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Abstract 

We propose two new methods in the nonlinear kernel 

feature space for pixel clustering based on the traditional 

KMeans and Gaussian Mixture Model (GMM). Unlike the 

previous work on the kernel machines, we give out a new 

perspective on the new developed kernel machines. That 

is, kernel principle component analysis (KPCA) combined 

with the KMeans and the GMM are kernel KMeans 

(KKMeans) and kernel GMM (KGMM), respectively. In 

this paper, we prove the new perspective on KKMeans 

and give out a clear statement on the KGMM as well. 

Based on this new perspectives, we can implement the 

KKMeans and the KGMM conveniently. At the end of the 

paper, we utilize these new algorithms on the problem of 

the colour image segmentation. Based on a series of 

experimental results on Corel Colour Images, we find 

that the KKMeans and KGMM can outperform the 

traditional KMeans and GMM consistently, respectively.  

1. Introduction 

Image segmentation [1] is useful in many applications 

for identifying regions of interest in a scene or annotating 

data. For example, the object-based image retrieval [2], 

the object tracking in video content analysis, general 

image content analysis and understanding, etc. Moreover, 

the MPEG-4 standard [3] needs segmentation for 

objection-based coding [3]. However, the problem of 

unsupervised segmentation is still an open problem in the 

field of the multimedia information processing. 

Some of recent works on unsupervised segmentation 

include stochastic model-based approaches [4] [5] [6], the 

morphological watershed-based region growing [7], the 

energy diffusion [8], and graph cuts [9]. In this paper, we 

focus on the traditional unsupervised learning for image 

segmentation, such as the KMeans [10] algorithm and the 

Gaussian mixture model (GMM) [10] based segmentation. 

The motivation is because of the successes of the kernel 

machine [10] in machine learning both on the supervised 

learning and the unsupervised learning. In this paper, we 

give out a new perspective on the unsupervised kernel 

machine. That is, the kernel principle component analysis 

(KPCA) combined with the KMeans is the KMeans in the 

nonlinear kernel feature space (KKMeans). Similar to 

KKMeans, the KPCA incorporated with the GMM is the 

kernel GMM (KGMM). With these two new perspectives, 

we can implement the KKMeans and KGMM easily. 

Finally, we utilize the two new unsupervised learning 

perspectives on colour image segmentation. 

2. Kernel KMeans Procedure 

Clustering has received a significant amount of 

attention in the last few years as one of the fundamental 

problems in many application fields, such as the image 

segmentation, image database organization, data mining, 

etc. KMeans is one of the most popular clustering 

algorithms. Although, Dhillon et. al. developed the kernel 

KMeans, they do not give out a clear statement for 

KKMeans. In this paper, we proved that KPCA combined 

with the KMeans is the KKMeans in the theorem 1. 

Based on the theorem, we can understand the KKMeans 

much more clearly than the previous one. 

Theorem-1: KPCA + KMeans is the kernel KMeans. 

Proof:

To simplify the formulation, we assume that the data are 

zero centralized. The eigenvectors calculated in KPCA 

are denoted as: 

1 2, ,..., N N NR .

Then,  

, 1,...,j j

jK j N ,

For a data z, its projection to the jth projection in the 

higher dimensional Hilbert space is: 

,
T

j j

i i i ii i
x z k x z

Denote KPCAX as the projections of all the samples to all 

computed KPCA projection directions. Then, we conduct 

the key step (calculating the distance between a given 

sample and a given centroid) of KMeans on the projected 

datum KPCAa as:
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According to the kernel trick: 
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Because of the normalized orthogonal property of the 

KPCA, we have 
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Consequently, we can simplify the deduction as: 
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With the formulation, we have the following equation: 
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Based on the above analysis, we can draw the conclusion 

the conclusion that the distance between a given point and 

a given centroid in the KPCA space equals to the distance 

in the kernel space. Therefore, KPCA plus the KMeans is 

the Kernel KMeans.                                                        

With the theorem, we know that the implementation of 

KKMeans is simple. That is we can do the KPCA as the 

preprocessing step and then conduct the KMeans on the 

KPCA space. 

3. Gaussian Mixture Model in the Nonlinear 

Kernel Feature Space 
Another important model for unsupervised learning is 

the GMM. GMM is a generalized type of KMeans, which 

measure the divergence by the Mahalanobis distance on 

the probability space. Before we give out the procedure 

for KGMM, we first revisit the GMM. The Gaussian 

Mixture Model is: 

1

| |
M

i i i

i

p x p x

where the parameters are , |1i i i M  such that 

1

1
M

i

i

 and each ip  is a Gaussian density function 

parameterized by i  as: 
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Generally, the expectation maximization (EM) 

procedure is conducted iteratively to estimate the 

parameters. The EM procedure estimates the updated 

parameters in terms of the old parameters are given as 

follows: 
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Note that the above equations perform both the 

expectation step and the maximization step 

simultaneously. The algorithm proceeds by using the 

newly derived parameters as the guess for the next 

iteration. 

GMM cannot work well on the nonlinear feature space. 

Therefore, we generalize the GMM to the kernel space. 

With the GMM and the kernel mapping, we can obtain 

the KGMM conveniently. The Gaussian Mixture Model 

in the nonlinear kernel feature space is: 

1

| |
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i i i

i
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where the parameters are , |1i i i M  such that 

1

1
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i

i

 and each ip  is a Gaussian density function 

parameterized by i  in the kernel space as: 
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According to the formulation and the kernel mapping 

theory, we know that the dimension of x  is generally 

much higher than the number of the training samples. In 

our problem, the training set and the testing set are same, 

thus the null subspace (all the samples are mapped onto 

the same point on the subspace) of the covariance matrix 

of all data points will not be useful for clustering. 

Therefore, we can remove the null subspace before 

learning by conducting the principle component analysis 

on the kernel space and preserve the principle subspace 

for learning. 

Here, we use the EM procedure to estimate the 

parameters and the update formula are given by: 

1 1

1 1

1 1

1

1

1 1
| , = | ,        

| , | ,

=         

| , | ,

| ,

| ,

| ,

      

N N
new g KPCA g

i l l

l l

N N
g KPCA g

l l l l
new l l
i N N

g KPCA g

l l

l l

N
T

g new new

l l i l i
new l

i N
g

l

l

KPCA

l

p i x p i x
N N

x p i x x p i x

p i x p i x

p i x x x

p i x

p i x
1

1

| ,

N
T

g KPCA new KPCA new

l i l i

l

N
KPCA g

l

l

x x

p i x

where 1

1

|
| ,

|

|
| ,

|

g g

i l ig

l M
g g

j l j

j

g KPCA g

i l i KPCA g

lM
g KPCA g

j l j

j

p x
p i x

p x

p x
p i x

p x

.

Moreover, 
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and the GMM in kernel space is given by: 
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From the deduction of the GMM in the nonlinear 

kernel feature space, we can easily prove that KPCA 

combined with the GMM is the kernel GMM. The proof 

procedure is similar to the proof of Theorem 1. 
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4. Colour Image Segmentation 

In colour image segmentation, there are three types of 

information that can contribute the segmentation: the Luv 

colour components [11], the pixel position information, 

and the Gabor texture [13]. Some preliminary image 

segmentation results are given in the following Figs. The 

1st row is the original images, the 2nd is the kmeans, the 

3rd is kkmeans, the 4th is the GMM, and the final is the 

KGMM. 

Figure 1. Segmentation results. 

Figure 2. Image Segmentation results in different 

kernel parameter in KKMeans. 

5. Conclusion 

In this paper, we give out and prove a novel 

perspective on some kernel machines. That is, kernel 

principle component analysis (KPCA) combined with the 

KMeans and the GMM are kernel KMeans (KKMeans) 

and kernel GMM (KGMM), respectively. Through the 

new perspectives, we can implement the KKMeans and 

the KGMM conveniently. 

Figure 3. Image Segmentation results in different 

kernel parameter in KGMM. 
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