significantly superior results in all our experiments

with p < 10−5 according to the Wilcoxon rank sum test.

This highlights the capability and the relevance of our pro-

posed null space approach for novelty detection.

6. Conclusions and future work

Multi-class novelty detection is a challenging problem,
which needs more attention from the research community.
Especially in real-world applications, where the number of

categories is not fixed in advance, a modern object recog-

nition system should cope with situations, where novel ob-

ject categories can occur at any time. This paper proposes

a new novelty detection approach based on null space pro-

jections, which is perfectly suitable for tackling this prob-

lem. The benefit of our proposed multi-class novelty de-

tection approach is its ability of separating a set of known
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Figure 6. Performance in multi-class novelty detection on the ImageNet dataset.

classes from every currently unknown class. The approach

is able to decide about novelty in a single step using a sin-

gle model, whereas other approaches need to train a model

for each known class without considering them jointly. Our

experimental results clearly demonstrate the advantage of

the joint learning approach using the null space leading to

the best performance for multi-class novelty detection com-

pared to all other methods. Additionally, we have addressed

one-class classification as a special case of novelty detec-

tion. We have shown how to adapt our multi-class approach

in order to be able to model a single target class.

Future work will concentrate on novelty detection in

large-scale scenarios, where hundreds or thousands of cate-

gories are known to the model. Additionally, incorporating

metric learning approaches related to null space methods

such as [5, 17] is of special interest.
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