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SUMMARY

The estimation of population quantiles is of great interest when one is not
prepared to assume a parametric form for the underlying distribution. In addition,
quantiles often arise as the natural thing to estimate when the underlying
distribution is skewed. The sample quantile is a popular nonparametric estimator
of the corresponding population quantile. Being a function of at most two order
statistics, sample quantiles experience a substantial loss of efficiency for
distributions such as the normal. An obvious way to improve efficiency is to form
a weighted average of several order statistics, using an appropriate weight function.
Such estimators are called L-estimators. The problem then becomes one of
choosing the weight function. One class of L-estimators, which uses a density
function (called a kemel) as its weight function, are called kernel quantile
estimators. The effective performance of such estimators depends critically on the
selection of a smoothing parameter. An important part of this paper is a theoretical
analysis of this selection. In particular, we obtain an expression for the value of
the smoothing parameter which minimizes asymptotic mean square €rror. Another
key feature of this paper is that this expression is then used to develop a practical
data-based method for smoothing parameter selection.

Other L-estimators of quantiles have been proposed by Harrell and Davis
(1982), Kaigh and Lachenbruch (1982) and Brewer (1986). The Harrell-Davis
estimator is just a bootstrap estimator (Section 1). An important aspect of this
paper is that we show that asymptotically all of these are kernel estimators with a
Gaussian kernel and we identify the bandwidths. It is seen that the choices of
smoothing parameter inherent in both the Harrell and Davis estimator and the
Brewer estimator are asymptotically suboptimal. Our theory also suggests a

method for choosing a previously not understood tuning parameter in the Kaigh-



Lachenbruch estimator.

The final point is an investigation of how much reliance should be placed on
the theoretical results, through a simulation study. We compare one of the kernel
estimators, using data-based bandwidths, with the Harrell-Davis and Kaigh-
Lachenbruch estimators. Over a variety of distributions little consistent difference
is found between these estimators. An important conclusion, also made during the
theoretical analysis, is that all of these estimators usually provide only modest
improvement over the sample quantile. Our results indicate that even if one knew
the best estimator for each situation one can expect an average improvement in
efficiency of only 15%. Given the well-known distribution-free inference
procedures (e.g., easily constructed confidence intervals) associated with the
sample quantile as well as the ease with which it can be calculated, it will often be

a reasonable choice as a quantile estimator.
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1. QUANTILE ESTIMATORS

Let X,,X,,...,X, be independent and identically distributed with
absolutely continuous distribution function F. Let X (1) <X@ <£...<X () denote
the corresponding order statistics. Define the quantile function Q to be the left
continuous inverse of F given by Q()=inf {x:F(x)2p}, 0<p < 1. For
0 < p < 1, denote the pth quantile of F by &, [that is, & =0 ()]

A traditional estimator of &, is the pth sample quantile which is given by
S0, =X ((np1+1) Where [np] denotes the integral part of np. The main drawback to
sample quantiles is that they experience a substantial lack of efficiency caused by
the variability of individual order statistics.

An obvious way of improving the efficiency of sample quantiles is to reduce
this variability by forming a weighted average of all the order statistics, using an
appropriate weight function. These estimators are commonly called L-estimators.
The problem then becomes one of choosing the weight function.

A popular class of L-estimators are called kernel quantile estimators.
Suppose that K is a density function symmetric about zero and that h =0 as
n—oo. Let Kp()= h~Y K(./h) then one version of the kernel quantile estimator is

given by

KQ, = i} [ 15, ki (t-p)at] X,
i=

This form can be traced back to Parzen (1979, p.113). Clearly, KQ, puts most
weight on the order statistics X ;) for which i/» is close to p. KQp can also be
motivated as an adaptation of the regression smoother of Gasser and Miiller
(1979). Yang (1985) established the asymptotic normality and mean square
consistency of KQp. Falk (1984) investigated the asymptotic relative deficiency of
the sample quantile with respect to KQp. Padgett (1986) generalized the definition

of KQ), to right-censored data. In this paper, we obtain an expression for the value



of the smoothing parameter 4 which minimizes the asymptotic mean square error
of KQ,; and discuss the implementation of a sample based version of it.

In practice, the following approximation to KQ,, is often used

KQp,1 = 21 (0™ Kia =) X .
i=
This estimator is an adaptation of the regression smoother studied by Priestley and
Chao (1972). Yang (1985) showed that KQ, and KQ, | are asymptotically
equivalent in mean square. If all the observations X; are multiplied by —1, then in
general KQ,, 1(-X1, X2, ..., —X,) # KQ1p1X1, X2, .., X,). This is due
to the fact that the X (,_;41) weight of KQp  differs from the X; weight of
KQi_p,1. This problem can be overcome by replacing i/» in the definition of

KQ,, 1 by either (i —"A)/nor i/(n+ 1), yielding the following estimators

and

The weights for each of these last three estimators do not in general sum to one.

Thus if a constant ¢ is added to all the observations X; then in general
KQ, Xy +c¢, X2 +c, .. S Xpt+c)2KQp Xy, Xa, ..., Xp)+cC

for i =1, 2, 3. This problem with these three estimators can be overcome by |
standardizing their weights by dividing them by their sum. If this is done, KQ) 2

becomes




KQp,4 = Z Ky | —

X(x)/).“. Ky -P]

This estimator is an adaptation of the regression smoother proposed by Nadaraya

(1964) and Watson (1964). In this paper we establish asymptotic equivalences
between KQp, KQp, 1, KQp, 2, KQp,3 and KQp 4. See Hirdle (1988) for further
discussion and comparison of regression estimators.

Harrell and Davis (1982) proposed the following estimator of &p

X i/n Tn+l) (n+Dp-1 (1 _ p\(r+1)g-1 .
- Jow Tarom e ! (1-1) a| X

where g =1-p [see Maritz and Jarrett (1978) for related quantities]. While
Harrell and Davis did not use such terminology, this is exactly the bootstrap
estimator of E (X ((z+1)p)) [in this case an exact calculation replaces the more
common evaluation by simulated resampling, see Efron (1979, p.5)]. In this paper,
we also demonstrate an asymptotic equivalence between HD), and KQ,, for a
particular value of the bandwidth h. It is interesting that the bandwidth is
suboptimal, yet this estimator performs surprisingly well in our simulations. See
Section 4 for further analysis and discussions.

Kaigh and Lachenbruch (1982) also proposed an L-estimator of &p. Their
estimator is the average of pth sample quantiles from all (Z) subsamples of size £,

chosen without replacement from X1, X2, ..., X,. They show that their estimator
may be written as
wark CTDG)
KL= — —  X®
i=r )
where r = [p(k + 1)]. We establish an asymptotic equivalence between K@, and

KL, where the bandwidth is a function of k. This relationship together with the



optimal bandwidth theory of Section 2 automatically provides a theory for choice
of k which minimizes the asymptotic mean square error of KL,. See Kaigh (1988)
for interesting generalizations of the ideas behind KL,,.

Kaigh (1983) pointed out that HD, is based on ideas related to the Kaigh
and Lachenbruch estimator. The latter is based on sampling without replacement
while the former is based on sampling with replacement in the case k=n. A
referee has pointed out one could thus generalize HD), to allow érbitrary k, and this
estimator as well as other generalizations have been in fact proposed and studied in
a very recent paper by Kaigh and Cheng (1988). It is straightforward to use our
methods to show this is also essentially a kernel estimator and use this to give a
theory for choice of k.

Brewer (1986) proposed an estimator of £, based on likelihood arguments.
His estimator is given by

T(n+1)
T()T(n—i+1)

n , .
B, = -‘\:1["_1 : P -p) X .

iI=
We also demonstrate an asymptotic equivalence between KQ, and B,, for a

particular value of the bandwidth which, as for HD,,, is asymptotically suboptimal.

2. ASYMPTOTIC PROPERTIES OF KQ, AND RELATED ESTIMATORS

We begin this section by noting that the asymptotic results given in this
section concerning kernel quantile estimators only describe the situation when p is
in the interior of (0, 1) in the sense that & is small enough that the support of
K;(. — p) is contained in [0, 1]. Theorem 1 gives an expression for the asymptotic
mean square error of KQ,. This extends the asymptotic variance result of Falk
(1984). The proof of this result and all other results in the section are given in the

Appendix.




Theorem 1. Suppose that Q” is continuous in a neighbourhood of p and that
K is a compactly supported density, symmetric about zero. Let KD denote the
antiderivative of K. Then for all fixed p € (0, 1), apart from p =0.5 when F is

symmetric

MSE (KQ,)=n"'p(1 - p) [Q'(®)* - 207" h [Q' @) = uk@) K@) du
bt Q7P L™ w2 K@) dul® +0 (07" k) + 0 (K%).

When F is symmetric

MSE (KQos) =n"" [Q'(%))? [0.25 —h I: u K@) K@) du
+n T [T K du] +o(n~'h)+o(n2h72).

Note that for reasonable choice of 4 (i.e. tending to zero faster than n™) the
dominant term of the MSE is the asymptotic van'aﬁce of the sample quantile. The
improvement (note IuK (WK (’1)(u) du > 0) over the sample quantile of local
averaging shows up only in lower order terms (this phenomenon has been called
deficiency), so it will be relatively small for large samples. See Pfanzagl (1976)
for deeper theoretical understanding and discussion of this phenomenon. The fact
that there is a limit to the gains in efficiency that one can expect is verified in the

simulation study in Section 4.

The above theorem can be shown to hold for the normal and other
reasonable infinite support positive kernels, using a straightforward but tedious
truncation argument. The results of Theorem 1 can be easily extended to higher
order kernels (that is, those giving faster rates of convergence at the price of taking
on negative values). However, we do not state our results for higher order kernels
since this would tend to obscure the important points concerning the asymptotic

equivalences between estimators. Azzalini (1981) considered estimators of



quantiles obtained by inverting kernel estimators of the distribution function and
obtained a result related to our Theorem 1. Theorem 1 produces the following

corollary.

Corollary 1. Suppose that the conditions given in Theorem 1 hold. Then for
all p, apart from p=0.5 when F is symmetric, the asymptotically optimal
bandwidth is given by h,p = @ (K) . B(Q) . n™ where

a(Ky=12]"_ uK@ KV (u) du / U7 u? K ) du)?” @2.1)

and B(Q) = [Q'(p)/Q”(p)]””. With h = hypy,

MSE (KQ,)=n""p (1 -p) [Q'@)I* + O (n™). (22)

When F is symmetric and p = 0.5 taking h = O (n~") makes the first two terms in
h of the MSE of KQ (.5 the same order and

MSE (KQo5) = 0.25 0" [Q' (A1 + O (n™).

However, as the term in hn~! is negative and the term in n~2h7! is positive there
is no single bandwidth which minimizes the asymptotic mean square error of
KQos when F is symmetric. Instead any h satisfying h =constant. n™m
(0 < m <'%) will, for large values of the constant, produce an estimator with
smaller asymptotic mean square error than SQ¢ s.

We next present a theorem which establishes some asymptotic equivalences
between the different forms of the kernel quantile estimator. In view of (2.2), we
shall deem the two kernel quantile estimators KQp, ; and KQ,, ; as “asymptotically

equivalent” when, for reasonable values of h, E [(KQp; — KQp,j)z] =0 (n"/’).

Theorem 2. Suppose that K is compactly supported and has a bounded

second derivative, then




(i) forh n?* — oo, KQ, and KQ, , are asymptotically equivalent;
(i) forh n? 5o, K Qp,2 and KQp, ) are asymptotically equivalent;
(iii) forh ns — oo, KQp, 1 and KQ), 3 are asymptotically equivalent;

(iv) forhn” =, K Qp and KQ), 4 are asymptotically equivalent.

The first assumption of the above theorem, rules out the normal kernel.
However, this and other reasonable infinite support kernels can be handled by a
straightforward but tedious truncation argument. The second assumption does not
include the rectangular or Epanechnikov kernels. For a discussion of these and
other kernels see Silverman (1986). However, similar results can be obtained for
these, but slightly different methods of proof are required. These extensions of the
above theorem are omitted because the space required for their proof does not
seem to justify the small amount of added generality.

Finally in this section we present a series of lemmas which show that in
large samples HD,, KL, and B, are essentially the same as KQ, for specific

choices of K and h.

Lemmal. Letqg=1-p (where0 <p <1)and B=a+ O(1) thenas & — o

Twa+gh) pa-1,qy_,\98-1 Y _ a2
romrap o A=01T o 2apglal ™ exp( a (x—p)*/2pq)

in the sense that
Tl g B (p + (pg/ a)*yP " g - g/ @)y (pa] @)

= [27]% exp (%y?) + O (a7%).

It follows from Lemma 1, with a = B =n+1, that in large samples HD), is

essentially the same as KQp, with K the standard normal density and



h =[pq/(n+1)]". (2.3)

We see from Theorem 1 that HD,, is asymptotically suboptimal, being based on
h=0 (n~"*) rather than h=0 (n™), resulting in weights which are too
concentrated in a neighborhood of p. See Yashizawa et. al. (1985) for an
interesting and closely related result in the case p = '4. Understanding KL, in large

samples requires a further lemma.

Lemma 2. Let g=1-p (where 0<p<1), /a=p+0 (k%) and

r=pk+0 (1) withk =0 (n) thenas n — e and k — oo

o
GG 4 Tk+1)
n =" T TGk-r+1)
()

Y 1 (1 = i)&E D=1 (1 4 O ().

Putting Lemmas 1 and 2 together, we find that in large samples KL, is

essentially the same as KQ,, 1 with K the standard normal density and

h=pq/ k1~ (2.4)

Corollary 1 can therefore be used to find an expression for the asymptotically
optimal value of k. Finally, Brewer’s estimator, By, requires a slightly different

lemma.

A

Lemma 3. Let g=1-p (where 0 <p < 1), i/(n+1)=p + 0O (n™") then as

n— oo

F'n+1) i n-i
rorm-i+n P 4

=27 pq/(n+ DI exp {—(nil _p)2/72.:’j‘11_} 1+0 (n—'/z)].




It follows from Lemma 3 that in large samples B), is essentially the same as
KQ, 3 with K the standard normal density and h =[pq/ n)%. We see from
Theorem 1 that like HD,, B, is asymptotically suboptimal, since it is based on
h=0 (n”'/’) rather than h = O (n™"%).

For related asymptotic equivalence results, see Takeuchi (1971). Similar,
but slightly weaker equivalences, have been obtained by Yang (1985, Theorem 3)
between KQ,, and KQ,, 1 and by Zelterman (1988) between KQ), 1, HD) and KL,.
Pranab K. Sen has pointed out in private communication that another way of

deriving our results would be through standard U-statistic theory.

3. DATA-BASED CHOICE OF THE BANDWIDTH

In this section we propose a data-based choice of h, the smoothing parameter
of KQp, for all p apart from p = 0.5 when F is symmetric.

We see from Corollary 1 that for a given choice of K the asymptotically
optimal value of & depends on the first and second derivatives of the quantile
function. Thus estimates of Q’(p) and Q”(p) are necessary for a data-based choice
of h. If the first and second derivatives of K exist then we can estimate these
quantities by the first and second derivatives of KQp. Since interest is in the ratio
Q(/ Q”(p)]% it seems natural to consider higher order kernels in an attempt to
keep the problems associated with ratio estimation at bay. This results in the

estimators
R T R
On'p)= X1, 07 K@ t-p)diXe
i=1 "

and

n n i/n -3 i -1
0,7 ()= 3| J'i_%b K™ (1 =p)) dt] Xy
i=1

where K+ is a kernel of order m, symmetric about zero (that is, I:K*(u) du=1,
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[ uiKe(u)du=0 i=1,2,...,m—1and] _u™ Ke(u)du < ).

The resulting estimate of the asymptotically optimal bandwidth is given by

hopt = a(K)* Bon™ @3.1)

where ﬁ = [ém’(p) / ém"(p)f’/3 and a(K) is given by (2.1). The problem is then to

choose values for the bandwidths a and b that result in an asymptotically efficient

A

B.

Theorem 3. Suppose that Q(””Z) is continuous in a neighbourhood of p and
that K+ is a compactly supported kernel of order m, symmetric about zero. The

asymptotically optimal bandwidth for ém’(p) is given by
Qopt = m(Ke)+ Y (@) n~EHD

where

pmKe) =10 |~ K?(u)du / 2m ([ um Ka(u) du)2]VCm+D

and 7,,(0) = [Q'(P) / 0 m*D(p)¥@m+1) " The asymptotically optimal bandwidth
for Q,,, ‘(p) is given by

bopl = Tm(K*) o am(Q). n—l/(2m+3)

where

tu(Ke) =130 [ (Ko (u)}zd“/ 2m ([ um Ka(u) du)2]H@m)

and 5,(0) =10°() [ QD).

In view of the above theorem, we can choose the bandwidths for Qm ‘(p) and
é,,,”(p) tobea=cp ¢ fp(Ke)on V2D and b =¢,," o T(Ks) e n~1@m+3) where
¢m’ and cp”’ are constants calculated from y,,(Q) and §,,(Q), respectively,

assuming a distribution such as the normal. This approach has been used




-11 -

successfully by Hall and Sheather (1988) to choose the bandwidth of an estimator
of Q’(0.5).

Yang (1985) proposed an alternative metilod of obtaining a data-base choice
of the bandwidth, #. This method uses the bootstrap to estimate the mean square
error of KQ, over a grid of values of h. The value of h that minimizes this
estimated mean square error is used as the bandwidth for KQp. Padgett and
Thombs (1986) have extended this approach to right-censored data. There are two
disadvantages associated with this approach. The first is the massive amount of
computation required to compute the data-based bandwidth. Secondly, an estimate
of &, is used as the value of &, in the calculation of the bootstrap estimates of
mean square error: [Yang (1985) used the sample quantile for this purpose.] An
appealing feature of the bootstrap approach is it does not employ asymptotic
motivation.

Another bandwidth selector, based on cross-validation, has been proposed
by Zelterman (1988). This approach is not directly comparable to ours, because
our goal is to find the best bandwidth for a given p, while cross-validation yields a

single bandwidth which attempts to optimize a type of average over p.

4. MONTE CARLO STUDY

A Monte Carlo Study was carried out to evaluate the performance of the
data-based bandwidths for the kernel quantile estimator and to compare the
performance of the kernel quantile estimator with the estimators of Harrell and
Davis (1982) and Kaigh and Lachenbruch (1982).

Using subroutines from IMSL, 1,000 pseudo-random samples of size 50 and
100 were generated from the double exponential, exponential, lognormal and
normal distributions. Over the 1,000 samples, we calculated the mean square error
for the estimators given below at the 0.05, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.95

quantiles.
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To implement the data-based algorithm of the previous section, the order m
of the kernel K+, as well as the constants ¢, and c,”, have to be chosen. A
natural initial choice of K« is a positive second order kernel. Preliminary Monte
Carlo results found that the performance of /AJ based on éz'(p) and éz"(p), is
dominated by the performance of éz"(p) while it is affected little by ég'(p). In
fact, éz”(p) sometimes suffers from a large bias which then translates into a large
bias for B Thus a fourth order kernel estimate of Q”(p) was also included in the
study.

Table 1 contains values of ¥2(Q), 62(Q) and J84(Q) (that is, the
asymptotically optimal values of ¢;’, ¢” and c4”) for the four distributions and
the values of p considered in this study. These four distributions were chosen
because the values of these functionals of Q include a wide cross-section of all the
values possible. This can be demonstrated by calculating these functionals for a
family of distributions such as the generalized lambda distribution (Ramberg et al.,
1979). Also included in Table 1 are values of (Q). We can see from these values
that there is a wide disparity between the optimal bandwidths of KQ,, for the four
distributions. For example, 8(Q) for the exponential distribution is up to six times
larger than that for the normal, lognormal and double exponential distributions.
This seems to indicate that one should estimate S(Q) rather than use the strategy of
using the same B(Q) and hence the same bandwidth for all underlying distributions

as is essentially done by HD,, and B,,.

— Table 1 here —

In view of Lemmas 1, 2, and 3 we chose the Gaussian kemel
K(u)= [27:]"/’ exp (—‘/zuz) for this Monte Carlo study and used the form KQ), 4 of

the kernel quantile estimator. For the Gaussian kernel

J.:,uK(u)K('l)(u)du = 1/(2\/;). The Gaussian kernel was also used as K« to




-13-
estimate Q’(p) and Q”(p). The following fourth order kernel, given in Miiller
(1984), was also used to estimate Q”(p)

Ke(u) = 315512 (3 — 20u2 + 42u* - 36u8 + 11u®) I (-1 Su <1).

To avoid integration, the following approximations to 0,./(p) and Q,,"(p) were

used

E A

Three different values of each of the constants c’, ¢2” and c4” were used for each
value of p. Experience with IAzop,, as given by (3.1), reveals that it can produce both
small and large values when compared with Ay, This is not surprising since [§ is
made up of a ratio of two estimates. To overcome this problem any estimate B
outside the interval [0.05, 1.5] was set equal to the closest endpoint of this interval.

The values of the constants cy’, ¢2” and ¢3’, c4” which consistently
produced the smallest mean square error for KQp, 4 over the four distributions
considered in this study are given in Table 2. We denote byKQ},l,)‘t the kernel
quantile estimator KQ,, 4 based on h obtained from Qz'(p) and éz"(p), using the
values of ¢5” and c,” given in Table 2. Similarly, we let KQ§,2,)4 denote KQp 4
based on h obtained from éz’(p) and é4”(p), using the values of ¢3” and c4”

given in Table 2.

— Table 2 here —

To implement the Kaigh and Lachenbruch estimate KL, one is faced with
the problem of choosing its smoothing parameter . Following Kaigh (1983) we
chose k =19, 39 when n =50 and k =39, 79 when n = 100 for this Monte Carlo
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study. In view of (2.4) the asymptotically optimal value of k can be found via the
formula h,p, = [Pq /kop,]'/’. Using this formula, the data-based choices of & were
used to produce data-based choices of k.

The table of Monte Carlo results is too large to report here. So we simply
give some highlights. As expected from the theory in Section 2, no quantile
estimator dominated over the others, nor was any better than the sample quantile in
every case. To get a feeling for how much improvement over the sample quantile
was possible, we considered the increase in efficiency (that is, ratio of mean square
errors) of the best of all estimators (for each of the 44 combinations of distribution,
sample size and quantile). This estimator, which is clearly unavailable in practice,
was not much better than the sample quantile, with increases in efficiency ranging
from 3% to 42% with an average of 15%. The kernel estimator KQp(,ZX gave
moderately superior performance to KQ;H and HD, producing smaller mean
square errors in 26 and 28 out of the 44 combinations, respectively. KQ1§,23 had
even better performance when compared with the other estimators (although never
dominating any of them). The two data-based choices of & for KL, generally gave
inferior performance to the Kaigh and Lachenbruch estimator based on the fixed
but arbitrary choices of k. However, KL, based on the fixed choices of k generally
performed worse than both KQ ,,(23 and HD,.

The reason for the somewhat surprisingly similar performance of the
Harrell-Davis estimator and the kernel estimators can be explained as follows.
There is quite a lot of variability in the data-based bandwidths for the kernel
estimators, whereas the bandwidth inherent in the Harrell-Davis, which is given by
(2.3), estimate is fixed at a point which is often not too far from the optimum
bandwidth in samples of size 50 and 100. Figure 1 contains plots of the
asymptotic mean square error of KQ,, obtained from the expression given in
Theorem 1, for the 0.1 and 0.9 quantiles of the lognormal distribution when

n =50. The asymptotically optimum bandwidth (h,,,)and the bandwidth inherent
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in the Harrell-Davis estimator (i.e. hyp = [pg/(n+ 1)]V’) are marked on the plots.
In the case of 0.1 quantile these two bandwidths are close together, while for the
0.9 quantile they are well separated. This explains why the Harrell-Davis
estimator performs better for the 0.1 quantile. Also included in the plots are
Gaussian kernel estimates of the density of the data-based bandwidths for KQ},%)‘;.
Each density estimate is based on the 1,000 bandwidths obtained in the Monte
Carlo study. The bandwidth for each density estimate was found using the plug-in
method of Hall, Sheather, Jones and Marron (1989). In the case of the 0.9 quantile
the center of the distribution of the data-based bandwidths is close to the optimum
bandwidth while for the 0.1 quantile it is not. This explains the better performance

of KQ P for the 0.9 quantile.

— Figure 1 here —

Because of the noise inherent in our data-based bandwidths, we considered
using a fixed bandwidth for KQ, which was less arbitrary than the bandwidth for
HD,. The bandwidth we chose corresponds to the asymptotically optimal when
the underlying distribution is normal. (This is undefined at p = 0.5 for which we
‘set h equal to the bandwidth corresponding to an exponential distribution.) We
denote this estimator by KQN,. KON, had larger mean square error than HD, and
KQ ;523 in 23 and 27 out of the 44 combinations, respectively.

Figure 2 is a plot of the efficiency of each of the estimators HD),, KQ},{%,

KQ®, and KON with respect to the sample quantile SQ ().

— Figure 2 here —

Figure 2 shows once again that apart from the extreme quantiles there is little
difference between various quantile estimators (including the sample quantile).

Given the well-known distribution-free inference procedures (e.g., easily
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constructed confidence intervals) associated with the sample quantile as well as the .

ease with which it can be calculated, it will often be a reasonable choice as a

quantile estimator.




APPENDIX
Proof of Theorem 1. We first consider all p, apart from p =0.5 when F is
symmetric. Since K is compactly supported and Q” is continuous in a

neighborhood of p, we find using (4.6.3) of David (1981) that

n i/n i _
Bias (KQ,) = 3, [, Kn(¢-P) a1 {Q () -C (@} + O (n D)
i=1

1

[Knt-p){Q@®) -0 @)} dt+0 (™))
0

= k2 (| uK () du] Q"(p) + 0 (h%) +0(x7").

Falk (1984, p.263) proved that

Var (KQ,) =n~1 p 1 -p) Q'@ - n A IQ' @2 [ _u K @)KV @) du+o (v h).

Squaring the expression for the bias and combining it with the variance gives the
result.

Next suppose that F is symmetric. Since KQ, is both location and scale-
equivariant, KQgqs is symmetrically distributed about its mean &£ps. The
expression for MSE (KQ ¢.5) is found by extending Falk’s expansion for Var (KQp)

to include the next term.

Proof of Theorem 2. We only give the details for (i). The proofs of (ii), (iii)

and (iv) follow in a similar manner. Let

i—-

n

i/a 0
W, n(i) = j‘_v_Kh (t=p)dt—n"" Kn( -p).

Since |W, x(i)| =0 (n'3 h~3) and W, k(i) = 0 except for i in a set S of cardinality
O (n h), we find using (4.6.1) and (4.6.3) of David (1981) that



E[KQ, — KQp, 21 = E [E Wn4() X oy 2

i=1

=E[SWon@){X i) —E X )32 + [ Woa) EX )2
ieS ieS

=0 *h

=0 ((n™)

ifhn?” S coasn — oo,

The proofs of Lemmas 1, 2 and 3 follow through an application of Sterling’s
formula. The proof of Theorem 3 follows in the same manner as that of

Theorem 1.
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Table 1 Values of Functionals of Q in Asymptotically Optimal Bandwidths for

Kernel Estimates of Q (p), Q’(p) and Q”(p).

P Double Normal Lognormal  Exponential
Exponential
BQ) 0.14 0.16 0.12, 029 0.97, 0.14
72(Q) 0.07 0.08 0.5, 040 0.73, 0.07
005,095 5.(0) 0.05 005 003, 0.11 057, 005
64(Q) 0.03 003 0.1, 007 040, 0.03
BQ) 0.22 027 0.8, 073  0.93, 0.22
72(Q) 0.12 0.14 0.08, 040 0.70, 0.12
0.1,0.5 5,0 0.08 0.09 005 016 0.55 008
54(Q) 0.05 0.06  0.03, 0.08 0.38 0.05
BQ) 0.40 061 033, 098 0.83, 0.40
72(Q) 0.25 031  0.15, 029  0.60, 0.25
025,075 5,0) 0.18 022 009, 0.17 047, 0.8
54(Q) 0.12 0.13  0.05, 009 032, 0.10
B(Q) - - 0.54 0.63
72(Q) - - 0.23 0.44
05 62(Q) - - 0.14 0.33
54(Q) - - 0.08 0.22




Table2 Values of the constants c3’, ¢2”

and c;’, c4”

produce the smallest mean square error for KQp, 4.

p c2’y 2" cy’y c4”
0.05, 0.95 0.75, 0.6 0.75, 0.4
0.1, 09 0.2, 0.6 0.2, 04
0.25, 0.75 0.6, 0.5 0.6, 03

0.5 0.8, 03 04, 0.2

which consistently
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FIGURE LEGENDS

Figure 1. Plots of the asymptotic mean square error of KQ, versus h for the
0.1 and 0.9 quantiles of the lognormal distribution when n = 50. Estimates of the

density of the data-based bandwidths are also included in the plots.

Figure 2. Plots of the ratio of the mean square error of each of the estimators
HD, (—0O—), KON (— — 0 — —), (0} N G Froeernnnn ) and KQ'2)

(. ...x....) tothe sample quantile SQp.



