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The analysis of human microbiome data is often based on dimension-
reduced graphical displays and clusterings derived from vectors of microbial
abundances in each sample. Common to these ordination methods is the use
of biologically motivated definitions of similarity. Principal coordinate anal-
ysis, in particular, is often performed using ecologically defined distances,
allowing analyses to incorporate context-dependent, non-Euclidean structure.
In this paper, we go beyond dimension-reduced ordination methods and de-
scribe a framework of high-dimensional regression models that extends these
distance-based methods. In particular, we use kernel-based methods to show
how to incorporate a variety of extrinsic information, such as phylogeny, into
penalized regression models that estimate taxon-specific associations with a
phenotype or clinical outcome. Further, we show how this regression frame-
work can be used to address the compositional nature of multivariate pre-
dictors comprised of relative abundances; that is, vectors whose entries sum
to a constant. We illustrate this approach with several simulations using data
from two recent studies on gut and vaginal microbiomes. We conclude with
an application to our own data, where we also incorporate a significance test
for the estimated coefficients that represent associations between microbial
abundance and a percent fat.

1. Introduction. A common tool in the analysis of data from microbiome
studies is a scatterplot of dimension-reduced microbial abundance vectors. This
is a display of the samples’ beta diversity which, in ecology, refers to differences
among various habitats. When applied to human studies, beta diversity describes
the variation in microbial community structure across sampling units (e.g., hu-
man subjects): a beta diversity plot displays the n sampling units with respect to
the principal coordinates of their microbial abundance vectors, each consisting of
measures on the p taxa (bacterial types) observed in the study; see, for example,
Claesson et al. (2012), Goodrich et al. (2014), Koren et al. (2013), Kuczynski et al.
(2010). This principal coordinates analysis (PCoA; or multidimensional scaling,
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MDS) begins with an n × n matrix of pairwise dissimilarities between vectors of
taxon abundances. The choice of dissimilarity measure may greatly influence the
biological interpretation [Lozupone et al. (2007), Fukuyama et al. (2012)]. Eu-
clidean distance is rarely used.

A common assay of microbial content is based on counting sequences observed
from the 16S rRNA gene, a marker used to identify bacterial species or other tax-
onomic categories. We will generically refer to “taxa” rather than specifying a
category, such as genus or species. A single taxon may be placed within the con-
text of a phylogenetic tree in order to provide evolutionary relationships among
taxa. Dissimilarity measures that account for these phylogenetic relationships are
assumed to enhance statistical analyses—for instance, to improve the power of
statistical tests—because they incorporate the degree of divergence between se-
quences [Chen et al. (2012)] and do not ignore “the correlation between evolution-
ary and ecological similarity” [Hamady and Knight (2009)]. The UniFrac distance
[Lozupone and Knight (2005)], in particular, is based on the premise that taxa
which share a large fraction of the phylogenetic tree should be viewed as more
similar than those sharing a small fraction of the tree. In the unweighted version of
UniFrac, each taxon is quantified merely by its presence or absence; the distance
between a pair of samples is based on the number of branches in the tree shared
by both. Figure 1(a) is a beta diversity plot of n = 100 human microbial abun-
dance vectors with p = 149 taxa based on data from Yatsunenko et al. (2012).
Each sample is represented by 2-dimensional coordinates with respect to the un-
weighted UniFrac distance, and the size of each point is proportional to log(age)
of the subject.

FIG. 1. PCoA plots of data from Yatsunenko et al. (2012). (a): PCoA plot with respect to unweighted

UniFrac distance where dot size is proportional to log(age) of the subject. (b): PCoA plot with respect

to unweighted UniFrac distance, dot size is proportional to yTrue from the model in equation (3.2)
with ε = 0.
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Dissimilarity measures in microbiome studies are many and varied, with a rich
collection that, like UniFrac, exploit the phylogentic structure: Chen et al. (2012)
generalize UniFrac by reweighting rare and abundant lineages; double principal
coordinate analysis (DPCoA) [Pavoine, Dufour and Chessel (2004)], as shown by
Purdom (2011), generalizes PCA by incorporating the covariance that would arise
if the data was created by a process modeled by the tree; the edge PCA method of
Matsen and Evans (2013) incorporates taxon abundance information at all nodes
in a phylogenetic tree, rather than just the leaves of the tree, and Evans and Mat-
sen (2012) formalize the mathematical interpretation of UniFrac as just one ex-
ample within a large family of Wasserstein (or earth mover’s) metrics. A wide
variety of non-phylogenetic dissimilarities are also in common use, such as Bray–
Curtis [The Human Microbiome Project Consortium (2012)] and Jenson–Shannon
[Koren et al. (2013)], among others.

While PCoA plots provide valuable graphical insight into the relationships
among microbial profiles and an outcome or phenotype, they do not quantify this
association. More importantly, the (sets of) taxa associated with the outcome—and
the magnitude or statistical significance of such associations—are not ascertained
from a PCoA plot; once a matrix of (dis)similarities between samples is formed,
it is not clear how to identify individual taxa that are associated with an outcome.
Specifically, given a PCoA plot as in Figure 1(a), with structure imposed by the
chosen dissimilarity matrix (e.g., unweighted UniFrac) and with associations im-
plied by a class label or continuous outcome (e.g., age), how does one estimate
which taxa or subcommunities are associated with this outcome? We address this
question by formulating multivariate regression models that are constrained by
the structure of the (dis)similarity matrix. This is made possible by exploiting an
equivalence between a taxon-based (primal space) and sample-based (dual space)
formulation of our penalized regression models. While exploiting such an equiv-
alence is straightforward in the special case of ridge regression (with purely Eu-
clidean structure), it becomes complicated when more general distance measures
are used. To this end, we show how a little-used regularization scheme by Franklin
(1978) provides a dual-space regression coefficient estimate that naturally con-
nects to primal-space coefficients. Because a dissimilarity matrix can be used to
construct a similarity matrix (as commonly done in classical MDS [Mardia, Kent
and Bibby (1980)], we work with kernels, rather than distances, and allow for gen-
eral kernels, including those constructed from a nonlinear feature map.

In addition to complications stemming from more general distances, the anal-
ysis of microbiome data is also complicated by the compositional nature of the
data itself. More specifically, taxon measures typically represent relative, rather
than absolute, abundances. The p-variate relative abundance vectors are thus com-

positional in that they are constrained to a simplex within Rp; such data do not
reside in a Euclidean vector space [Aitchison (2003a)]. Consequently, spurious
correlations arise and standard multiple regression models fail. Our proposed KPR
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framework, however, addresses this: the centered log (CLR) transform of the rel-
ative abundance vectors first removes the vectors from the simplex, then the es-
timation process is constrained using a penalization term defined by Aitchison’s
variation matrix. This approach takes a different perspective from the recent pro-
posal of Li (2015) which forces the estimated coefficient vector to reside in the
simplex. Given that the CLR transforms the compositional vectors to Euclidean
space and that the units of the Aitchison variation matrix are the same as the CLR
transformed data [Egozcue and Pawlowsky-Glahn (2011)], our constraint seems
more suitable for the geometry of the problem.

In summary, we describe a family of high-dimensional regression problems in
Section 2, which are designed to incorporate the assumptions that are tacitly im-
plied by various exploratory and graphically-focused PCoA plots common in mi-
crobiome studies. We show how phylogenetic and other structure can be incorpo-
rated via kernel penalized regression in either the primal (p-dimensional) feature
space or the dual (n-dimensional) samples space; see Sections 2.2 and 2.3. Fi-
nally, our proposed framework leads to an approach, described in Section 2.4, for
addressing well-known problems that arise from applying standard (Euclidean-
based) statistical models to compositional data. Section 3 illustrates the proposed
framework with simulations based on publicly available data, while Section 4
presents an application to our recent microbiome study of premenopausal women.
In this analysis, we obtain estimates of associations between microbial species
and percent fat measured in premenopausal women, and also provide inference for
these estimates by applying a recent significance test [Zhao and Shojaie (2016)] in
our kernel-penalized regression (KPR) framework.

2. Kernel penalized regression for microbiome data. We describe a family
of multiple regression problems aimed at incorporating assumptions that are im-
plicit in principal coordinate analysis (PCoA) plots common in microbiome stud-
ies. We begin in Section 2.1 by establishing notation and concepts from existing
dimension-reduction (ordination) methods with the goal of extending them to non-
truncated (penalized) regression models. Section 2.2 extends PCoA and principal
component regression (PCR) to penalized regression models in the primal space
in a manner that incorporates structures implicit in recent microbiome analyses.
Section 2.3 extends kernel ridge regression to general (non-L2) structure and the
use of two kernels. This extension exploits a dual-space regularization scheme of
Franklin [Franklin (1978)]. Section 2.4 describes how our proposed framework
can be applied to formulate a penalized regression model that accounts for the
compositional nature of relative abundance data.

We denote by yi , i = 1, . . . , n, a real-valued quantified trait and by xi =
[xi1, . . . , xip]′ a p-dimensional vector of microbial abundance values measured for
each of n subjects. Denote by X the n × p sample-by-taxon matrix whose ith row
is x′

i . We assume throughout that the columns of X are mean centered. For now,
we assume that the abundance values are appropriately normalized/transformed



544 T. W. RANDOLPH ET AL.

and postpone the treatment of compositional data to Section 2.4. The transpose of
a matrix A is denoted by A′ and the Frobenius norm is denoted as ‖A‖F . I ≡ Ip

denotes the identity matrix on R
p and the Euclidean norm of a vector x ∈ R

p is
denoted ‖x‖Rp or simply ‖x‖.

2.1. Background for PCoA and principal component regression. Consider
first the Euclidean PCoA, which is obtained from the eigenvectors of the kernel

matrix KI := XX′ of inner products Kij = 〈xi, xj 〉 between samples. Let J be
the centering matrix, J = I − 1

n
11′, where 1 is the n × 1 vector of ones. Then

it can be seen that XX′ = −1
2J�EJ , where �E is the n × n matrix of squared

Euclidean distances between samples: �E
i,j = ‖xi − xj‖2

Rp . The relationship be-
tween a kernel and a distance matrix � is more general. In particular, if � is
any n × n symmetric matrix of squared dissimilarities between vectors in R

p

then H = −1
2J�J serves as a kernel matrix summarizing similarities; see, for

example, Gower (1966), Pekalska, Paclik and Duin (2002). A particular case in-
volves a p × p symmetric, positive definite matrix Q that defines an inner prod-
uct 〈xi, xj 〉Q = x′

iQxj on R
p . If �Q denotes the matrix of squared distances,

�
Q
i,j = ‖xi − xj‖2

Q = 〈xi − xj , xi − xj 〉Q, defined with respect to this inner prod-

uct, then XQX′ = −1
2J�QJ is also a similarity kernel for the n samples. We

will denote this kernel by KQ = XQX′. Similarly, one may start with a matrix
�U of squared distances defined by a tree-based UniFrac dissimilarity [Lozupone
and Knight (2005)], and define a similarity kernel by H = −1

2J�UJ .
In graphical displays, two or three coordinates are typically used to explore

the relationship between samples. Let K = US2U ′ be the eigen-decomposition of
any similarity kernel, K , where U is the matrix whose columns are eigenvectors
and S2 = diag{σ 2

j } is the diagonal matrix of eigenvalues. The two-dimensional
PCoA plot is then the collection of points {ηi1, ηi2}ni=1 := {(σ1Ui1, σ2Ui2)}ni=1;
that is, a plot of the points represented by the first two columns of the matrix US.
These points are often colored according to a grouping label or continuous values,
{yi}ni=1, to graphically explore the existence of an association between the outcome
y and the sample profiles summarized by the first few columns of US. So, a PCoA
plot may be viewed as a graphical depiction of a two-component regression model
of association:

(2.1) yi = γ1ηi1 + γ2ηi2 + ε, i = 1, . . . , n,

where η1 and η2 are the first two PCoA axes. Ordinary principal component re-
gression corresponds to the case that η1 and η2 come from the Euclidean kernel
KI = XX′. On the other hand, the configuration of points in Figure 1(b) corre-
spond to the first two eigenvectors of the kernel defined by an unweighted UniFrac
distance matrix �U , and the size of individual points correspond to the values of
y from equation (2.1) with ε = 0.
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Let A(k) denote the first k columns of a matrix A, or its first k rows and columns
if A is diagonal. Then, using the singular value decomposition (SVD) X = USV ′,
if we express the dimension-reduced approximation of X as X̆ := U(2)S(2)V

′
(2),

then equation (2.1) can be written as

(2.2)

y = γ1η1 + γ2η2 + ε

= U(2)S(2)γ + ε

= X̆V(2)γ + ε,

where γ = [γ1 γ2]′. Here, X̆V(2) = U(2)S(2) and Range(X̆′) = Range(V(2)). Con-
sequently, the model y = X̆V(2)γ + ε can be written as y = X̆β + ε, where β is
some vector of the form β = X̆′γ . So inherent in a Euclidean PCoA plot is an
implicit coefficient vector, β , which models a linear association between y and X̆.
Using the SVD of X in (2.2), the PCR estimate of β ∈ R

p is expressed as

(2.3) β̂PCR =
(

X̆′X̆
)†

X̆′y = V(2)S
−1
(2)U

′
(2)y =

2
∑

k=1

1

σk

u′
kyvk,

where † denotes the Moore–Penrose inverse.

2.2. Penalized regression and DPCoA. An alternative to a Euclidean PCR is
the ordinary ridge regression [Hoerl and Kennard (1970)],

(2.4) β̂ridge =
(

X′X + λI
)−1

X′y =
n

∑

k=1

(

σ 2
k

σ 2
k + λ2

)

1

σk

u′
kyvk,

in which the terms are reweighted, instead of being truncated as in β̂PCR. The es-
timate in (2.4) is the solution of the penalized least squares regression problem,
β̂ridge = arg minβ{‖y − Xβ‖2 + λ‖β‖2}, where here and throughout λ is a tuning
parameter that controls the amount of shrinkage or size of β in the penalty term.
Here, the penalty is simply the Euclidean (or ℓ2) norm on R

p , but a wide range
of penalty terms have been proposed to replace or extend this particular form of
regularization; see Bühlmann, Kalisch and Meier (2014) for a review of the most
established methods. These methods, such as the lasso, elastic net or SCAD do not
incorporate any extrinsic information, but a variety of other penalization methods
have been proposed which aim to do this. For instance, Tanaseichuk, Borneman
and Jiang (2014) uses a tree-guided penalty [Kim and Xing (2010)] to incorporate
such structure into a penalized logistic regression framework to encourage similar
coefficients among taxa according to their relationships in the phylogenetic tree.
Tibshirani and Taylor (2011) study the solution path for computing a “generalized
lasso” estimate in which an ℓ2 penalty is replaced with an ℓ1 penalty applied to a
linear transformation of the features, λ‖Lβ‖1. Within the context of genetic net-
works, Li and Li (2008) accounted for network structure by augmenting the ℓ1
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penalty with a second penalty of the form λ2‖β‖2
L

= β ′Lβ , where L denotes the
graph Laplacian matrix corresponding to predefined connections between genes in
a pathway.

For now, we consider a positive definite p×p matrix Q with a Cholesky decom-
position Q = LL′, and a penalty term of the form ‖L−1β‖2 = ‖β‖2

Q−1 = β ′Q−1β .
The generalized ridge (or Tikhonov regularization [Golub and van Loan (2012)])
estimate with respect to Q is then defined as

(2.5)

β̂Q = arg min
β

{

‖y − Xβ‖2 + λ‖β‖2
Q−1

}

=
(

X′X + λQ−1)−1
X′y

=
n

∑

k=1

(

σ 2
k

σ 2
k + λμ2

k

)

1

σk

u′
kyvk.

This estimate takes the same form as (2.4) but now the vectors uk and vk arise from
the SVD of XL = USV ′. Regarding the last equal sign, note that if A denotes any
matrix with p columns, the structure of an estimate β̂A from a penalty term of
the form ‖Aβ‖2

2 is determined by the joint eigenstructure of the pair (X,A) via
the generalized singular value decomposition.4 In particular, the basis expansion
of β̂Q in (2.5) is given in terms of the generalized singular vectors of (X,L−1).
Although the ridge estimate (with Q = Ip) is biased, an informed choice of penalty
term can reduce the bias [Randolph, Harezlak and Feng (2012)].

Now consider the context of phylogentic information and let δ represent the
matrix of squared patristic distances between pairs of taxa, that is, the sum of
branch lengths between each pair of taxa on the leaves of a phylogenetic tree. Set
Q = −1

2J δJ , a matrix of similarities between taxa. Double principal coordinate
analysis (DPCoA) was proposed by Pavoine, Dufour and Chessel (2004) to pro-
vide an alternative to ordinary PCoA that incorporates structure among samples as
well as structure implied by the taxa’s distribution among subcommunities, as sum-
marized by Q. Purdom (2011) clarified the original multistep DPCoA procedure
and showed how it can be more simply understood as a generalized PCA (gPCA)
in which one obtains the new coordinates from the eigenvectors of KQ = XQX′.
Note that when Q = Ip , DPCoA reduces to PCA/MDS. As emphasized in Purdom
(2011), the use of a nonidentity Q matrix incorporates structure from known rela-
tionships between the p taxa by exploiting a matrix representation of phylogenetic
relationships, thus providing a model for covariance structure.

If we let Q = LL′ be a Cholesky decomposition of Q and set Z := XL, then the
kernel KQ = XQX′ has an eigendecomposition of the form US2U ′ with respect
to the SVD of Z = USV ′. This leads to a two-dimensional regression estimate that

4We refer here to the generalized singular value decomposition (GSVD) of Van Loan (1976), a
simultaneous diagonlization of two matrices. A different SVD generalization [Greenacre (1984)]
imposes constraints on left and right singular vectors of a matrix.
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takes the same the form as β̂PCR in (2.3). Indeed, we can recover a primal space
estimate in terms of singular vectors as

(2.6) β̂DPCR := V(2)S
−1
(2)U

′
(2)y =

2
∑

k=1

1

σk

u′
kyvk.

That is, implicit in a DPCoA plot is a coefficient vector β̂DPCR which models a
two-dimensional linear association between y and Z = XL in the same way that
β̂PCR represents a two-dimensional linear association between y and X. Further,
XQX′ = (XL)(XL)′ and so U , S and V in β̂DPCR of (2.6) are the same as those
in the penalized (nontruncated) estimate, β̂Q, in (2.5). When Q = I , these two
estimates reduce to β̂PCR and β̂ ridge, respectively.

2.3. Kernel-based regression with two kernels. In addition to similarities
among taxa, as in Q, it is often of interest to incorporate similarities among sam-
ples as derived, for instance, from UniFrac distances: H = −1

2J�UJ . The sym-
metric positive definite n×n kernel H defines a new inner product on R

n given by
〈u,w〉H = u′Hw, with the corresponding norm ‖u‖2

H = 〈u,u〉H . If we consider
both a general kernel, H , and a DPCoA kernel KQ = XQX′, the generalized ridge
estimate β̂Q in (2.5) can be extended to

(2.7)
β̂Q,H := arg min

β∈Rp

{

‖y − Xβ‖2
H + λ‖β‖2

Q−1

}

=
(

X′HX + λQ−1)−1
X′Hy.

In this section, we show that the estimate in (2.7) is directly defined based on the
generalized eigenvectors of the two kernels KQ and H . Before proceeding to the
general case, let us examine the special case of ridge regression for which H = In

and Q = Ip . A ridge estimate can be obtained by solving an equivalent optimiza-
tion problem in the dual space R

n, known as kernel ridge regression [Schölkopf
and Smola (2002)]. Specifically, taking KI = XX′, the ridge estimate in (2.4) can
be obtained as β̂ ridge = X′γ̂kernel ridge, where

(2.8)
γ̂kernel ridge = (KI + λI)−1y =

(

K2
I + λKI

)−1
KIy

= arg min
γ∈Rn

{

‖y − KIγ ‖2 + λ‖γ ‖2
KI

}

.

In the case of ridge, the connection between the dual- and primal-space esti-
mates, γ̂kernel ridge and β̂ridge, relies on the form KI = XX′. Unfortunately, it is less
clear how to extend this connection to a general kernel (e.g., UniFrac or polyno-
mial). One way to incorporate a more general kernel K and a second kernel H in
(2.8) is to define the penalty in terms of H as

(2.9) γ̂∗ =
(

K2 + λH−1)−1
Ky = arg min

γ

{

‖y − Kγ ‖2 + λ‖γ ‖2
H−1

}

,
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which is exactly Tikhonov regularization, but in the dual space; compare equa-
tion (2.5). However, γ̂∗ ∈R

n has no obvious connection to a penalized estimate of
β ∈ R

p and cannot be used to obtain a penalized regression estimate in the primal
space, even if K = KI = XX′.

To bridge this gap, we instead apply the Franklin regularization scheme
[Franklin (1978)], a little-used alternative to Tikhonov regularization. More specif-
ically, for any kernels K and H , we define the dual estimate

(2.10) γ̂H,K :=
(

K + λH−1)−1
y = arg min

γ∈Rn

{

‖y − Kγ ‖2
K−1 + λ‖γ ‖2

H−1

}

,

where the justification for the second equality is given in the supplementary mate-
rial [Randolph et al. (2018)].

Comparing (2.9) and (2.10), one sees that the analytic form of (2.10) involves
just K rather than K2 = K ′K . As shown in Proposition 2.2, this subtle difference
is a key for relating a dual-space estimate γ̂H,KQ

and its primal-space counterpart,

β̂Q,H = QX′γ̂H,KQ
. Before presenting the main result of this section, we provide

several equivalent forms of γ̂H,K

(2.11)

γ̂H,K =
(

K + λH−1)−1
y

= arg min
γ∈Rn

{

‖y − Kγ ‖2
K−1 + λ‖γ ‖2

H−1

}

= arg min
γ∈Rn

{

‖y − Kγ ‖2
H + λ‖γ ‖2

K

}

= (HK + λI)−1Hy

= H(KH + λI)−1y.

In Proposition 2.2, we also refer to the special case corresponding to the DPCoA
ordination. As before, let Z = XL so that KQ = XQX′ = XLL′X′ = ZZ′. Taking
H = I , the dual-space estimate in (2.10) is γ̂I,KQ

= (KQ + λI)−1y, and so the

corresponding primal-space estimate is β̂ ≡ Z′γ̂I,KQ
. Since this estimate arises

from the DPCoA kernel, we make the following definition.

DEFINITION 2.1. A primal space DPCoA estimate is of the form β̂ DPCoA =
Z′γ̂I,KQ

= L′X′(XQX′ + λI)−1y.

The next proposition collects several properties that emphasize the roles of H

and K in our penalized regression framework. In particular, we show that the pri-
mal space estimate β̂Q,H can be recovered in terms of two kernels, H and KQ.

PROPOSITION 2.2. Let H and K be any two kernels constructed using the

rows of X in the regression model y = Xβ + ε. Then:
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1. γ̂H,K is a linear combination of the eigenvectors of the matrix product HK .
2. For any kernel H and DPCoA kernel KQ = XQX′, then the primal- and

dual-space estimates in (2.7) and (2.10), respectively, are related as: β̂Q,H =
QX′γ̂H,KQ

.
3. For H = I and Q = LL′, the generalized ridge and DPCoA estimates are

related as β̂Q = QX′(KQ + λIn)
−1y = Lβ̂DPCoA.

The proof, given in the supplementary material [Randolph et al. (2018)], makes
use of some linear algebraic identities which show, in particular, that

(2.12) β̂Q,H = QX′(XQX′ + λH−1)−1
y = QX′γ̂H,KQ

.

REMARKS. (A) Types of similarity kernels. In general, a sufficient condi-
tion for a matrix K to be a similarity kernel is that it is induced by a feature
map φ : Rp → K. More specifically, the i, j entry of K is defined as the inner
product of the observations xi ∈ R

p with respect to their transformed versions
Kij = 〈φ(xi), φ(xj )〉 in the new inner product space, (K, 〈·, ·〉). Examples include
KI = XX′ or KQ = XQX′, where K is R

p with inner product 〈·, ·〉Q (as in DP-
CoA). It is this quadratic form that we require for KQ in Proposition 2.2(2)–(3); see
Freytag et al. (2013) for genomic applications of this form. On the other hand, H

can be any symmetric positive semidefinite matrix. Here, we are more interested in
biologically-motivated kernels, such as UniFrac or DPCoA, than mathematically-
derived ones, such as those constructed from polynomials or radial basis functions
[Schölkopf and Smola (2002)].

(B) Co-informative kernels and the HSIC. Any kernels K and H may be used
in (2.10) and (2.11), but to be useful in this framework, we assume that they are
“co-informative” in the sense that they exhibit a shared eigenstructure; for in-
stance, both should be informative for classifying samples. This concept is illus-
trated in the simulation of Section 3.3 and Figure 4. The co-informativeness can be
made precise using the Hilbert–Schmidt information criteria (HSIC) [Gretton et al.
(2005)] or its relatives—the distance covariance [Székely and Rizzo (2009)] and
the RV statistic [Robert and Escoufier (1976)]. Josse and Holmes (2016) provide
a nice review of these and related kernel-based tests. The HSIC provides a test for
the statistical dependence of two data sets, X1 (n×p) and X2 (n×q), and is based
on the eigenspectrum of covariance operators defined by kernels created from X1
and X2. For two kernels K and H , the empirical HSIC is simply trace(HK). The
HSIC is thus of particular interest in item (1) of Proposition 2.2, which shows how
two co-informative kernels may be used to obtain a penalized estimate β̂Q,H .

(C) Linear mixed models and KPR. As an alternative to the regularization frame-
work presented here, one may consider a kernel as a generalized covariance among
either the p variables (using Q) or n subjects (using H ) [Purdom (2011), Schaid
(2010)]. This alternative representation can be made precise using the linear mixed
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model (LMM) framework [Ruppert, Wand and Carroll (2003)]. Specifically, recall
from equations (2.7) and (2.11) that

β̂Q,H = arg min
β∈Rp

{

‖y − Xβ‖2
H + λ‖β‖2

Q−1

}

= QX′(KQ + λH−1)−1
y

= QX′ arg min
γ∈Rn

{

‖y − KQγ ‖2
H + λ‖γ ‖2

KQ

}

= QX′γ̂H,KQ
.

These regression estimates are compatible with β ∼N(0, σ 2
b Q), ε ∼N(0, σ 2

e H−1)

and var(y) = (τKQ + λH−1)−1. And the estimate γ̂H,KQ
is compatible with

γ ∼ N(0, σ 2
a K−1

Q ) and ε ∼ N(0, σ 2
e H−1). With regard to the latter, a genetic sim-

ilarity between subjects (e.g., kinship) is often used for grouping subjects and sev-
eral authors have proposed this form of kernel for testing the (global) genetic as-
sociation with a trait or phenotype, y; see, for example, Schifano et al. (2012).
In particular, these methods use the LMM framework to motivate and define a
“kernel association test.” The variance score statistic for testing the null hypothe-
sis of no association between y and X (H0 : β = 0) is, using our notation above,
T := ‖y‖2

H 1/2KQH 1/2 . The kernel association testing framework has been applied

to microbiome data using a single kernel at a time derived from UniFrac [Zhao
et al. (2015)], but this is a test for whether β �= 0 and, unlike our KPR frame-
work, provides no insight about which taxa, as represented by coordinates of β ,
are associated with y.

2.4. Regression with compositional data. Data from 16S rRNA gene sequenc-
ing methods are random counts of the molecules in each sample. The number of
sequence reads assigned to a taxon contains no information about the actual num-
ber of molecules in the sample; the total number of reads observed in two sam-
ples can vary by several orders of magnitude. Hence, only relative amounts can
be investigated. Common approaches for normalizing these data include convert-
ing them to proportions (relative percent) or subsampling the sequences to create
equal library sizes for each sample (rarefying). These data are “compositional” in
the sense that the microbial abundances represent a proportion of a constant total.
It is known, however, that compositional measures can result in spurious correla-
tions among taxa [Pearson (1896), Aitchison (2003a), Friedman and Alm (2012)],
an effect that can be quite extreme when there are a few dominant taxa.

Compositional data reside on the simplex S
p−1 of unit-sum vectors in R

p

and so standard multivariate methods do not apply [Aitchison (2003b), Egozcue
and Pawlowsky-Glahn (2011), Li (2015), Lovell et al. (2015)]. In particular, be-
cause these data do not naturally reside in a Euclidean vector space, standard
regression models based on Euclidean covariance measures are inappropriate.
However, ordinary least-squares and ridge regression estimates are of the form
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β̂ = (X′X + λI)−1X′y (with λ = 0 and λ > 0, resp.). Thus, these estimates de-
pend on the empirical covariance structure, X′X, among taxa, which may include
spurious correlations. Similarly, Li (2015) points out that a naïve application of
lasso regression is not expected to perform well due to the compositional nature of
the covariates. He addresses this issue by applying a lasso regression model to the
log-ratio abundances and imposing an additional constant-sum constraint on the
coefficient vector, β .

We next show that the generality of KPR for handling non-Euclidean structures
can be used to address the compositional nature of microbiome data. In particu-
lar, we propose an approach that uses the centered log-ratio transformation of the
compositional vectors and an estimate of covariance among the log taxa counts
that is obtained via Aitchison’s variance matrix [Aitchison (2003b), Egozcue and
Pawlowsky-Glahn (2011)].

Let X be the n × p sample-by-taxon matrix whose rows are relative percent
(compositional) vectors {xi}ni=1 ⊂ S

p−1. The columns of X will be denoted by
xk , corresponding to k = 1, . . . , p taxa. Let g(z) = (

∏p
k=1 zk)1/p be the geometric

mean of a row vector, z, and denote the centered log-ratio (CLR) transform of xi

by x̃i = clr(xi) := [log
x1
i

g(xi)
, . . . , log

x
p
i

g(xi)
]. In what follows, we denote the matrix

of CLR vectors by X̃, and use the normalized variation matrix T , of X, as defined

by Aitchison (1982): Tk,ℓ = var( 1√
2

log xk

xℓ ). T is a symmetric dissimilarity matrix
with zeros on the diagonal and entries that have squared Aitchison distance units:

the Aitchison norm of a vector x ∈ S
p−1 is defined as ‖x‖2

a = 1
2p

∑

k,ℓ(log xk

xℓ )
2. In

fact, ‖x‖2
a = ‖ clr(x)‖2. One can show that T is related to the covariance matrix, C,

of the log of the true unobserved taxa counts via T = v1′ + 1v′ − 2C [Li (2015)].
Consequently, C = −1

2J TJ , and we can use C in place of Q in equation (2.5) to
obtain

(2.13) β̃C = arg min
β

{

‖y − X̃β‖2
Rn + λ‖β‖2

C−1

}

.

As a comparison, we observe that Li (2015) proposed a constrained regression

(2.14) E(yi) = β1 logx1
i + · · · + βp logx

p
i subject to

p
∑

j=1

βj = 0,

augmented with a lasso penalty to obtain an estimate of the form

arg min
β

{

1

2n

∥

∥

∥

∥

y −
∑

j

log
(

xj )

βj

∥

∥

∥

∥

2

Rn
+ λ

∑

j

|βj |
}

subject to
p

∑

j=1

βj = 0.

The zero-sum constraint on β was emphasized for interpretability advantages over
the standard lasso estimate. Temporarily denoting βp = −∑p−1

j=1 βj , we see that
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(2.14) is equivalent to

E(yi) = β1 log
x1
i

x
p
i

+ β2 log
x2
i

x
p
i

+ · · · + βp−1 log
x

p−1
i

x
p
i

= β1 logx1
i + β2 logx2

i + · · · + βp−1 logx
p−1
i −

p−1
∑

j=1

βj · logx
p
i .

Since
∑p

j=1 βj = 0, this can be rewritten as

E(yi) = β1 logx1
i + · · · + βp logx

p
i −

( p
∑

j=1

βj

)

logg(xi)

= β1 log
x1
i

g(xi)
+ · · · + βp log

x
p
i

g(xi)
subject to

p
∑

j=1

βj = 0.

Therefore, Li’s proposal of regression on log-ratio abundances is equivalent to
regression on the CLR-transformed data X̃ provided a zero-sum constraint is im-
posed on β . In contrast, however, our formulation does not explicitly impose a
constant-sum constraint. In fact, this constraint is not needed because the CLR
transform removes the analysis from the simplex to allow an analysis in Euclidean
vector space algebra [Egozcue and Pawlowsky-Glahn (2011)]. Our model instead
incorporates the appropriate covariance structure for the CLR transformation, C.

As a final observation, a positive-definite C in (2.13), or more generally Q in
(2.5), can be decomposed as a sum Q = I + Q̃ of the identity plus a positive semi-
definite singular matrix Q̃. The identity term constrains

∑p
j=1 β2

j to be small while,

overall, Q̃ encourages extrinsic structure (e.g., smoothness). One may also control
the size of

∑p
j=1 β2

j by adding or subtracting values in the diagonal entries of Q.
This idea is similar to that of “Grace-ridge” in Zhao and Shojaie (2016) where,
in addition to the penalty induced by Q, the authors propose to further impose a
ridge-type penalty in the objective. We apply the significance testing framework
of Zhao and Shojaie (2016) in Section 4.

3. Numerical experiments. To illustrate the proposed framework, we per-
form several data-driven simulations using publicly available microbiome data. We
consider three scenarios from the literature that exploit extrinsic structure from a
phylogenetic tree, including DPCoA, UniFrac and edge PCA. To achieve realis-
tic simulations, we simulate “true” signals of the type implied by each of these
methods in order to create benchmarks for performance evaluation. Our emphasis
is on formalizing the role that such structure plays in penalized regression when
modeling associations between the multivariate data, X, and a response variable,
y. Since y is directly simulated from X in these settings, the compositional nature
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of the data discussed in Section 2.4 does not affect the simulation results. We will
return to this topic when analyzing the relative abundance data in Section 4.

The numerical experiments in this section are motivated by the relationship be-
tween the PCoA plots and PCR described in Section 2.1 and Figure 1(b). This
connection can be generalized to a number of other commonly-used graphical
representations in the microbiome literature. For instance, any two-dimensional
DPCoA plot involves an implicit coefficient vector, β , of associations between y

and X.
Throughout this section, we compare the performance of KPR with ridge re-

gression and lasso. Ridge regression provides a direct extension of ordinary least
squares and thus is a natural benchmark for comparing various KPR estimates.
Lasso, which gives sparse estimates, is used as a benchmark in settings where the
true β is sparsely nonzero. The choice of competing methods is limited by our em-
phasis on estimating β , rather than predicting the outcome y. Indeed, most kernel
methods focus on prediction which renders them inappropriate for comparison.

In all simulation experiments, the tuning parameters for KPR, ridge and lasso
are chosen using 10-fold cross-validation. Specifically, to compare the prediction
performance of KPR, ridge and lasso, we choose the tuning parameters that min-
imize squared test error in held-out cross validation samples (CV min). On the
other hand, the task of estimation usually requires more smoothing than prediction
[Cai and Hall (2006)]. Therefore, when examining the estimation performances of
KPR, ridge and lasso, we use the largest tuning parameters such that the squared
test errors are within one standard error of the minimum squared test error (CV
1se), as suggested in Hastie, Tibshirani and Friedman (2009). For comparison, we
also consider the tuning parameters corresponding to the minimum squared test
error for ridge and lasso.

3.1. Regression and DPCoA. In our first example, we compare the estima-
tion and prediction performances of KPR, ridge and lasso using the data depicted
in Figure 1. The rows of X represent relative abundances of p = 149 taxa from
n = 100 subjects in a study by Yatsunenko et al. (2012). The outcome y is log-
transformed age of each subject. For KPR, we use KQ = XQX′ and H = I , where
Q = −1

2J δJ is a matrix of similarities between taxa obtained from the matrix of
squared patristic distances, δ. Motivated by DPCoA plots, we assume the underly-
ing “true” response yTrue is generated from the first two eigenvectors of KQ. Let L

be the Cholesky factor of Q, that is, Q = LL′, and let XL = ULSL(V L)′. Recall
that A(k) denotes the first k columns of matrix A, or its first k rows and columns if
A is diagonal. Motivated by (2.6), we let

(3.1) βTrue = s
(

V L
(2)

(

SL
(2)

)−1(

UL
(2)

)′
y, τ

)

,

where, s(·, τ ) is the hard-thresholding operator, that is, s(x, τ ) = x · 1(|x| > τ).
The threshold τ ≥ 0 is set to achieve various levels of sparsity: ‖βTrue‖0 ∈
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{⌊0.2p⌋, ⌊0.6p⌋,p}. After generating βTrue, we simulate

yTrue = UL
(2)S

L
(2)

(

V L
(2)

)′
βTrue.

The simulation is repeated 500 times, each with a different ε ∼ Nn(0, σ 2
ε In) in

yobs = yTrue + ε. Further, σ 2
ε is set to achieve R2 = var(yTrue)/(var(yTrue) + σ 2

ε ) ∈
{0.1,0.2, . . . ,0.9}. In each repetition, we estimate β̂DPCoA from yobs according to
Definition 2.1. To make the simulation more realistic, we add error to the ma-
trix Q used to simulate βTrue and yTrue, that is, we use Qobs, obtained by adding
random Gaussian noise to Q, to estimate β̂DPCoA. The eigenvalues of Qobs are ad-
justed to be equal to the eigenvalues of Q. The amount of Gaussian noise added to
the entries of Qobs is empirically determined to achieve ‖Q − Qobs‖F /‖Q‖F ∈
{0,0.25,0.5}. As a comparison, we estimate β̂Ridge and β̂ Lasso using only X

and yobs, without incorporating Q. From the estimated coefficients, we com-
pute ŷDPCoA = XLobsβ̂ DPCoA, ŷRidge = Xβ̂Ridge and ŷLasso = Xβ̂Lasso. The per-
formance metrics are the prediction sum of squared error (PSSE) from yTrue and
estimation sum squared error (ESSE) from βTrue.

Figure 2 shows the estimation and prediction performance of KPR, ridge and
lasso. KPR significantly outperforms both ridge regression and lasso for both pre-
diction and estimation in all settings. As expected, the performance of ridge and
lasso for estimation improve when using a larger tuning parameter. On the other
hand, neither misspecification of Q nor sparsity of βTrue seems to substantially im-
pact the relative performance of the three methods. This may be due to the fact that
KPR estimates the correct target βTrue, even with misspecified Q, whereas ridge
regression and lasso estimate the wrong target.

3.2. Regression and PCoA with respect to a UniFrac kernel. In the case of
PCoA with respect to a UniFrac matrix �U of squared dissimilarities, the graph-
ical displays are based on the eigendecomposition of H = −1

2J�UJ . That is,
for H = UH (SH )2(UH )′ ≈ UH

(2)(S
H
(2))

2(UH
(2))

′, the n samples are represented in

two dimensions by the columns of UH
(2)S

H
(2); this results in points {ηi1, ηi2}ni=1 :=

{(σ1U
H
i1 , σ2U

H
i2 )}ni=1, as plotted in Figure 1. When the points are colored according

to a response variable, {yi}ni=1, the implied regression model is

(3.2)
y = γ1η1 + γ2η2 + ε

= UH
(2)S

H
(2)γ + ε.

However, in contrast to PCR in equation (2.2), where US = XV , it is not obvious
how to connect γ directly to the p-coordinates corresponding to the p columns of
X. Here, we exploit the joint eigenstructure of kernels KI and H by proceeding as
in (2.11) to obtain the estimate β̂H = X′γ̂ as in (2.12), with Q = I .

In this example, we use the same data as in Section 3.1. For KPR, we use K =
XX′ and obtain H = −1

2J�UJ using the UniFrac distance matrix. We simulate
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γTrue and yTrue from the first two eigenvectors of H , as in (3.2):

(3.3)
γTrue =

((

UH
(2)

)′(
UH

(2)

))−1
SH

(2)

(

UH
(2)

)′
y

yTrue = UH
(2)S

H
(2)γTrue.

This bivariate ordinary least squares regression is illustrated in Figure 1(b).
The simulation is repeated 500 times, each with a different ε ∼ Nn(0, σ 2

ε In) to
produce various values of R2 ∈ {0.1,0.2, . . . ,0.9}. We compute ŷKPR = Kγ̂KPR,
where γ̂KPR is estimated using (2.10). Similar to the last example, we do not as-
sume we always observe the H matrix that is used to generate γTrue and yTrue;
rather, we use a noisy version, Hobs, of H in KPR with ‖H − Hobs‖F /‖H‖F ∈
{0,0.25,0.5}.

Although we estimate β here as in (2.7) (with Q = I ), there is no obvious
way to simulate a βTrue using UniFrac and so we do not compare the methods
based on their estimation performances, and only consider prediction. For all three
methods, we find the tuning parameters that minimize the cross-validated Hobs-
weighted squared test error. While the use of H in tuning ridge and lasso penalties
deviates from the common practice, it results in improved performances, given
the important role of H in this simulation. The H matrix also defines the valid
distance in this example. Thus, to evaluate the prediction performances of vari-
ous methods, we use the H -weighted prediction sum of squared error (HPSSE),
‖ŷ − yTrue‖2

H .
Figure 3 shows that KPR consistently outperforms ridge regression and lasso

in prediction, even with a reasonable amount of misspecification of H . This may
be due to the fact that, with the incorporation of the H matrix, KPR estimates the
correct target whereas ridge and lasso do not.

3.3. Regression and PCoA using an edge-matrix kernel. In this section, sim-
ulations are based on data from a study of bacterial vaginosis (BV) by Srinivasan
et al. (2012) in which 16S rRNA gene samples were collected using vaginal swabs
from n = 220 women with and without BV. Here, the outcome y represents pH
measured from vaginal fluid of each subject and we consider the association of

FIG. 2. Estimation sum squared error (ESSE: left panels) and prediction sum squared errors

(PSSE: right panels) of KPR, ridge regression and lasso and their 95% confidence bands. Standard

errors for ESSE and PSSE are estimated based on 500 simulation runs, and are roughly 0.5%–2%

(ESSE) and 2%–5% (PSSE) for KPR. We consider three sparsity settings for βTrue, based on (3.1):
‖βTrue‖0 = p in top panels, ‖βTrue‖0 = ⌊0.6p⌋ in center panels and ‖βTrue‖0 = ⌊0.2p⌋ in bottom

panels. For ridge and lasso, tuning parameters that produce the smallest cross-validated squared test

error (CV min), and the largest tuning parameters such that the cross-validated squared test errors

are within one standard error of the minimum cross-validated squared test error (CV 1se) are con-

sidered. For KPR, we consider ‖Q−Qobs‖F /‖Q‖F = 0 (no Q error), 0.25 (small Q error) and 0.5
(large Q error).
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FIG. 3. H -weighted prediction sum of squared error (HPSSE) of KPR, ridge and lasso, with 95%

confidence bands. Standard errors for HPSSE are estimated based on 500 simulation runs, and are

roughly 1%–4% for KPR. For KPR, we consider ‖H −Hobs‖F /‖H‖F = 0 (no H Error), 0.25 (small

H Error) and 0.5 (large H Error).

y with genus-level taxa. In this example, we use the p = 62 genera that exhibit
nonzero sequence counts in at least 20% of the subjects. So here, X represents
220 × 62 abundances in a sample-by-genus matrix, and we use a kernel K = XX′.
Additionally, however, we define a second kernel H = EE′ based on the “edge
mass difference matrix,” E, originally introduced by Matsen and Evans (2013). If
the full phylogenetic tree has q edges, each sample can be represented by a vector
indexed by all q edges, the eth coordinate of which quantifies the difference be-
tween the fraction of sequence reads on either side of the edge; that is, the fraction
of reads observed on the root side of the tree minus the fraction of reads on the
nonroot side. We refer to Matsen and Evans (2013) for details and a discussion of
“edge PCA,” which refers to PCA applied to the n × q matrix E. Note, in partic-
ular, that abundances from every taxon level in the tree contribute to a similarity
between subjects as opposed to abundances at a single taxon level, which is used
in UniFrac or DPCoA.

In summary, X represents p = 62 genus-level abundances while E is based on
all q = 1770 edges in the original phylogenetic tree. Figure 4(a) shows a PCA plot
of the 220 subjects in which their similarity is defined using the edge kernel H =
EE′; the color of each dot represents the subject’s pH. Figure 4(b) is a heatmap
of the kernel H used to create Figure 4(a). The columns and rows of H represent
similarities between samples based on the edge mass difference matrix, ordered
by subjects’ pH measurements. Similarly, Figure 4(c) is a (Euclidean) PCA plot
based on similarities defined using the genus-level abundance kernel, K = XX′.
Figure 4(d) is a heatmap of the kernel K used to create Figure 4(c), and subjects
are again ordered by pH. These figures illustrate how two different measures of
similarity (two separate kernels) may be co-informative in the sense that they both
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FIG. 4. Analysis of bacterial vaginosis data from Srinivasan et al. (2012). (a): Representation of

the samples in the space of the first two PCs of the edge-matrix kernel H = EE′. The color corre-

sponds to the pH of the sample; (b): Heatmap of edge-matrix kernel used to generate the plot in (a);
(c): Two-dimensional PCA plot based on the genus-level relative abundances, colored according to

pH; (d): Heatmap of the genus-abundance kernel K = XX′ used to create the plot in (c). In (b) and

(d), subjects are ordered by the pH values.

provide information about grouping of subjects’ microbiota in relation to their
pH. It is thus natural to expect that incorporating information from both H and
K within the KPR framework may result in improved estimates of association
between y = pH and the microbial abundances.

For the simulation, we define a “true” association between pH and the genus-
level taxa in X using the 2-dimensional PCR model in equations (2.2) and (2.3).
Specifically, we use the apparent association between y = pH and genus-level
abundances in Figure 4(c) to construct a “true” coefficient vector βTrue as follows.
Using the SVD of X = USV ′, and proceeding as in (3.3), define

γTrue =
[

(U(2)S(2))
′(U(2)S(2))

]−1
(U(2)S(2))

′y,

yTrue = U(2)S(2)γTrue.
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We then project yTrue onto the space spanned by the first two singular vectors of X

to define a true coefficient vector as

βTrue = V(2)S
−1
(2)U

′
(2)yTrue.

We now consider how the contribution of H = EE′ can aid in both the predic-
tion of yTrue and the estimation of βTrue even though, by construction, neither are
informed by E.

Taking H = EE′ in a KPR model of the form (2.10), we compare the re-
sulting estimate of β with ridge and lasso estimates. The simulation is repeated
500 times, each with a different ε ∼ Nn(0, σ 2

ε In) to produce various values of
R2 ∈ {0.1,0.2, . . . ,0.9}. The performance metrics are the estimation sum squared
error (ESSE) the H -weighted prediction sum squared error (HPSSE) as in the
previous section. In this numerical example, we do not assume we always ob-
serve the true H matrix; rather, we use a noisy version, Hobs, of H in KPR with
‖H −Hobs‖F /‖H‖F ∈ {0,0.25,0.5}. For all three methods, tuning parameter val-
ues are chosen to minimize the sum of squared test error weighted by Hobs. As in
the simulation for DPCoA, we also allow for using the largest tuning parameters
such that the squared test error weighted by H is within one standard error of the
minimum squared test error.

Figure 5 shows that KPR significantly outperforms ridge and lasso in both pre-
diction and estimation. Even though H is not used to simulate the true association,
using the edge kernel in KPR enhances the performance of both estimation and
prediction, as long as H is not severely misspecified. Once again, the performance
of ridge and lasso estimates improve when using a larger tuning parameter (CV
1se).

4. Application to an observational study. We apply our kernel-penalized
regression framework to data from 16S rRNA gene collected in a study of pre-
menopausal women [Hullar et al. (2015)]. This study investigated aspects of gut
microbial communities in stool samples from premenopausal women using 454
pyrosequencing of the 16S rRNA gene. The abundances of 127 species were zero
for more than 90% of the subjects and were removed from our analysis. The data
set we consider consists of p = 128 species sampled from n = 102 women.

To make the measurements comparable between subjects, the species abun-
dances were scaled by the total number of sequences measured in each sample.
This scaling produces compositional data (the relative abundances in each sam-
ple sum to 1) which introduces analytical complications. In particular, regression
analysis using compositional covariates must somehow account for their unit sum
constraint [Kurtz et al. (2015), Li (2015)]. For this reason, we apply the CLR trans-
formation to the relative abundance values and use this transformed data X̃ as the
matrix of predictors in the KPR model. Additionally, using Aitchison’s variation
matrix [Aitchison (1982)], T , we obtain the covariance matrix, C, as described
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FIG. 5. In silico evaluation of using tree-based edge information in regression models. Estimation

sum squared error (ESSE) and H -weighted prediction sum squared error (HPSSE) of KPR, ridge

regression and lasso, with the 95% confidence bands. Standard errors for ESSE and HPSSE are

estimated based on 500 simulation runs, and are roughly 2%–5% (ESSE) and 3%–5% (hPSSE) for

KPR. For KPR, we consider ‖H − Hobs‖F /‖H‖F = 0 (no H error), 0.25 (small H error) and 0.5
(large H error).

prior to equation (2.13). As C provides more accurate information on the covari-
ance among the true abundances than does the empirical covariance matrix from
relative abundances, X, or their CLR transform, X̃, we use C in place of Q in
(2.5).

In this example, we examine the effect of using the CLR transformed data X̃

and covariance C as in (2.13) and fit penalized regression models with the goal of
estimating β̃C in (2.13) for the purpose of identifying specific species that may be
associated with percent fat in the cohort described above. To this end, we apply a
recently developed significance testing procedure to three high-dimensional mod-
els in order to identify species exhibiting evidence of association with subjects’
adiposity. This significance test for graph-constrained estimation, called Grace
[Zhao and Shojaie (2016)], provides a means to assign significance to estimates
from penalized regression models that incorporate structure of the type provided
by Q in (2.5) [or C in (2.13)]. The method asymptotically controls the type-I er-
ror rate regardless of the choice of Q. The special case with Q = I provides a
significance test for ordinary ridge regression. In each application of the Grace
test, tuning parameters are selected based on the smallest squared test error using
10-fold cross validation. Following Zhao and Shojaie (2016), the assumed spar-
sity parameter is set to be ξ = 0.05. The tuning parameter for the initial estimator
is set to be λinit = 4σ̂ε

√
3 logp/n, where σ̂ε is the estimated standard deviation

of the random error ε, using the scaled lasso [Sun and Zhang (2012)]. To assess
significance for the sparse models using lasso, we apply the recently proposed sig-
nificance test for lasso regressions based on low-dimensional projection estimator
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TABLE 1
Species found to be associated with percent fat (in increasing order of p-values) at different

significant levels using: KPR with centered log-ratio transformed abundances (CLR); ridge

and lasso regression with centered log-ratio transformed abundances; and ridge

and lasso regression with untransformed relative abundances (rel%)

p < 0.01 p < 0.005 FDR < 0.1

KPR + CLR Bacteroides, Anaerovorax,
Acidaminococcus, Blautia,
Dethiosulfatibacter,
Asaccharobacter, Turicibacter,
Lebetimonas, Streptobacillus,
Anoxynatronum

Bacteroides, Turicibacter,
Acidaminococcus,
Dethiosulfatibacter

(none)

Ridge + CLR (none) (none) (none)
Ridge + rel% Catonella, Dethiosulfatibacter (none) (none)
Lasso + CLR Roseburia (none) (none)
Lasso + rel% Dethiosulfatibacter,

Micropruina

Dethiosulfatibacter (none)

(LDPE) [Zhang and Zhang (2014), Van de Geer et al. (2014)], which provides an
asymptotically valid test for lasso-penalized regression estimates.

We report on five regression estimation methods for which the significance
of regression coefficients can be evaluated using existing high-dimensional test-
ing methods. Two are obtained using the relative abundances, X, with respect to:
(i) an ordinary ridge penalty and (ii) a lasso penalty. Three are obtained using the
CLR transformed abundances, X̃, with respect to: (iii) an ordinary ridge penalty,
(iv) a lasso penalty and (v) the KPR estimate in (2.13). None of these methods re-
sults in any species associated with the outcome of percent fat when controlled
for false discovery rate (FDR) at 0.1 using the Benjamini–Yekutieli procedure
[Benjamini and Yekutieli (2001)]. However, when using a cut-off of p = 0.01,
the KPR estimate (2.13) results in ten species. With a cut-off of p = 0.005, KPR
results in four species. Ordinary ridge regressions using the CLR-transformed vec-
tors find no associations at a cut-off of p = 0.01, whereas using the relative abun-
dances, ridge finds two species at the p = 0.01 cut-off and none at p = 0.005.
Lasso regression with the CLR-transformed vectors identifies one specie at the
p = 0.01 cut-off and none at p = 0.005 cut-off. When using the relative abun-
dances, lasso identifies two species as significant at the p = 0.01 cut-off and one
at the p = 0.005 cutoff. See Table 1 for the list of identified species.

5. Discussion. We have formulated a family of regression models that nat-
urally extends the dimension-reduced graphical explorations common to micro-
biome studies. In this sense, we have simply refocused the role of the eigenstruc-
tures used in ordination methods toward exploiting this structure in penalized re-
gression models. The large family of models developed here provides a supervised
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statistical learning counterpart to the unsupervised methods of principal coordinate
analysis (PCoA).

A primary motivation for PCoA graphical displays is the ability to incorporate
biologically-inclined measures of (dis)similarity. The popular use of UniFrac, for
instance, is motivated by the desire to impose phylogeny into the analysis. These
dissimilarities have also been used for rigorous statistical testing in the context
of Anderson’s nonparametric MANOVA [Anderson (2006)] or the closely-related
kernel machine regression score test [Chen et al. (2012), Pan (2011), Zhao et al.
(2015)] for global association of a multivariate predictor with an outcome. How-
ever, the use of UniFrac and other non-Euclidean distances make it difficult to
identify specific associations between the microbial abundance profiles and a phe-
notype; indeed, none of these analyses proceed to estimate the individual associ-
ations. In addition to ordination displays and global tests for associations, a va-
riety of machine learning approaches have emphasized on models that predict a
response. In contrast, we focus on estimating the coefficient vector, which is a key
aspect of any approach used to draw scientific conclusions based on the association
of microbial communities with an outcome or phenotype.

An interesting feature of the proposed kernel-penalized regression framework
is its ability to sidestep some of the problems inherent in compositional data anal-
ysis. Indeed, as emphasized by Li (2015) regression analysis with compositional
covariates must somehow acknowledge their unit-sum constraint and spurious cor-
relations. Our approach, which differs somewhat from that of Li (2015), may also
be viewed as a penalized version of the low-dimensional linear model for compo-
sitions by Tolosana-Delgado and Van Den Boogart (2011), who use the isometric
log-ratio (ILR) coordinates. We note that ILR coordinates arise from the SVD
of mean-centered CLR-transformed data, X̃ [see Egozcue and Pawlowsky-Glahn
(2011)], which is also used in our model. However, to estimate β ∈ R

p , we used
instead a regularization framework; our penalty in Section 2.4 arises from Aithi-
son’s total variation matrix whose singular values are the total variances of ILR
components. Moreover, the proposed framework also allows us to use existing in-
ference frameworks for high-dimensional regression, and in particular the Grace
test [Zhao and Shojaie (2016)], to assess the significance of estimated regression
coefficients.

SUPPLEMENTARY MATERIAL

Supplement to “Kernel-penalized regression for analysis of microbiome

data” (DOI: 10.1214/17-AOAS1102SUPP; .pdf). Mathematical justification and
remarks for equation (2.10) and Proposition 2.2.
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