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Abstract

Convolutional Neural Networks (CNNs) with Bilinear

Pooling, initially in their full form and later using compact

representations, have yielded impressive performance gains

on a wide range of visual tasks, including fine-grained vi-

sual categorization, visual question answering, face recog-

nition, and description of texture and style. The key to their

success lies in the spatially invariant modeling of pairwise

(2nd order) feature interactions. In this work, we propose

a general pooling framework that captures higher order in-

teractions of features in the form of kernels. We demon-

strate how to approximate kernels such as Gaussian RBF

up to a given order using compact explicit feature maps in

a parameter-free manner. Combined with CNNs, the com-

position of the kernel can be learned from data in an end-

to-end fashion via error back-propagation. The proposed

kernel pooling scheme is evaluated in terms of both kernel

approximation error and visual recognition accuracy. Ex-

perimental evaluations demonstrate state-of-the-art perfor-

mance on commonly used fine-grained recognition datasets.

1. Introduction

The idea of interactions between features has been used

extensively as a higher order representation in learning tasks

recently [24, 34, 3, 23]. The motivation behind is to make

the subsequent linear classifier operates on higher dimen-

sional feature map so that it becomes more discriminative.

There are two ways in general to create higher order inter-

actions. The most commonly used one is to implicitly map

the feature via the kernel trick, like in the case of kernel

SVM [41]. The disadvantages are twofold. The storage

needed and the evaluation time are both proportional to the

number of training data, which makes it inefficient on large

datasets. In addition, the construction of the kernel makes it

∗Part of this work was done during the internship at Baidu Research.
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Figure 1. The proposed Kernel Pooling method. For a feature vec-

tor (i.e., the activation at a spatial location on the feature map, in

the case of a CNN), we use Count Sketch [6] to generate a compact

explicit feature map up to pth order. After applying kernel pool-

ing, the inner product between two features can capture high order

feature interactions as in Eqn. 1. This makes the subsequent lin-

ear classifier highly discriminative. The proposed kernel pooling

scheme is end-to-end trainable and the composition of the kernel

can be learned through the update of coefficients {αi}
p

i=0. The

vanilla compact bilinear pooling [11, 10] only use the 2nd order

information as the feature vector.

hard to use stochastic learning methods, including Stochas-

tic Gradient Descent (SGD) in the training of CNNs. The

other way is to explicitly map the feature vector into high

dimensional space with products of features (monomials).

The drawback of this method is obvious. If we want up to

pth order interactions on a d dimensional feature vector, the

dimension of the explicit feature map will be O(dp), which

makes it impractical to use in real world applications. A

common way to address these issues is to compactly ap-

proximate either kernel functions [37, 44] or feature maps

[17, 31, 2].

Before the remarkable success of using Convolutional

Neural Networks (CNNs) on visual data [20, 38, 39, 15],

low-level hand-crafted features (e.g., SIFT [25], HOG [8],
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Figure 2. End-to-end training with the proposed pooling method. An input image is fed into a series of fully convolutional layers to get

the output feature map of size h × w × c. For the c dimensional feature vector on every single spatial location (e.g., the red or blue bar

on the feature map), we apply the proposed kernel pooling method illustrated in Fig. 1. The final feature vector is average pooled over all

locations h × w. Then a linear layer with softmax is used to do the classification. The kernel is defined by the order p and coefficients

{αi}
p

i=0, which can be learned from data through back-propagation.

Gist [28]) combined with mid-level feature aggregation or

pooling methods (e.g., Bag-of-visual-words, Spatial Pyra-

mid Matching [21], Sparse Coding [45], Fisher Vector [30])

were widely adopted as the standard scheme for feature ex-

traction. When learning and applying the subsequent lin-

ear classifier on extracted features, kernel methods such as

Gaussian RBF or exponential χ2 kernel are often adopted

to capture higher order information and make linear clas-

sifier more discriminative. Recently, efforts in combining

CNNs with 2nd order feature interactions, either by replac-

ing hand-crafted features with CNN features [7] or jointly

trained in an end-to-end fashion, yielded impressive perfor-

mance gains on a wide range of visual tasks. Representative

examples include fine-grained visual recognition [23, 11],

visual question answering [10], texture representation and

synthesis [13, 22], face recognition [35] and style transfer

[12]. Notably, both Gao et al. [11] and Fukui et al. [10]

used Tensor Sketch [31] to compactly compress the full bi-

linear vector by 2 orders of magnitude while preserve the

same performance.

In this work, we propose a compact and differentiable

way to generate explicit feature maps. We generalize the

strategy used in [11, 10] to represent higher order feature

interactions. For a feature vector x of dimension d, we

generate its ith order (i ≥ 2) compact explicit feature map

with Count Sketch [6] and circular convolution. In prac-

tice, people often operate circular convolution in frequency

domain via Fast Fourier Transform (FFT) and Inverse Fast

Fourier Transform (IFFT). It has been proven, both theo-

retically and practically in [31], that this method is able to

compactly approximate polynomial kernels. As illustrated

in Fig. 1, with a stack of Count Sketch, element-wise mul-

tiplication, FFT and IFFT units, higher order information

can be compactly preserved. The kernel pooling method is

applied on every single spatial location on the feature map

of a CNN. And the final feature vector is the result of global

average pooling across all spatial locations.

Denote the proposed kernel pooling method as φ. Then

for two feature vectors x and y, the inner product between

φ(x) and φ(y) can approximate a kernel up to a certain or-

der p as follows (see Sec. 3 for more details):

φ(x)⊤φ(y) ≈

p
∑

i=0

α2
i (x

⊤y)i ≈ K(x,y) (1)

Through the introduction of kernel functions associated

with Reproducing kernel Hilbert space, linear classifiers op-

erate on high-dimensional Euclidean space become highly

discriminative. Combine the proposed pooling method with

a CNN, as shown in Fig. 2, the model can be trained end-

to-end via back-propagation of classification errors. The

composition of the kernel, as determined by coefficients

{αi}
p
i=0, can be either predefined to approximate a certain

kernel like Gaussian RBF up to order p or learned from data.

To sum up, there are two main contributions in this work.

Firstly, we propose a general kernel pooling method via

compact explicit feature mapping. Using the linear clas-

sifier on the feature map is approximately same as applying

the kernel trick. Secondly, the proposed kernel pooling is

differentiable and can be combined with a CNN for joint

optimization. The composition of the kernel can also be

learned simultaneously during the training.
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2. Related Work

The proposed kernel pooling method relies on the exist-

ing efforts on low dimensional compact approximation of

explicit feature maps. Rahimi et al. [33] is one of the first

work on using random features for Gaussian and Laplacian

kernels. Later, the similar idea was generalized to other ker-

nels such as Maji et al. [26] for the histogram intersection

kernel and Vedaldi et al. [42] for χ2 kernel. On the compact

approximation of polynomial kernels, recent proposed Ran-

dom Maclaurin by Kar et al. [17], Tensor Sketch by Pham

et al. [31] and Subspace Embedding by Avron et al. [2] are

the most noticeable representatives. There is also a line of

work that tries to learn higher order interactions from the

data through optimization [24, 34, 3]. We differ from these

work by the combination of Convolutional Neural Networks

(CNNs) in an end-to-end fashion. With the joint optimiza-

tion, we can leverage the powerful off-the-shelf fully con-

volutional network architectures to learn better features di-

rectly from data.

Since the dimension of pth order pooled feature grows

exponentially with p, the use of p > 2 in real world ap-

plications is often limited. In the case of p = 2, the

model is usually referred as Bilinear models, first intro-

duced by Tenenbaum and Freeman [40]. Bilinear mod-

els demonstrate impressive performance on visual tasks ap-

plied on both hand-crafted features [5] and learned fea-

tures [23, 35, 22, 12]. Recently, fueled by compact 2nd or-

der polynomial kernel approximation with Tensor Sketch

[6, 31], same visual recognition performances can be pre-

served with much lower feature dimension [11] and new

application on visual question answering is enabled [10].

We differ from these work by generalizing the compact rep-

resentation from Bilinear models with 2nd order polynomial

kernel to pth order Taylor series kernel defined in Sec. 3.

The composition of the kernel can also be learned through

the end-to-end training with a CNN (see Sec. 3.3).

3. Kernel Pooling

We define the concept of “pooling” as the process of

encoding and aggregating feature maps into a global fea-

ture vector. The architecture of Convolutional Neural Net-

works (CNNs) can be regarded as fully convolutional lay-

ers followed by the subsequent pooling layers and a linear

classifier. Tab. 1 summaries pooling strategies adopted in

commonly used CNN architectures. Typically people use

a stack of fully connected layer with Rectified Linear Unit

(ReLU) as in the case of AlexNet [20] and VGG [38]. Fully

connected layers often perform well in general but intro-

duce heavy computation and large number of parameters,

hence makes the network slow and easy to overfit. The re-

cently proposed Inception [39] and Residual Learning [15]

only use global average pooling on the feature map. This

Figure 3. An illustration of tensor product. The p-level tensor

product x(p) of x ∈ R
c is a cp dimensional vector.

strategy is more computationally efficient but it does not

capture higher order feature interactions, which are believed

crucial in many visual recognition tasks [23, 35, 22]. The

bilinear models [5, 23] explicitly generate the c2 dimen-

sional feature map for 2nd order polynomial kernel, which

is later compactly approximated in [11, 10] using Tensor

Sketch [31]. In light of the success of Bilinear models, we

propose an approach to go beyond Bilinear models and cap-

ture higher order feature interactions. We first define Tayler

series kernel and show its explicit feature map can be com-

pactly approximated. Then we demonstrate how to use the

compact feature projection of Taylor series kernel to ap-

proximate commonly used kernels such as Gaussian RBF.

3.1. Explicit feature projection via Tensor product

Suppose the output feature map of a convolution layer

is X ∈ R
h×w×c with height h, width w and number of

channels c, we denote the c dimensional feature vector of a

spatial location on X as x = [x1, x2, . . . , xc]
⊤ ∈ R

c.

The explicit feature projection φ(.) of a kernel function

K(., .) is defined by decomposing the the value of kernel

function applied on two feature vectors x and y as the inner

product between their feature maps:

K(x,y) = φ(x)⊤φ(y) (2)

Commonly used kernel functions include polynomial ker-

nels (x⊤y)p, Gaussian RBF kernel exp(−γ‖x − y‖2), χ2

kernel
∑c

i=1
2xiyi

xi+yi
, etc. Notice that some of the kernels

may correspond to an infinite dimensional feature projec-

tion (e.g., Gaussian RBF).

We introduce the concept of Tensor product and then

demonstrate it can be used to get the explicit feature projec-

tion of a specific type of kernel called Taylor series kernel.

First, we define the 2-level tensor product (i.e., outer

product xx⊤) of x as:

x(2) = x⊗ x =








x1x1 x1x2 · · · x1xc

x2x1 x2x2 · · · x2xc

...
...

. . .
...

xcx1 xcx2 · · · xcxc







∈ R

c2 (3)
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AlexNet / VGG Inception / ResNet Bilinear Compact Bilinear Ours

Strategy σ(W2σ(W1X)) 1
hw

∑

i,j Xij
1
hw

∑

i,j XijX
⊤

ij
1
hw

∑

i,j TS(Xij)
1
hw

∑

i,j φ(Xij)

Dimension d c c2 d d
Time O(hwcd) O(hwc) O(hwc2) O(hw(c+ d log d)) O(hwp(c+ d log d))
Space O(hwcd) 0 0 2c pc

Parameters O(hwcd) 0 0 0 0 or p

Table 1. A summary of pooling strategies adopted in commonly used CNN architectures. X represent the feature map of size h× w × c,

where h, w and c is the height, width and number of channels; d represents the pre-specified feature dimension for the subsequent linear

classifier and p is the order we used for the proposed kernel pooling. σ(.), TS(.) and φ(.) denotes the ReLU unit, Tensor Sketch [31] and

the proposed kernel pooling mehtod, respectively.

Similarly, the p-level tensor product for p ≥ 2 is defined as:

x(p) = x⊗ · · · ⊗
︸ ︷︷ ︸

p times

x ∈ R
cp (4)

We also have x(0) = 1 and x(1) = x. Fig. 3 illustrates the

original feature vector x and its 2-level and 3-level tensor

product x(2) and x(3). It has been shown in [36] that the p-

level tensor product is the explicit feature projection of pth

order Polynomial kernel:

(x⊤y)p = (x(p))⊤(y(p)) (5)

We define the Taylor series kernel of order p as follows:

KTaylor(x,y) =

p
∑

i=0

α2
i (x

⊤y)i (6)

Since the non-negative linear combination of kernels is still

a kernel [36], the Taylor series kernel is a valid kernel as

it can be expressed as non-negative linear combinations of

Polynomial kernels.

It is clear to see that the explicit feature projection of

Taylor series kernel is given by:

φTaylor(x) = [α0(x
(0))⊤, . . . , αp(x

(p))⊤]⊤ (7)

Composed by the concatenation of scaled tensor products

{αix
(i)}pi=0, φ(x)1 is a long feature vector with dimension

O(cp). Even in the case of c = 512 and p = 3, cp is still

larger than 108. Such a high dimension hinders its appli-

cations in any real world problems. Therefore, a compact

approximation method is needed.

3.2. Compact approximation

The compact approximation method is differentiable and

has good time and space complexity. There are several re-

cently proposed work on kernel approximation with random

feature projections [33, 17, 31, 2]. We build our approxima-

tion method on Tensor Sketching [31], because it consumes

less time and space compared to [33, 17], and it is easier to

implement compared to [2].

1For simplicity, unless otherwise specified, we will drop the subscript

of KTaylor and φTaylor in the remainder of the paper.

Algorithm 1: Count Sketch for Taylor series kernel

Input: x ∈ R
c, p, {di}

p
i=2, {αi}

p
i=0

Output: φ(x) ∈ R
d, where d = 1 + c+

∑p
i=2 di, s.t.

φ(x)⊤φ(y) ≈ K(x,y) =
∑p

i=0 α
2
i (x

⊤y)i.
1 Initialization: φ(x)← [α2

0,x
⊤]⊤, P ← 1.

2 for t← 1 to p do

3 Generate 2 independent hash functions ht and st.
The outputs of ht and st are uniformly drawn

from {1, 2, . . . , dt} and {+1,−1}, respectively.

4 Calculate the Count Sketch of x as Ct(x) =

[c1, c2, . . . , cdt
]⊤,where ci =

∑

i:ht(i)=j st(i)xi.

5 P ← P ◦ FFT(Ct(x))
6 if t ≥ 2 then

7 φ(x)← concatenate (φ(x), FFT−1(P))

8 return φ(x)

3.2.1 Taylor series kernel

To compactly approximate the p-level tensor product

x(p), we define the Count Sketch [6] of x as:

C(x) = [c1, c2, . . . , cd]
⊤,where ci =

∑

i:h(i)=j

s(i)xi (8)

The Count Sketch C(x) is a d-dimensional vector calcu-

lated using 2 hash functions h(.) and s(.). Their outputs

are uniformly drawn from {1, 2, . . . , d} and {+1,−1}, re-

spectively. The p-level tensor product x(p) can then be ap-

proximated as:

x̃(p) = FFT−1(FFT(C1(x)) ◦ · · · ◦ FFT(Cp(x))) (9)

where Ci(x) is the Count Sketch calculated from 2i inde-

pendent hash functions h1, h2, . . . , hi and s1, s2, . . . , si, ◦
denotes the element-wise multiplication, FFT and FFT−1 is

the Fast Fourier Transform and its Inverse.

Combining Eqn. 7 and Eqn. 9, the feature map of a Tay-

lor series kernel can be compactly approximated, as de-

scribed in Alg. 1. Inputs include the original feature vec-

tor x, the order p of the Taylor series kernel to be approxi-

mated, target feature dimensions di(i ≥ 2) we want to use
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Figure 4. Approximating Gaussian RBF kernel by Taylor series

kernel with variant p. Without loss of generality, we ignore the

constant β when plotting. The approximation error depends on

the inner product value x
⊤
y and γ. With the proper choice of γ

based on x
⊤
y, using p = 4 would be sufficient to approximate

Gaussian RBF.

for estimating x(i) and its associated coefficient αi. Com-

pared with the explicit feature map in Eqn. 7, we reduce

the feature dimension from exponential to linear. More

specifically, from
∑p

i=0 c
i to d = 1 + c +

∑p
i=2 di, where

d≪ ci, ∀i ≥ 2.

It has been proved that x̃(p) in Eqn. 9 is an unbiased fea-

ture map estimator for pth order Polynomial kernel. The

relative estimation error can be bounded by Chebyshev’s in-

equality (see Lemma 7 in [31] for the detailed proof). Sim-

ilarly, the estimation error of using Alg. 1 can be bounded

as:

P
[∣
∣
∣φ(x)⊤φ(y)−K(x,y)

∣
∣
∣ ≥ ǫK(x,y)

]

≤
1

dminǫ2
∆(p)

(10)

where dmin = min(d2, . . . , dp) and

∆(p) =

{

2(p− 1), if C = ±1
2C2(C2p

−1)
C2−1 , otherwise

C = 1
cos θ is a constant that equals to the reciprocal of the

cosine similarity between two feature vectors x and y. In

our experience, we find higher dimensional feature (large

dmin) gives better approximation, kernels with larger p in-

troduce larger error, and the error bound also depends heav-

ily on the angle between two feature vectors.

Figure 5. Learning kernel composition by end-to-end training with

a CNN. The coefficients of the kernel are jointly learned together

with weights of other CNN layers via back-propagation of the loss

(denoted by outgoing arrows from “Loss”).

3.2.2 Gaussian RBF kernel

The Taylor expansion of Gaussian RBF kernel [32] can

be expressed as:

KRBF (x,y) = exp
(
− γ‖x− y‖2

)

= exp
(
− γ(‖x‖2 + ‖y‖2 − 2x⊤y)

)

= β exp
(
2γx⊤y

)

=

∞∑

i=0

β
(2γ)i

i!
(x⊤y)i (11)

where β = exp
(
− γ(‖x‖2 + ‖y‖2)

)
is a constant and

β = exp(−2γ) if x and y are ℓ2-normalized. Compared

with Taylor series kernel in Eqn. 6, it is clear that Taylor se-

ries kernel can be used to approximate Gaussian RBF term

by term up to order p by setting α2
i as β (2γ)i

i! . Other ker-

nels can also be approximated if they have a Taylor expan-

sion in the similar form. Fig. 4 illustrates the approxima-

tion of Gaussian RBF by Taylor series kernel with variant

p. The approximation error depends on the inner product

value x⊤y. In general, the closer the value is to 0, the

smaller the approximation error. So we need to choose γ
carefully based on x⊤y. With the proper choice of γ, using

p = 4 would be sufficient to approximate Gaussian RBF.

Experiments on kernel approximation error and the effect

of γ will be discussed extensively in Sec. 4.2.

3.3. Learning kernel composition end-to-end

The proposed kernel pooling method in Alg. 1 relies

on simple computations with a set of fixed hash functions

{ht} and {st}, FFT and FFT−1, which are all differentiable.

Combined with a CNN, the loss from the softmax layer can

go through the proposed kernel pooling layer and be propa-

gated back to the preceding fully convolution layers.
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Instead of using fixed pre-defined coefficients to approx-

imate a certain kernel such as Gaussian RBF, the compo-

sition of the kernel can be learned from data, as illustrated

in Fig. 5. Designing and choosing a good kernel is a chal-

lenging task because it is hard to probe the underlying dis-

tribution of high-dimensional features. Therefore, a ker-

nel function is often chosen empirically or through cross-

validation. By jointly learning the kernel composition to-

gether with CNN weights in an end-to-end fashion, we ar-

gue the learned kernel is more adaptive and suitable to the

data we are working on.

4. Experimental Evaluations

The proposed kernel pooling method is evaluated in

terms of both kernel approximation error and visual recog-

nition accuracy. Sec. 4.1 introduces experiment setup and

baseline methods. Then, in Sec. 4.2, we run a comprehen-

sive study of kernel approximation quality on CNN fea-

tures. We also investigate the configuration such as the

choice of feature dimension d̄, kernel order p and γ. Sec.

4.3 is the major part of the experiment, in which we present

extensive evaluations on various visual recognition tasks,

including the recognition of bird [43], car [19], aircraft [27]

and food [4]. The proposed kernel pooling method achieves

state-of-the-art results on all datasets.

4.1. Experiment setup

We evaluate all pooling strategies listed in Tab. 1. For

CNN architectures, we use VGG-16 [38] and ResNet-50

[15], both of which achieved state-of-the-art performance

on ImageNet [9]. VGG-16 has 13 convolution with ReLU

layers and 3 fully connected layers including the final linear

layer with softmax for classification. ResNet-50 consists of

49 convolution layers followed by global average pooling

and the final linear softmax layer. Both VGG and ResNet

reduce the spatial resolution of the input image by a factor

of 25 = 32 during the convolution. In the case of Bilinear,

Compact Bilinear and our model, we keep the fully convo-

lutional part of the network and use the output feature map

from the last convolution layer (i.e., the feature vector x in

Alg. 1 corresponds to the activation at each spatial location

of last layer’s feature map). For standard pooling methods,

we choose VGG-16 and ResNet-50 [15] as representatives

for fully connected pooling and global average pooling, re-

spectively. The performance of VGG-16 and ResNet-50 is

reported by fine-tuning the entire network from ImageNet

pre-trained weights.

4.1.1 Pooling methods

We compare the performance of kernel pooling methods

with the following baselines:

VGG with fully connected pooling (VGG): This is the

original VGG-16 network proposed in [38]. The architec-

ture of VGG-16 is a generalization of the ground-breaking

AlexNet [20]. In AlexNet, only one convolution layer is ap-

plied to the input image and the feature map of a specific

spatial resolution. In VGG, however, more convolution lay-

ers (2 to 3) are applied for each spatial resolution, which

achieved state-of-the-art performance on ImageNet Chal-

lenge 2014. Both AlexNet and VGG use the same fully

connected pooling scheme (a stack of two fully connected

with ReLU layers) for the subsequent softmax layer. Due

to the fixed number of nodes designed in fully connected

layers, VGG requires a fixed input image size of 224×224.

For each of the dataset, we replace the last linear layer of

VGG to match the number of categories and then fine-tune

the whole network from ImageNet pre-trained weights.

Residual Learning with average pooling (ResNet): Al-

though the fully connected layer works well in practice, it

has several drawbacks including the heavy computation and

large storage needed as well as the tend to overfit. Recently

proposed deeper networks based on Inception module [39]

and Residual module [15] use global average pooling after

convolution layers for the subsequent linear classifier. The

global average pooling is lightweight, capable of taking in-

put of any size and parameter-free. However, it fails to cap-

ture nonlinear information in feature maps. We choose a

strong baseline of fine-tuned ResNet as comparison.

Bilinear Pooling (BP): We apply full bilinear pooling on

top of the conv5 3 feature map from VGG-16, which is same

as the best-performed B-CNN [D, D] in [23]. The feature

dimension of the bilinear vector is d = 512× 512 ≈ 260K.

We don’t combine ResNet with bilinear pooling because

ResNet has 2048 channels in the final feature map. The

brute force bilinear vector has the dimension of 2048 ×
2048 ≈ 4.2M, which is too large to use in practice.

Compact Bilinear Pooling (CBP): We use Tensor Sketch

with fixed hash functions to approximate bilinear vector on

the feature map of VGG-16 and ResNet-50. Whereas the

original paper [11] only used VGG-16. Typically, compact

bilinear pooling can achieve same performance as full bi-

linear pooling with d ≥ 8192, reducing the original feature

dimension by orders of magnitude. For a fair comparison,

we set the feature dimension in CBP to be the same as our

kernel pooling method in all experiments.

The proposed Kernel Pooling (KP): We evaluate the pro-

posed kernel pooling method in the same context as BP and

CBP. For the activation x at each spatial location on the

feature map, we apply Alg. 1 to get the compact feature

map φ(x). Same as BP and CBP, the final feature vector

is average pooled across all the spatial locations. The com-

position of the kernel is evaluated with learned coefficients

via back-propagation. The choice of kernel order p, feature

dimension d and γ will be discussed in Sec. 4.2.
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4.1.2 Implementation

Our implementation follows the commonly used practice

in [20, 38, 23, 11]. We have two image input sizes: 224 ×
224 and 448×448. For each image input size S×S, we first

subtract it with the pixel-wise image mean, and we resize

the original image so that its shorter side is S while keeping

its aspect ratio. Then we crop a S × S square image from

the original image. During training, a random square image

is cropped. Both the original crop and its horizontal flip

are utilized for data augmentation. During inference, the

center image is cropped. We pass the original crop and its

horizontal flip to the CNN independently. The average of

their classification scores is our final classification score.

We follow the post-processing steps in [23, 11] to the

feature vector y before the linear classifier, because the

experiments show that it improves fine-grained recogni-

tion performance. We apply element-wise signed square

root: y ← sign(y)
√

|y| followed by ℓ2 normalization:

y← y/‖y‖ on the compact feature y vector.

For the sake of faster convergence and better perfor-

mance, we use pre-trained weights for the neural network.

The intial weights of the convolutional layers are pre-

trained on ImageNet classification dataset, and the initial

weights of the final linear classifier is obtained by training a

logistic regression classifier on the compact kernel pooling

of pre-trained CNN features. We start the fine-tuing with

10x smaller learning rate (i.e. 0.001 for VGG and 0.01 for

ResNet) and divide it by 10 after every 30 epochs. We use

a momentum of 0.9 and a weight decay of 0.0005 for VGG

and 0.0001 for ResNet. The training usually converges at

around 50 epochs. The model diverges due to large gradi-

ents sometimes. Therefore, gradient clipping [29] is applied

to ensure all gradients fall in the range between−1 and +1.

We use Tensorflow [1] to implement and train all the

models. On a single NVIDIA Tesla K40 GPU, the for-

ward and backward time of both VGG-16 and ResNet-50

with kernel pooling is about 500ms on a 448 × 448 image

and 100ms on a 224 × 224 image. Kernel pooling requires

around 50ms with d = 4096 and p = 4.

4.2. Kernel approximation and configurations

This subsection presents the experiments on kernel ap-

proximation error using Alg. 1 on CNN features. Using

VGG-16 trained on ImageNet, we extract conv5 3 feature

maps on the training set of CUB-200-2011 [43], with in-

put size of 224 × 224. For each spatial location in the

feature map, the feature is a c = 512 dimensional vec-

tor. Without loss of generality, we use the same feature

pooling dimension d̄ for each order in kernel pooling (i.e.,

di = d̄ for i ≥ 2). Therefore, the final feature dimension is

d = 1 + c +
∑p

i=2 d̄ = 513 + (p − 1)d̄. Fig. 6 shows the

relative approximation error of Gaussian RBF kernel in log

scale, with variant feature pooling dimension d̄, order p and
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Figure 6. Relative approximation error for Gaussian RBF kernel

applied on CNN features with variant kernel configurations.

γ. The relative approximation error between two feature

vector x and y is given by:

ǫ =
|φ(x)⊤φ(y)−KRBF (x,y)|

KRBF (x,y)
(12)

We compare kernel pooing with the feature dimension d̄
from 50 to 5000 with the step of 50. Each data point is the

averaged error on 100K randomly selected feature pairs.

From Fig. 6, we have the following observations: higher

feature pooling dimension gives better approximation in

general; approximation error also goes down with increas-

ing order p; γ plays a key role in the approximation error.

The above findings verify the insights from Eqn. 10. In

Fig. 4 we can see that with sufficient feature dimension and

order as well as a proper γ, we can achieve close to 1% rel-

ative error. In light of this, we use d̄ = 4096 and p = 4
for all the following experiments. The output vector has a

dimension of d = 1 + 512 + 3 × 4096 = 12801 for VGG,

and 1 + 2048 + 3× 4096 = 14337 for ResNet. The hyper-

parameter γ is set as the reciprocal of the mean of inner

products between feature vectors in the training set to en-

sure that γx⊤y is small on average and we can get a good

kernel approximation.

4.3. Visual recognition

We evaluate on the following visual recognition tasks.

Bird species recognition: We use CUB-200 dataset [43]

for this task. The dataset consists of 11, 788 images from

200 bird species. Each category has around 30 images for

both training and testing.

Car make, model, year classification: The Stanford

Car dataset [19] is used for this task. It has 16, 185 images

of 196 classes with car make, model and year.

Aircraft classification: The fine-grained aircraft dataset

[27] was first introduced in FGComp 2013 challenge, which

contains 100 aircraft categories and each has 100 images.
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Dataset CNN Original BP[23] CBP[11] KP Others

CUB [43]
VGG-16 [38] 73.1* 84.1 84.3 86.2 82.0 84.1

ResNet-50 [15] 78.4 N/A 81.6 84.7 [18] [16]

Stanford Car [19]
VGG-16 79.8* 91.3 91.2 92.4 92.6 82.7

ResNet-50 84.7 N/A 88.6 91.1 [18] [14]

Aircraft [27]
VGG-16 74.1* 84.1 84.1 86.9 80.7

ResNet-50 79.2 N/A 81.6 85.7 [14]

Food-101 [4]
VGG-16 81.2 82.4 82.4 84.2 50.76

ResNet-50 82.1 N/A 83.2 85.5 [4]

Table 2. Performance comparisons among all baselines, where KP is the proposed kernel pooling method with learned coefficients. Fol-

lowing the standard experimental setup, we use the input size of 448× 448 for CUB, Stanford Car and Aircraft datasets except the original

VGG-16 (marked by an asterisk *), which requires a fixed input size of 224× 224. For Food-101, we use the input size of 224× 224 for

all the baselines.

Figure 7. Images we used for visual recognition. From left to right,

each column contains examples from CUB Bird [43], Stanford Car

[19], Aircraft [27] and Food-101 [4].

Food recognition: For this task we use Food-101 dataset

[4], which is by far the largest publicly available food recog-

nition dataset to the best of our knowledge. This is a large-

scale dataset with 101, 000 images and 1000 images per

each category. This dataset is challenging because the train-

ing images are noisy and the background is not clean.

Sample images for each task are shown in Fig. 7. Perfor-

mance comparison with all the baselines and state-of-the-art

methods is presented in Tab. 2. The proposed Kernel Pool-

ing with learned coefficients outperforms all other baselines

by a large margin (around 1-3%) on all the datasets.

4.4. Discussion

In this subsection, we discuss the relative importance of

higher order information for different CNN architectures.

We examined learned kernel coefficients on CUB dataset

with kernel pooling on VGG and ResNet. We found that

high order feature interactions, especially 2nd and 3rd or-

der, are weighted more in VGG compared with ResNet. In

ResNet, there is no obvious distinction among first 3 orders.

We believe this is due to the difference of the underlying

network architectures.

One reason might be that in VGG, the non-linear feature

interactions are mainly captured by fully-connected layers.

So removing the fully-connected layers significantly de-

grade the original 1st order feature. Since ResNet only use a

global average pooling layer and has a very large receptive

field, the features at different locations of the feature map is

encouraged to represent similar information. Together with

the residual module and a much deeper convolutional archi-

tecture, the output convolution feature could implicitly cap-

ture more information than VGG. In our experiments, we

find that the performance of both VGG-16 and ResNet-50

can be improved when the proposed kernel pooling method

is utilized. These experiments verify the effectiveness of

using high-order feature interactions in the context of CNN.

5. Conclusion

In this paper, we have introduced a novel deep ker-

nel pooling method as a high-order representation for vi-

sual recognition. The proposed method captures high-

order and non-linear feature interactions via compact ex-

plicit feature mapping. The approximated representation

is fully differentiable, thus the kernel composition can be

learned together with a CNN in an end-to-end manner. Ex-

tensive experiments demonstrate that deep kernel pooling

method achieves state-of-the-art performance on various

fine-grained recognition tasks.
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