
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012 1313

Kernel Recursive Least-Squares Tracker
for Time-Varying Regression

Steven Van Vaerenbergh, Member, IEEE, Miguel Lázaro-Gredilla, Member, IEEE,
and Ignacio Santamaría, Senior Member, IEEE

Abstract— In this paper, we introduce a kernel recursive
least-squares (KRLS) algorithm that is able to track nonlinear,
time-varying relationships in data. To this purpose, we first derive
the standard KRLS equations from a Bayesian perspective
(including a sensible approach to pruning) and then take
advantage of this framework to incorporate forgetting in a
consistent way, thus enabling the algorithm to perform tracking
in nonstationary scenarios. The resulting method is the first
kernel adaptive filtering algorithm that includes a forgetting
factor in a principled and numerically stable manner. In addition
to its tracking ability, it has a number of appealing properties.
It is online, requires a fixed amount of memory and computation
per time step, incorporates regularization in a natural manner
and provides confidence intervals along with each prediction.
We include experimental results that support the theory as well
as illustrate the efficiency of the proposed algorithm.

Index Terms— Adaptive filtering, Bayesian inference, Gaussian
processes, kernel methods, kernel recursive least-squares (KRLS).

I. INTRODUCTION

KERNEL methods offer an attractive framework to
deal with many nonlinear problems in pattern analysis

and nonlinear signal processing [1], [2]. These techniques
are based on a nonlinear transformation of the data into a
high-dimensional reproducing kernel Hilbert space, which
allows to solve nonlinear learning problems in the input space
as convex optimization problems in the transformed space.
By relying on the “kernel trick,” efficient algorithms with
algebraically simple expressions are obtained, such as support
vector machines or kernel principal component analysis [1].
However, in their batch form these algorithms have memory
and computational complexity requirements that usually scale
cubically with the number of data, rendering the processing
of large data sets prohibitive if no additional measures are
taken [3].

Manuscript received May 1, 2011; revised May 4, 2012; accepted May 10,
2012. Date of publication June 28, 2012; date of current version July 16,
2012. This work was supported in part by the MICINN Spanish Ministry
for Science and Innovation under Grant TEC2010-19545-C04-03 COSIMA
and the CONSOLIDER-INGENIO 2010 under Grant CSD2008-00010
COMONSENS.

S. Van Vaerenbergh and I. Santamaría are with the Department of
Communications Engineering, University of Cantabria, Santander 39005,
Spain (e-mail: steven@gtas.dicom.unican.es; nacho@gtas.dicom.unican.es).

M. Lázaro-Gredilla is with the Department of Communications Engineering,
University of Cantabria, Santander 39005, Spain, and also with the
Department of Signal Processing and Communications, Universidad Carlos III
de Madrid, Leganés 28911, Spain (e-mail: miguel@tsc.uc3m.es).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2012.2200500

During the last decade, a significant number of kernel-based
adaptive filtering techniques have been proposed (see [4]–[6]).
These algorithms are online kernel methods that aim to recover
a signal of interest by adapting their parameters as new data
become available, typically by minimizing a least-squares cost
function. The major challenge in designing these algorithms
is to deal with their memory and computational complexities.
In general, online algorithms require to update their solution as
new data become available, and the complexity of each update
should be limited [4]. Unfortunately, the functional represen-
tation of classical kernel-based algorithms grows linearly with
the number of processed data. If an online strategy is adopted
naïvely, this representation leads to growing complexities for
each consecutive update. To make online kernel algorithms
feasible, growth is typically slowed down by approximately
representing the solution using only a subset of bases that are
considered relevant according to a chosen criterion [5], [7].
In [5], a successful example of this strategy was applied to
the kernel recursive least-squares (KRLS) algorithm, which is
a kernelized version of the celebrated recursive least-squares
(RLS) algorithm [8]. In this particular case, the support is
reduced to a sparse “dictionary” of bases and a new basis is
only added if it cannot be represented by a combination of
other bases that are already present in the dictionary.

Here, we focus on an aspect of kernel adaptive filters that
has not been satisfactorily addressed yet in the literature.
In particular, kernel adaptive filters are typically designed for
stationary environments and they are not capable of dealing
with data whose input–output relationship changes over time.
The ability to adapt to such changes is required to build a
tracking algorithm, and it is fundamental in many filtering
applications. Although most linear adaptive filters allow for
tracking directly or through some straightforward extension
[8], [9], this is not possible in kernel-based algorithms. As a
result, most kernel adaptive filters are designed specifically
for stationary environments only, on which they converge
approximately to the batch filtering solution [5], [6].

To perform tracking, the algorithm is required to possess
some mechanism that computes the solution giving more
weight to more recent data. A common approach in adaptive
filtering is to exponentially weight older data by scaling them
with a forgetting factor. In [6] an exponentially weighted
KRLS (EW-KRLS) algorithm was proposed that includes
a forgetting factor. However, it faces numerical problems
that do not allow it to operate on long data sequences.
We will comment more on this below. From another

2162–237X/$31.00 © 2012 IEEE

1314 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

perspective, a few attempts have been made to include a
state-space model or process equation within the KRLS
framework [6], [10]. Nevertheless, these extended KRLS
algorithms consider only very specific models of the
state transition matrix or the state noise. A more radical
approach to giving more weight to recent data is found in
sliding-window algorithms, whose solution depends only
on a fixed number of the latest observed data [4], [11],
while any older data is discarded. Though this procedure
leads to satisfactory tracking results in case all relevant data
are present in the sliding window, the obtained solution
degrades quickly when important data is discarded.

In this paper, we explore a more sensible approach to
tracking. We specifically handle the uncertainty about the
inferred input–output relationship, which we consider a latent
function, and we study the problem of how older data should
be forgotten. Our focus is on the KRLS algorithm, which
represents a reasonable compromise between fast convergence
and complexity. First, we define a probabilistic framework
based on Gaussian processes (GPs) that offers an intuitive view
of KRLS and allows to deal with uncertainty and network
regularization in a natural manner.1 Then, we propose a
general strategy to forget past information based on blending
the informative posterior with a noninformative distribution.
The proposed framework allows us to design several different
forgetting techniques, out of which we discuss two relevant
formulations. The first technique forgets by shifting the prob-
ability distribution over the input–output relationship toward
the prior belief, converging to it once all data are forgotten,
which is consistent with the Bayesian framework. The second
technique forgets by gradually injecting uncertainty into older
data, which, interestingly, reduces exactly to the exponentially
weighted RLS algorithm when a linear kernel is used.

Based on these ideas we propose a concrete algorithm,
the KRLS Tracker (KRLS-T), that is capable of tracking
nonstationary data that exhibit nonlinear relationships.
To guarantee online operation, we limit its complexity in each
step to O(M2), where M is the number of bases allowed
in memory. The presented method is closely related to the
paper of Csató and Opper [12], in which a GP perspective is
adopted. However, we believe its connection with KRLS has
not received enough attention from the signal processing com-
munity, which is one of the issues we aim to address. We also
extend [12] by adding the concept of forgetting, which yields
tracking capabilities. Further novelties of this paper include
that it rigorously introduces the concept of regularization into
KRLS, relating it directly to the amount of noise in the data,
and that the proposed algorithm provides uncertainty estimates
of its predictions, which allows to establish confidence
intervals. Some preliminary results were presented in [13].

The rest of this paper is structured as follows. In Section II
we introduce a Bayesian framework that allows to derive
previous results for KRLS in a principled manner and offers
additional insight through the introduction of uncertainty. This
property is exploited in Section III to design a KRLS algorithm

1Note that the equivalence between GPs and KRLS has been mentioned
before in the literature [5], [7].

capable of forgetting past information. In Section IV, we
provide additional details about the predictive variances, which
are obtained by using the presented Bayesian framework. We
illustrate the performance of the proposed algorithm with a
set of numerical examples in Section V. Finally, Section VI
summarizes the main conclusions of this paper.

II. BAYESIAN PERSPECTIVE OF KRLS

First, we provide a Bayesian derivation of previous results
for KRLS, obtained within the probabilistic framework of GPs.
This unifying interpretation offers a simple and intuitive view
of KRLS, adds specific handling of uncertainty and will prove
specially useful to handle nonstationary scenarios.

A. Standard KRLS (With Evergrowing Dictionary)

Assume a set of ordered input–output pairs
Dt ≡ {xi , yi }ti=1, where xi ∈ R

D are D-dimensional
input vectors and yi ∈ R are scalar outputs. Data pairs are
made available on a one-at-a-time basis, that is, (xt , yt)
is made available at time t . Our objective is to infer the
predictive distribution of a new, unseen output yt+1 given the
corresponding input xt+1 and data available up to time t , Dt .

1) Bayesian Model: In a Bayesian setting, we need a model
that describes the observations, and priors on the parameters
of such model. Following the standard setup of GP regression,
we can describe observations as the sum of an unobservable
latent function of the inputs plus some unknown, zero-mean
Gaussian noise

yi = f (xi)+ εi . (1)

Equation (1) implies that the likelihood of the latent function
is p(yi | fi) = N (yi | fi , σ

2
n), where we have used the shorthand

notation fi = f (xi) and assumed noise power to be constant
and equal to σ 2

n . To perform Bayesian inference, we also need
a prior over the latent function, which is taken to be a zero-
mean GP with covariance function k(x, x′), also known as
kernel. A GP prior implies that the prior joint distribution of
vector f t = [f1, . . . , ft]� is a zero-mean multivariate Gaussian
with covariance matrix Kt , with elements [Kt]i j = k(xi , x j).
In line with the previous literature on KRLS, we will refer
to k(x, x′) as the kernel function, and to Kt as the kernel
matrix (which in this example would correspond to inputs
{x1, . . . , xt }). For the sake of clarity, in the following we will
omit conditioning on the inputs {xi }ti=1 or the parameters θ

that parameterize the kernel function.
2) Bayesian Recursive Update: The adopted setup

corresponds to standard GP regression, which is thoroughly
described in [14]. However, instead of the batch case in which
all observations are available beforehand, we are interested in
the online case, in which a new observation is incorporated
at each time instant. Therefore, a new posterior p(f t |Dt)
including the most recent observation t must be computed at
each time instant. Observe that the posterior is only computed
at the locations at which data have been observed, and not
for the complete latent function. This is because p(f t |Dt)
implicitly defines a posterior for p(f (x)|Dt) as

p(f (x)|Dt) =
∫

p(f (x)|f t)p(f t |Dt)df t (2)

VAN VAERENBERGH et al.: KERNEL RECURSIVE LEAST-SQUARES TRACKER FOR TIME-VARYING REGRESSION 1315

and therefore, both posterior distributions hold the same
information. Note that p(f (x)|f t) is a GP whose expression
can be derived from the prior and does not depend on data.

Instead of recomputing p(f t |Dt) from scratch at every time
instant, we can obtain a low-cost recursive update as follows:

p(f t+1|Dt+1) = p(f t , ft+1|Dt , yt+1) (3a)

= p(yt+1| ft+1)p(f t , ft+1|Dt)

p(yt+1|Dt)
(3b)

= p(yt+1| ft+1)p(ft+1|f t)p(f t |Dt)

p(yt+1|Dt)
. (3c)

Equation (3b) follows from (3a) by direct application of
Bayes rule. Equation (3c) includes an expansion due to the
outputs being conditionally independent given the latent func-
tion at the corresponding inputs.

Let us assume that the posterior at time t is a known
Gaussian p(f t |Dt) = N (f t |μt ,�t), and we want to update
it to include a new observation (xt+1, yt+1). All the involved
quantities can be easily derived from the stated assumptions,
using probability rules.

Due to its very definition, the likelihood of ft+1 = f (xt+1)
given the new observation is

p(yt+1| ft+1) = N (yt+1| ft+1, σ
2
n). (4)

Introducing the new quantities Qt = K−1
t , qt+1 = Qt kt+1,

and γ 2
t+1 = kt+1 − k�t+1Qt kt+1, where [kt+1]i = k(xi , xt+1)

and kt+1 = k(xt+1, xt+1), we can express the density of the
latent function at the new input given its value at previous
inputs as

p(ft+1|f t) = N (ft+1|q�t+1f t , γ
2
t+1). (5)

This result follows directly from the known prior probability
p(ft+1, f t) and conditioning on f t . The inverse of the kernel
matrix, Qt , has been defined because we will be computing
and storing it instead of Kt , which will never be directly used.

The denominator of (3), which corresponds to the marginal
likelihood, also known as evidence, provides the predictive
distribution of a new observation yt+1 given past data, and
can be computed as

p(yt+1|Dt) =
∫

p(yt+1| ft+1)p(ft+1|f t)p(f t |Dt)df t d ft+1

= N (yt+1|ŷt+1, σ̂
2
yt+1) (6)

with the mean and the variance of this Gaussian being

ŷt+1 = q�t+1μt and σ̂ 2
yt+1 = σ 2

n + σ̂ 2
f t+1

respectively, where we have also introduced the predictive
variance of the latent function at the new input

σ̂ 2
f t+1 = kt+1 + k�t+1(Qt�t Qt −Qt)kt+1

= γ 2
t+1 + q�t+1ht+1.

with ht+1 = �t qt+1.
Thus, all involved distributions (4)–(6) appearing

in (3) are univariate normal with simple expressions.

Using those, (3) can be evaluated and the posterior
distribution can be expressed as

p(f t+1|Dt+1) = N (f t+1|μt+1,�t+1) (7a)

μt+1 =
[

μt
ŷt+1

]
+ yt+1 − ŷt+1

σ̂ 2
yt+1

[
ht+1

σ̂ 2
f t+1

]
(7b)

�t+1 =
[

�t ht+1

h�t+1 σ̂ 2
f t+1

]
− 1

σ̂ 2
yt+1

[
ht+1

σ̂ 2
f t+1

] [
ht+1

σ̂ 2
f t+1

]�
.

(7c)

The inverse of the kernel matrix including the new input
can also be easily updated using

K−1
t+1 = Qt+1 =

[
Qt 0
0� 0

]
+ 1

γ 2
t+1

[
qt+1
−1

] [
qt+1
−1

]�
. (8)

This illustrates both how probabilistic predictions for new
observations can be made (using (6), which does not require
knowledge of yt+1), and how these new observations can
be included in the posterior once they are available. All
computations for a given update can be made in O(t2) time,
as is obvious from the update formulas. Only μt+1, �t+1, and
Qt+1 will be reused in the next iteration, and the remaining
quantities will be computed on demand.

The recursion updates can be initialized by setting

μ1 = y1k(x1, x1)

σ 2
n + k(x1, x1)

(9a)

�1 = k(x1, x1)− k(x1, x1)
2

σ 2
n + k(x1, x1)

(9b)

Q1 = 1

k(x1, x1)
(9c)

which corresponds to inference according to the proposed
model for a single data point.

Since the model is exactly that of GP regression and all
provided formulas are exact, probabilistic predictions made at
time t for observation t + 1 are exactly the same as those
obtained using a standard GP in the batch setting. Using the
batch formulation from [14], we can equivalently express the
predictive mean and variance from (6) as

ŷt+1 = k�t+1(Kt + σ 2
n I)−1yt (10a)

σ̂ 2
yt+1 = σ 2

n + kt+1 − k�t+1(Kt + σ 2
n I)−1kt+1. (10b)

Direct application of (10a) and (10b) involves a higher, O(t3)
cost, so the recursive procedure of the previous section is
preferred. However, these equations are useful to illustrate
the form of the predictive distribution after several iterations,
which is somewhat obscured in the recursive formulation.

In the standard KRLS setting, the predictive mean is often
expressed as ŷt+1 = k�t+1αt , where αt are the kernel weights.
When using the batch formulation, these weights can be
obtained with αt = (Kt + σ 2

n I)−1yt , whereas in the recursive
formulation the same result can be obtained at each step t by
computing αt = K−1

t μt = Qtμt . Observe the resemblance
between the batch and recursive formulations. In the batch
formulation, we are using noisy observations yt , so the kernel
matrix includes a regularization term σ 2

n I. In the recursive for-
mulation we use the values of the noiseless function evaluated

1316 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

at the inputs μt , so no noise term is added. Obviously, the same
αt is obtained in both cases.

B. Fixed-Budget KRLS

As pointed out, the posterior over the latent function given
a set of observations can be summarized by the posterior of
the latent function at the observed inputs. The set of inputs at
which the joint posterior is available is usually referred to as
set of bases or dictionary. The recursive procedure described
in the previous section grows the set of bases at each time
step, thus increasing computation and memory requirements
unboundedly. In this section, we describe how to limit resource
usage to a predefined value.

The overall strategy is very simple. Once the amount of
bases in the dictionary grows larger than a predefined budget
M , remove one basis from the dictionary. To accomplish this,
we need a procedure to remove a basis from the dictionary
losing as little information as possible, and a criterion to help
us decide which basis should be removed. Both are described
in the following.

1) How to Optimally Remove a Basis: After the inclusion
of several observations, we are left with a posterior of the
form p(f t , ft+1|Dt+1) = N (f t+1|μt+1,�t+1). Without lack
of generality we will assume that we want to remove the basis
corresponding to ft+1.

There are several equivalent ways of deriving basis removal
equations. One option is to try to approximate the full posterior
p(f t , ft+1|Dt+1) with the product of some distribution q(f t)
(in which the basis ft+1 has been removed) times p(ft+1|f t)
(which does not depend on any data). The optimal form of
q(f t) is then derived by minimizing the Kullback–Leibler (KL)
divergence between the original and the approximate posterior

q∗(f t) = argmin
q(f t)

KL(p(f t , ft+1|Dt+1)||q(f t)p(ft+1|f t))

= p(f t |Dt+1).

This gives the obvious result. The optimal way to remove
a basis from the posterior within this Bayesian framework
is simply to marginalize it out. The above KL divergence is
zero when the removed basis is independent of data given the
remaining bases f t , that is, p(ft+1|f t ,Dt+1) = p(ft+1|f t),
in which case no loss of information would occur. In the
remaining cases, as much information about Dt+1 as possible
is retained in the posterior distribution.

From (5) we know that if γ 2
t+1 = 0, there is a deterministic

relationship between ft+1 and f t . In this case, the assumption
p(ft+1|f t ,Dt+1) = p(ft+1|f t) holds exactly, and the basis
can be removed without any information loss. Consequently,
whenever we are adding a new basis and γ 2

t+1 is found to be
(numerically) zero, we can remove it immediately thereafter.
Since the basis set is left unchanged, we have that Qt+1 = Qt .
This is particularly useful, because the update for Qt is not
well-defined for γ 2

t+1 = 0 (it would represent the inverse of a
singular matrix). Note that we remove bases, not observations.
Although observations and bases are added simultaneously,
when we remove a basis we aim to keep the information about
the observations. Thus, if we start with posterior p(f t |Dt), add

an observation, and then remove the basis corresponding to
that very observation, we are left with a different posterior,
p(f t |Dt+1).

Since marginalizing out a variable in a joint Gaussian
distribution is achieved by simply removing the corresponding
row and column from its mean vector and covariance matrix,
the removal equations become

μt+1 ← [μt+1]−i (11a)

�t+1 ← [�t+1]−i,−i (11b)

where the notation [·]−i refers to a vector in which the i th row
has been removed, and [·]−i,−i to matrix in which the i th row
and column have been removed. Following this notation, we
will use [·]−i,i to refer to the i th column of a matrix, excluding
the element in the i th row.

The i th basis can be removed from the inverse of the kernel
matrix using

Qt+1 ← [Qt+1]−i,−i −
[Qt+1]−i,i [Qt+1]�−i,i

[Qt+1]i,i
. (12)

So far we have been using f t = [f1, . . . , ft]�. However,
as we start adding and pruning bases, f t no longer maintains
the mentioned structure. Instead, it becomes a vector of latent
function values, corresponding to the bases that have been
added but have not been pruned up till this point. Thus, f t

grows as described in Section II-A up to size M , and at this
point, insertions and deletions are alternated, so that its size is
fixed as M . The kernel matrix Kt and its inverse Qt will now
correspond to the bases in the set, which will not necessarily
be all bases seen up to time t as they were before. Also,
when adding a new basis, vector kt+1 will refer to the kernel
function between the new data point at t + 1 and the current
basis set, that is, not all past bases but a subset of them.

2) Basis Removal Criterion: To keep our posterior within
the required budget, we must remove the least relevant basis
after the inclusion of a new basis in the set, when we exceed
our budget M . Basis removal is straightforward, as we just
saw, but selecting which of the M+1 bases should be removed
is not. A desirable criterion would be to select the basis
i that minimizes the KL-divergence between the exact and
approximate posterior

KL(p(f t+1|Dt+1)||p([f t+1]i |[f t+1]−i)p([f t+1]−i |Dt+1)).

That is, a measure of the information loss because of basis
removal. This cost function, which was used in the previ-
ous section to determine how a basis should be removed,
can now be evaluated for each basis i in the dictionary to
determine which basis should be removed. It is possible to
compute this KL-divergence analytically for every basis in
the dictionary, but it is computationally too expensive. Instead,
here we will consider minimizing the square of the error that
the approximation induces in the mean of the posterior. In
our experiments, this simpler cost function resulted equally
effective in pruning the less relevant bases.

Without lack of generality, we first consider the case in
which we remove ft+1, the most recently added basis, from the
posterior. As we discussed in the previous section, this implies

VAN VAERENBERGH et al.: KERNEL RECURSIVE LEAST-SQUARES TRACKER FOR TIME-VARYING REGRESSION 1317

approximating the posterior distribution p(f t , ft+1|Dt+1) with
p(ft+1|f t)p(f t |Dt+1). For the exact distribution, the mean of
f t+1 is known to be μt+1, which can also be expressed as

μt+1 = Kt+1Qt+1μt+1.

For the approximate distribution, the mean of f t+1 is

μ̃t+1 = Kt+1

[
Qt 0
0� 0

]
μt+1.

Subtracting both means and simplifying, we can compute
the error that the approximation introduced in each element of
the posterior mean

μt+1 − μ̃t+1 =
[

0
[Qt+1μt+1]t+1/[Q]t+1,t+1

]
.

Observe that only the mean of ft+1, the removed basis, is
distorted. The mean at the remaining bases is left unaffected.
With this result, we can easily compute the squared error that
would be introduced if we removed each of the bases, and
thus flag for removal the basis that incurs in the least error,
found as

argmin
i

([Qt+1μt+1]i
[Q]i,i

)2

.

This is a well-known pruning criterion, used for instance in
[15] and [16].

The described fixed-budget KRLS algorithm alternates the
inclusion of bases and observations with the deletion of
bases, using a simple basis selection and removal procedure.
A complete iteration requires O(M2) computation and
O(2M2 + M(D + 1)) storage, since we need to keep track
of μt ,�t , Qt , and a list of the inputs in the basis set.

C. Remarks and Relation With Previous Works

Some interesting observations can be made on the above-
introduced formulation. First, even if the kernel function does
not include regularization, the Gaussian noise assumption in
(1) automatically introduces a regularization term σ 2

n I in the
batch formulation (10). Although not necessary, introducing
(even a negligible amount of) noise is highly recommended
since, as shown in the batch formulation, it enhances the
conditioning of the kernel matrix and allows it to be safely
inverted. This is less obvious in the recursive formulation, but
equally true.

Though the connection of the recursive formulation (7) with
standard KRLS might not be immediately apparent, it is clear
from (10a) that if all observations are included, predictions
are exactly the same as those made by standard approaches
in literature, including [5], in which σ 2

n = 0, and [6], which
introduces a regularization term to penalize the least-squares
solution directly. In addition to the predictive mean provided
by standard KRLS, this probabilistic formulation also provides
an uncertainty estimate, at no additional cost.

Some commonplace expressions in the standard KRLS
definition also appear in our recursive formulation, with a clear
probabilistic interpretation. For instance, qt+1 = K−1

t kt+1
projects the values of f (x) at inputs 1, . . . , t onto f (xt+1) —it
is the optimal linear predictor in the mean-squared error (MSE)

sense— whereas γ 2
t+1 expresses the uncertainty of the resulting

projection. To be completely clear, if γ 2
t+1 = 0, then ft+1 can

be exactly determined from the knowledge of f t . As we will
see in the next section, being aware of exact or approximate
redundancies such as this one can lead to reductions in the
complexity of the algorithm.

The probabilistic interpretation we provided is also much
clearer than standard KRLS regarding information flow. We
start with a GP prior and no observations. After each time
step, observations are blended with the prior producing a
posterior that will serve as prior for the next iteration. All the
information available up to the current time step is reflected
in a single distribution over a finite set of variables: p(f t |Dt).
This distribution represents our current belief about the latent
function and can be expanded to a distribution over functions
using (2), that is, it can be seen as a sparse representation of
the posterior GP. This representation makes operations such
as pruning or forgetting data remarkably simple, as we shall
see. A closely related algorithm was presented in the context of
GPs in [12], using a different parameterization of the posterior
GP. Specifically, αt = Qtμt and Ct = Qt�t Qt −Qt are used,
which renders basis removal slightly less obvious.

Finally, network pruning has been discussed in the literature
on many occasions. It was first used in the context of neural
networks [17] to trim large networks, and it was only recently
adopted in online methods, notably in the perception [18]
and radial basis function (RBF) networks [19]. Pruning was
mentioned in least-squares techniques in the context of least-
squares support vector machines [16], [20]. And recently,
a fixed-budget KRLS was introduced in [21], although that
approach does not preserve information of discarded bases.

III. KRLS TRACKER

In the previous section, we have provided a Bayesian
perspective of fixed-budget KRLS. The algorithm learns by
including new observations in the posterior distribution. Some
information is lost whenever a basis is pruned, but we take
every measure to keep this information loss to a minimum. In
a time-varying scenario, however, only recent samples have
relevant information, whereas the information contained in
older samples is actually misleading. In such a case, we would
be interested in having a KRLS tracker that is able to forget
past information and track changes in the target latent function.

The marginal distribution of a GP over a finite set of points
is a joint multivariate Gaussian distribution. Since up to this
point we only cared about distributions over a finite set of
points (those in the dictionary), we only needed to work
with Gaussian distributions. In this section, we are interested
in developing forgetting strategies and assessing their effect
throughout the whole input space, so we will work with com-
plete GPs. We briefly remind the reader of the GP notation:
GPs are stochastic processes that are defined through a mean
function m(x) and a covariance function c(x, x′). To denote
that f (x) is a stochastic function drawn from a GP, we will use
the notation f (x) ∼ GP(m(x), c(x, x′)). Loosely speaking,
one can think of a GP as a Gaussian distribution over an
infinite set of points (evaluating f (x) at every possible x and

1318 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

thus building an infinitely long vector), with a corresponding
infinitely long mean (given by the evaluation of m(x) at every
possible point) and an infinitely big covariance matrix
(given by evaluating c(x, x′) at each possible pair of points).
A complete background on GPs can be found in [14].

After several inclusion–deletion steps, all information
available up to time t has (approximately) been stored
in the posterior density over the dictionary bases
f t |Dt ∼ N (f t |μt ,�t). Inserting this p(f t |Dt) in (2)
and solving the integral, we obtain the implied posterior GP
over the whole input space

f (x)|Dt ∼ GP(kt (x)�Qtμt , k(x, x′)
+ kt (x)�Qt (�t −Kt)Qt kt (x′))

where kt (x) is the vector of covariances between x and all the
bases in the dictionary at time t . Observe that this equation
has the same form as the prediction (6), but it extends to the
whole input space.

To make KRLS able to adapt to nonstationary environments,
we should make it able to “forget” past samples, that is,
to intentionally force the posterior p(f (x)|Dt) to lose some
information. A very general approach to this is to linearly
combine f (x)|Dt with another independent GP, n(x), that
holds no information about data. Since this new posterior after
forgetting will be a linear combination of two GPs, it will also
be a GP, and we will denote it as f̆ (x)|Dt . We denote the linear
combination as

f̆ (x)|Dt = α f (x)|Dt + βn(x) (13)

where α, β > 0 are used to control the trade-off between
the informative GP f (x)|Dt and the uninformative, “forgetting
noise” n(x).

The posterior GP after forgetting, p(f̆ (x)|Dt), must also be
expressible in terms of a distribution over the latent points in
the dictionary. We will refer to this distribution as N (μ̆t , �̆t).
Using (2) again, we can express the posterior after forgetting
in terms of μ̆t and �̆t

f̆ (x)|Dt ∼ GP(kt (x)�Qt μ̆t , k(x, x′)
+ kt (x)�Qt (�̆t −Kt)Qt kt (x′)). (14)

Different definitions for α, β, and n(x) will result in
different types of forgetting. In the following, we introduce
two relevant forgetting strategies.

A. Back-to-the-Prior (B2P) Forgetting

First, we select the form of the GP n(x) that acts as
noise. This GP holds no information about the data and it
is independent of f (x)|Dt . Assume for a moment that we
want to forget all past data. In this case, we must set α = 0
to completely remove the informative GP. In that case, our
posterior GP would be βn(x). The distribution of the posterior
when no data has been observed, should, by definition, be
equal to the prior. Therefore n(x) must be a scaled version of
the GP prior. Without lack of generality, we can choose this
scale to be 1, so that the noise GP becomes

n(x) ∼ GP(0, k(x, x′)).

Obviously, with this choice, setting α = 0 should imply β = 1.
Observe that n(x) corresponds to colored noise, using the same
coloring as the prior.

Once n(x) has been defined, the distribution of f̆ (x)|Dt

can be obtained from its definition (13). Since both GPs are
independent, their linear combination is distributed as

f̆ (x)|Dt ∼ GP(αkt (x)�Qtμt , (α2 + β2)k(x, x′)
+ kt (x)�Qt (α

2�t − α2Kt)Qt kt (x′)). (15)

Comparing (14) and (15) and identifying terms, we obtain

μ̆t = αμt ; �̆t = α2�t + (1− α2)Kt ; α2 + β2 = 1

which provides the relationship between the posterior
distribution before and after the forgetting occurs. Forgetting
depends on a single positive parameter, α, and one can find
the corresponding β = √1− α2. This latter equation implies
that α cannot be bigger than 1. Its values are therefore in the
range from 0 (all past data is forgotten and we arrive back at
the prior) to 1 (no forgetting occurs and we are left with the
original, unmodified posterior). Re-parameterizing α2 = λ for
convenience, the forgetting updates are finally

�t ← λ�t + (1− λ)Kt (16a)

μt ←
√

λμt (16b)

where we denote λ ∈ (0, 1] as the forgetting factor. The
smaller the value of λ, the faster the algorithm can track
changes (and the less it is able to learn, because information
is quickly discarded). Usually, only values in the [0.95, 1]
range are sensible. We call this technique B2P forgetting.
Interestingly, this type of forgetting reduces to extended RLS
when using a linear kernel.

B. Uncertainty-Injection (UI) Forgetting

An alternative way to implement forgetting is to keep
the posterior GP unscaled (i.e., set α = 1), and increase
its uncertainty by adding zero-mean noise. To increase the
uncertainty without changing its structure, the noise process
must have the same structure as the posterior covariance.
Nevertheless, at the same time, we want our posterior GP to
be expressible in terms of the posterior over the dictionary
bases. We can approximately fulfill both desiderata by using

n(x) ∼ GP(0, kt (x)�Qt�t Qt kt (x′)).

This noise covariance function matches the posterior
covariance function and thus results in a re-scaling whenever
k(x, x′) − kt (x)�Qt kt (x′) = 0. When this condition is
met, an exact re-scaling of the covariance occurs, with the
amount of increase being determined by β. This occurs
when the dictionary is a complete basis that spans the whole
function space, for instance when using a kernel that admits
a finite-dimensional expansion and the number of bases in
the dictionary M is bigger than the number of dimensions.
Note that even if the modification does not correspond to an
exact scaling, the uncertainty still grows, as we are simply
adding colored noise.

VAN VAERENBERGH et al.: KERNEL RECURSIVE LEAST-SQUARES TRACKER FOR TIME-VARYING REGRESSION 1319

Using (13), we can compute the distribution of the posterior
GP after forgetting for this type of noise

f̆ (x)|Dt ∼ GP(kt (x)�Qtμt , k(x, x′)
+ kt (x)�Qt ((1+ β2)�t −Kt)Qt kt (x′)). (17)

Comparing (14) and (17) and identifying terms, we obtain

μ̆t = μt ; �̆t = (1+ β2)�t

which, again, provides the relationship between the posterior
distribution before and after the forgetting occurs. Forgetting
now depends on the single positive parameter β, whose
values are in the range from 0 (no forgetting occurs and
we are left with the original, unmodified posterior) to ∞
(uncertainty grows to infinity and all information is lost).
Re-parameterizing β2 = (1− λ)/λ for notational convenience
and consistency with the previous rule, the forgetting updates
finally become

�t ← 1

λ
�t (18a)

μt ← μt (18b)

where λ ∈ (0, 1] (to span the mentioned range in β). The
forgetting factor λ has a similar meaning to the one in
the previous section, with λ = 1 also corresponding to no
forgetting and λ = 0 corresponding to complete forgetting.
However, it is not correct to assume that the same value of λ
corresponds to the same level of adaptivity in both forgetting
strategies.

We denote this type of forgetting as UI forgetting, and
it has the nice property of making KRLS-T reduce exactly
to the exponentially weighted RLS when a linear kernel is
used, as we will discuss in Section III-D. Unfortunately, it
also de-emphasizes regularization over time (just as standard
exponentially weighted RLS does, see [9]), and successive
forgetting iterations may result in a posterior with higher
uncertainty than the prior, which is not sensible from a
Bayesian perspective. It may be argued that these are not
desirable properties in a forgetting strategy, but we consider
it nonetheless due to its theoretical relevance.

C. KRLS-T Algorithm

The KRLS-T algorithm is summarized in Algorithm 1.
Note that it has O(M2) memory and computational
complexity. Furthermore, when adding a new basis to the
dictionary, some caution is to be exercised. Including a
redundant basis in the dictionary (besides wasting one slot
of the dictionary) would make the dictionary matrix singular
and its inverse Qt undefined. To avoid this, we check for
redundancy before adding each basis by using a threshold ε
close to the machine precision. Observe that this threshold
is not a criterion to reduce dictionary growth, but a criterion
for floating point identity under finite precision. Much in
the same spirit, the covariance function k(xi , x j) can be
redefined as k(xi , x j) + εδi j to enhance the conditioning of
matrix Qt . This “jitter” noise is added to increase numerical
stability and is fundamentally different from observation
noise. Thus ε is not a parameter of the algorithm, but

Algorithm 1 Kernel Recursive Least-Squares Tracker

Parameters: Forgetting factor λ, regularization σ 2
n , kernel

function k(x, x′), including its parameters θ , budget M .
Observe (x1, y1).
Initialize μ1, �1, Q1 as per Eq. (9).
Add x1 to the dictionary.
for time instant t = 1, 2, . . . do

Forget using B2P-forgetting (16) or UI-forgetting (18).
Observe new input xt+1.
Compute kt+1, the kernel between xt+1 and every basis
in the dictionary.
Compute kt+1 = k(xt+1, xt+1).
Compute qt+1 = Qt kt+1.
Compute projection uncertainty γ 2

t+1 = kt+1 − k�t+1qt+1.
Compute ht+1 = �t qt+1.
Compute noiseless pred. var. σ̂ 2

f t+1 = γ 2
t+1 + q�t+1ht+1.

Output predictive mean ŷt+1 = q�t+1μt .
Output predictive variance σ̂ 2

yt+1 = σ 2
n + σ̂ 2

f t+1.
Observe actual output yt+1.
Compute μt+1, �t+1 as per Eq. (7).
if γ 2

t+1 < ε (for some ε > 0 close to machine precision)
then

Remove basis t + 1 (introduces no error):
μt+1← [μt+1]−(t+1),�t+1← [�t+1]−(t+1),−(t+1).

else
Compute Qt+1 as per Eq. (8).
Add basis xt+1 to the dictionary.
if Number of bases in the dictionary > M then

Compute squared errors for each candidate basis
removal ([Qt+1μt+1]i/[Qt+1]i,i)2.
Remove basis i that introduces minimum error:
μt+1← [μt+1]−i ,�t+1 ← [�t+1]−i,−i .
Remove basis i from Qt+1 as per Eq. (12).
Remove basis xi from the dictionary.

end if
end if

end for

a machine-dependent parameter. A MATLAB implementation
of KRLS-T including some experiments from this paper can
be obtained at http://www.tsc.uc3m.es/~miguel.

D. Connection With Exponentially Weighted RLS

When a linear kernel k(x, x′) = σ 2
0 x�x′ and uncertainty-

injecting forgetting are used, the proposed KRLS-T algorithm
is identical to the standard regularized exponentially weighted
RLS [9]. It also incurs in the same computational cost, because
after D bases have been inserted into the dictionary (where D
is the dimensionality of x), γ 2

t will always be zero and no new
bases will be added.

In the standard RLS definition, matrix R is the weighted
correlation matrix and r is the cross-correlation between
x and y. However, in the standard recursive implementation,
these quantities are not directly used, and instead it is P = R−1

and w = R−1r that are used and iteratively updated. When the
canonical basis is used by KRLS-T, that is, Kt = Qt = I, the

1320 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

following correspondence exists:
wt = μt ; Pt = λ/σ 2

n �t

where �t is taken immediately after the forgetting step.
Observe that the prior over the canonical basis is N (0, σ 2

0 I),
by which the above correspondence yields the following
starting point for the RLS algorithm: w0 = 0, P0 = λσ 2

0 /σ 2
n I.

All successive updates, as described in the KRLS-T algorithm,
are then identical to those of standard RLS. If a noncanonical
basis is used, a simple linear transformation is sufficient to
express the equivalence of both algorithms.

Standard RLS de-emphasizes regularization over time
(see [9]), so the predictive means of the algorithm become
independent of σ 2

n after enough iterations have passed (this
effect is faster for smaller λ). Interestingly, a regularized
version of RLS (known as extended RLS) can be simply
obtained by using a linear kernel with the back-to-the-
prior forgetting procedure, without incurring in additional
computational cost. However, the analysis of such an
algorithm falls outside the scope of this paper.

IV. ABOUT THE PREDICTIVE VARIANCES

The use of a Bayesian formulation provides us with
predictive variances σ̂ 2

yt+1 at no additional cost, as has been
exposed in the previous sections. Predictive variances are
not provided in the standard KRLS formulation, but could
be useful to determine confidence intervals when making a
prediction, or even to discard highly uncertain predictions.
In this section, we will discuss the practical details that need
to be considered when using KRLS-T to produce predictive
variances in addition to the standard predictive means.

When considering only predictive means, re-scalings of
both the kernel k(x, x′) and the noise power σ 2

n do not have
any effect; exactly the same predictive means are obtained.
However, this global scale factor does affect the predictive
variances, so it is important that both k(x, x′) and the noise
power σ 2

n have the correct scale when these are used. Either
this global scale is known beforehand, and the appropriately
scaled kernel k(x, x′) and σ 2

n are provided in Algorithm 1, or
we must somehow estimate them. In the following, we will
be concerned with global scale estimation.

Assume that from some unscaled kernel k(u)(x, x′) and
noise power σ

2(u)
n we define the usual kernel and noise

power as

k(x, x′) = σ 2
0 k(u)(x, x′); σ 2

n = σ 2
0 σ 2(u)

n

in which an arbitrary scaling σ 2
0 has been introduced. If we

selected an appropriate value for this new hyperparameter, we
would ensure that the predictive variances are correctly scaled.
As we will see, it turns out that a precise estimate of σ 2

0 can
be obtained in closed form, thus removing the need to have
any previous knowledge about the scale of the process.

We first define at each time instant the quantity

vt =
σ̂ 2

yt

σ 2
0

= σ 2(u)
n + σ̂ 2

f t

σ 2
0

which, just as the predictive mean ŷt+1, is independent of σ 2
0

(though σ 2
0 appears in this formula, it also appears implicitly

in σ̂ 2
yt and both cancel out). Then, the predictive distribution

at each time instant becomes

p(yt+1|Dt) = N (yt+1|ŷt+1, σ
2
0 vt+1) (19)

and we can express the marginal likelihood (evidence) of σ 2
0

given all past data as

p(Dt |σ 2
0) =

t∏
i=1

p(yi |y1, . . . , yi−1, σ
2
0)

=
t∏

i=1

N (yi |ŷi , σ
2
0 vi).

The latter expression can be maximized with respect to σ 2
0 to

obtain its type-II maximum likelihood (ML-II) estimate, which
is the standard way to perform model selection in GPs. This
maximization can be done analytically and the result is

σ̂ 2
0ML =

1

t

t∑
i=1

(yi − ŷi)
2

vi
.

Keeping an updated estimate σ̂ 2
0ML at each time instant does

not add any overhead to the algorithm and allows to compute
correctly scaled predictive variances using (19) with σ 2

0 =
σ̂ 2

0ML. This value will be an increasingly good estimate of
the (noiseless) signal power. Furthermore, since the algorithm
becomes independent of σ 2

0 except in the computation of the
final predictive variance, we can set σ 2

0 = 1, which makes
k(x, x′) = k(u)(x, x′), σ 2

n = σ
2(u)
n and vt = σ̂ 2

yt . Thus,
Algorithm 1 can be used as is, using σ̂ 2

0MLσ̂ 2
yt+1 as predictive

variances.

A. Scale Adaptation

In a time-varying scenario, signal power σ 2
0 may also

undergo changes. If this is the case, an adaptive estimation
of its value may be in place. Maximizing an exponentially
weighted version of the marginal likelihood yields the
following adaptive estimation:

at = at−1 + λ
(yt − ŷt)

2

vt
(20a)

bt = bt−1 + λ (20b)

σ̂ 2
0ML =

at

bt
(20c)

which, for λ = 1, corresponds to the standard ML-II presented
before. Recursion is initialized using a0 = b0 = 0.

V. NUMERICAL EXPERIMENTS

In this section, we perform a number of experiments to
demonstrate the regression and tracking capabilities of the
KRLS-T algorithm. We start by evaluating its performance
on a stationary benchmark, and then move on to illustrate its
tracking performance on different experiments with simulated
and real-world nonstationary data.

VAN VAERENBERGH et al.: KERNEL RECURSIVE LEAST-SQUARES TRACKER FOR TIME-VARYING REGRESSION 1321

A. Compared Algorithms

We experimentally compare the following algorithms.
1) Approximate linear dependency KRLS (ALD-KRLS)

[5] is the first KRLS algorithm proposed in the literature.
It constructs an approximate solution to a batch kernel
regression problem in an online manner. To slow down
dictionary growth, it uses a sparsity criterion based on
linear dependency. Its only parameter, apart from the
kernel, is a sensitivity threshold ν which determines
whether a basis will be accepted into the dictionary. If a
basis is accepted, the stored variables are extended and
updated to reflect its information. If not, the variables
are not extended but the datum’s information is still
included in the posterior by means of a partial update.
A notable characteristic of ALD-KRLS is that it does not
intrinsically handle regularization, but rather achieves
this by constructing a sparse basis. Remark also that
ALD-KRLS is not a tracking algorithm.

2) Surprise criterion KRLS (SC-KRLS) uses a
sparsification criterion based on surprise [7], which is
“a subjective information measure of data with respect
to a learning system.” This criterion exploits the data
labels yt in addition to the input data xt , and it uses an
additional threshold to distinguish outliers from redun-
dant data. It is worth noting that if a datum causes little
surprise, it is discarded as redundant, whereas ALD-
KRLS would still include its information in the posterior.
Also, if a new input xt is already well represented by
the dictionary, it can still be considered as learnable due
to its corresponding output yt being surprising enough,
thus wasting a memory slot. SC-KRLS includes a regu-
larization term that can be used to enforce smoothness.
Note that SC-KRLS is not a tracking algorithm.

3) Sliding-window KRLS (SW-KRLS) achieves tracking
by constructing a regression solution based only on the
M last observed data and by updating this solution effi-
ciently [11], [22]. Although conceptually simple, its per-
formance is limited by the quality of the bases in its sup-
port, over which it has no control. In particular, it has no
means to avoid redundancy in its dictionary or to main-
tain older bases that are relevant to its kernel expansion.
Improvements to this procedure can be found in [21].

4) Naive online regularized risk minimization algorithm
(NORMA) is a kernel-based version of leaky least-
mean squares [4]. It is closely related to the kernel
least-mean squares algorithm proposed in [23] but it
includes regularization. As a result of this property, the
coefficients of this filter shrink over time, allowing it
to discard the oldest bases in a sliding-window fashion.
Although NORMA has linear time and memory
complexity in terms of the number of bases in its
window, it requires many more bases to match the
steady-state performance of KRLS algorithms.

5) EW-KRLS [6] is a kernelized version of the linear RLS
algorithm with exponential weighting [8]. By including
a forgetting factor, it is theoretically capable of
performing tracking. However, it shows several

weaknesses that rule out its practical usage as a tracker
on long data sequences. First, it loses regularization
over time, see [6, Eq. (4.52)], where β i ends up
being 0 on finite-precision machines, for β < 1 and
i � 1], similar to the linear case (see [8]). This leads
to stability issues. As a byproduct of regularization
loss, it also loses its forgetting ability (since β i

becomes 0, thus weighting all samples equally). Finally,
to perform tracking it requires evergrowing memory, as
it only adapts its solution when growing its dictionary.
EW-KRLS includes a regularization term, and its only
parameter, apart from the kernel, is the forgetting factor.

6) The proposed KRLS-T algorithm aims to overcome the
shortcomings of these algorithms in tracking scenarios,
as discussed in Sections II and III of this paper. Its only
free parameter, apart from the kernel, is the factor λ
used in its forgetting scheme, while its dictionary size
M is a budget-dependent parameter.

In the following, we present a series of experiments to compare
the behavior of KRLS-T to each of the other algorithms.
Unless stated otherwise, we will use a RBF kernel of the form

k(x, x′) = σ 2
0 exp

(
−||x− x′||2

2�2

)

in which σ 2
0 is the signal power and � is the length scale.

B. Online Regression in a Stationary Environment

In the first experiment, we train the online algorithms to
perform regression of the KIN40K data set.2 Since this is a
stationary regression problem, we only consider the algorithms
that are not trackers (i.e., ALD-KRLS and SC-KRLS) and
compare them to KRLS-T with λ = 1. The KIN-40K data
set is obtained from the forward kinematics of an eight-
link all-revolute robot arm. It contains 40 000 examples, each
consisting of an 8-D input vector and a scalar output. KIN40K
was generated with maximum nonlinearity and little noise,
representing a very difficult regression test. We randomly
selected 10 000 data points for training and used the remaining
30 000 points for testing the regression.

For all algorithms we use an anisotropic Gaussian kernel
in which the hyperparameters were determined offline by
standard GP regression. In particular, the noise-to-signal ratio
was σ 2

n /σ 2
0 = 0.0021. In this experiment, we wish to limit

the memory of each algorithm to M = 500 bases. Since
ALD-KRLS and SC-KRLS are controlled by a sensitivity
threshold rather than by a memory budget, we determine the
value of their thresholds that yields a total memory size of
500 bases at the end of the experiment. For ALD-KRLS we
obtain sensitivity ν = 0.45, and for SC-KRLS the threshold
becomes T1 = 0.472. The second threshold of SC-KRLS is
set to T2 = +∞, which implies that no points are treated
as outliers. We also exploit the property of ALD-KRLS of
performing partial updates by running a modified version of
ALD-KRLS in which we set ν = 0 and maintain the dictionary
unchanged after it reaches 500 bases (i.e., only partial updates

2Available at http://www.cs.toronto.edu/~delve/data/datasets.html.

1322 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

0 2000 4000 6000 8000 10000
−12

−10

−8

−6

−4

−2

iteration

N
M

S
E

 [d
B

]

ALD−KRLS, ν=0.45
ALD−KRLS, ν=0
SC−KRLS, T1=0.472
KRLS−T, λ=1 (fullKL)
KRLS−T, λ=1 (MSE)

Fig. 1. NMSE comparison of different KRLS algorithms on the KIN40K
regression problem. Each algorithm uses a dictionary of M = 500 bases.

0 500 1000 1500 2000

−15

−10

−5

0

final network size M

st
ea

dy
−

st
at

e
M

S
E

 [d
B

]

ALD−KRLS
SC−KRLS
KRLS−T

Fig. 2. Final network size M versus steady-state NMSE on the KIN40K
regression problem.

are performed after this point). Finally, we apply the proposed
KRLS-T algorithm with a dictionary size of M = 500 bases
and no forgetting (λ = 1). To prune the dictionary, we use the
slower criterion that minimizes KL-divergence (“fullKL”) in a
first test and the faster MSE-based criterion in a second test.

Each algorithm performs a single run over the data. The
performance is measured as the normalized mean-square error
(NMSE) on the test data set at different points throughout
the training run. The results are displayed in Fig. 1. Although
ALD-KRLS with ν = 0.45 converges much slower than its
modified version with ν = 0, both versions converge to the
same NMSE. SC-KRLS obtains very similar performance.
KRLS-T outperforms the other algorithms by a significant
margin. Thanks to its principled handling of uncertainty it
is able to properly weight all samples and to trade weaker
bases in the dictionary for more relevant ones during the entire
experiment.

In Fig. 2, we represent the steady-state NMSE of the
algorithms for different final network sizes, which allows
to compare the performances of ALD-KRLS and SC-KRLS
in their original growing-budget context to KRLS-T. The
steady-state NMSE is calculated as the average NMSE over
the last 500 iterations. As can be observed, KRLS-T requires
a significantly smaller memory to obtain results similar to
ALD-KRLS and SC-KRLS.

TABLE I

IMPULSE RESPONSES OF THE LINEAR CHANNELS

USED IN THE SIMULATIONS

n 1 2 3 4 5

h1[n] 1.000 −0.3817 −0.1411 0.5789 0.191

h2[n] 1.000 −0.0870 0.9852 −0.2826 −0.1711

0 500 1000 1500

−30

−25

−20

−15

−10

−5

0

iteration
M

S
E

 [d
B

]

NORMA, M=∞, μ=0.10
EW−KRLS, M=∞, λ=0.99
SW−KRLS, M=50
KRLS−T (UI), M=50, λ=0.98
KRLS−T (B2P), M=50, λ=0.999

Fig. 3. MSE performance comparison of different tracking algorithms on a
communications channel that shows an abrupt change at t = 500.

C. Adaptive Identification of a Time-Varying Communication
Channel

In the second experiment, we study the capability of several
tracking algorithms to re-converge after a model switch.
For this experiment we consider the problem of nonlinear
identification of a communication channel that undergoes an
abrupt change [24]. In this setup, a signal xt ∈ N (0, 1) is fed
into a nonlinear channel that consists of a linear finite impulse
response channel followed by the nonlinearity y = tanh(z),
where z is the output of the linear channel. During the first 500
iterations the impulse response of the linear channel is chosen
as h1 in Table I, and at iteration 501 it is abruptly switched
to h2. These impulse responses were chosen randomly and
re-scaled to have 1 as the first coefficient. The channel output
contains 20 dB of additive Gaussian white noise.

We perform an online identification experiment, in which
the identification algorithm is given one input sample and
one output sample at each time instant. A time-embedding
of five taps is considered, that is, the input data is taken
as vectors xt = [xt , xt−1, . . . , xt−4]T . The performance of
each algorithm is tested on a set of 100 data points that are
generated with the current channel model.

We compare the performance of different tracking
algorithms on this identification problem, in particular
NORMA, EW-KRLS, SW-KRLS, and KRLS-T. An RBF
kernel with � = 1 is used in all algorithms, and the
regularization is set to 0.01, which matches the true value
of the noise-to-signal ratio. We aim to limit each algorithm’s
budget to M = 50. Exceptions are made for NORMA,
which requires a larger dictionary to obtain a performance

VAN VAERENBERGH et al.: KERNEL RECURSIVE LEAST-SQUARES TRACKER FOR TIME-VARYING REGRESSION 1323

−4 −2 0 2 4 −4
−2

0
2

4

−5

−2.5

0

2.5

5

−4 −2 0 2 4 −4
−2

0
2

4

−5

−2.5

0

2.5

5

−4 −2 0 2 4 −4
−2

0
2

4

−5

−2.5

0

2.5

5

−4 −2 0 2 4 −4
−2

0
2

4

−5

−2.5

0

2.5

5

−4 −2 0 2 4
−4

−2

0

2

4

x1

x 2

−4 −2 0 2 4
−4

−2

0

2

4

x1

x 2

−4 −2 0 2 4
−4

−2

0

2

4

x1

x 2

−4 −2 0 2 4
−4

−2

0

2

4

x1

x 2

t = 625 t = 13125 t = 26250 t = 40000

(a)

(b)

Fig. 4. (a) Observed surface over time. (b) Surface predictions by KRLS-T, and active bases (dots) over time.

comparable to KRLS, and for EW-KRLS, which cannot
perform tracking without growing its dictionary. These
algorithms are given an evergrowing memory, indicated as
M = ∞. The adaptation rates are chosen as follows. NORMA
uses learning rate η = 0.1, EW-KRLS has forgetting factor
λ = 0.99 and KRLS-T is first applied with UI forgetting and
λ = 0.98 and then with B2P forgetting and λ = 0.999. The
values of λ were chosen to obtain similar convergence levels.
As discussed in Section III, the same value of λ does not
correspond to the same level of adaptivity in both forgetting
strategies.

The identification results, averaged out over 25 simulations,
can be found in Fig. 3. EW-KRLS is capable of perform-
ing tracking, but when implemented on a finite-precision
machine it encounters numerical problems after a certain
number of iterations. As additional tests confirmed, lowering
its forgetting factor leads to a similar steady-state MSE but
causes the numerical problems to occur earlier. SW-KRLS
obtains reasonable results on this example, indicating that
its memory of the 50 latest samples is sufficient to identify
the channel satisfactorily. The proposed KRLS-T algorithm
with UI forgetting and λ = 0.98 obtains a good steady-state
MSE, but its convergence rate after the channel switch is
somewhat slower than SW-KRLS. Note that this rate can be
increased at the cost of a higher steady-state MSE. Lastly,
KRLS-T with B2P forgetting and λ = 0.999 outperforms
the other algorithms, both in terms of convergence rate and
MSE convergence. (EW-KRLS obtains better MSE conver-
gence during the first iterations of this experiment but it
uses more memory.) This indicates that the B2P-forgetting
technique is a more sensible approach to forgetting. Note that
KRLS-T with B2P forgetting maintains its regularization at
all times, unlike the UI-forgetting technique. Finally, while
SW-KRLS reaches convergence earlier after the channel
switch, KRLS-T (B2P) initially converges much faster and
obtains a better steady-state MSE.

D. Online Regression of a Nonstationary 2-D Mapping

In the following simulation, we illustrate the capability of
the KRLS-T algorithm to adapt its dictionary. Specifically,
we are interested in the algorithm’s efficiency to adjust its
regression solution when the regions of interest are changing
throughout the input space. To force the algorithm to adapt its
dictionary, we only allow it to use very few bases.

The scenario of this simulation consists of a 2-D surface,
which could for instance represent the light intensities of the
sky containing different moving celestial bodies. Assume our
observations are made by a sensor (such as a telescope) that
can only capture a small region of the entire space at each
time instant. To assemble a global picture of the observed
space, we need to scan it taking various snapshots at different
positions. Here we will scan the space by taking successive
observations along the nodes of a grid, column by column,
although it could be plausible to target different regions of the
space more frequently if they were considered of interest. The
number of grid points is chosen as 625, which corresponds
to 25 columns and 25 rows. The following parameterized 2-D
surface is simulated:

y = 5 exp
(
−(x1 + 2 cos(ωt))2 − (x2 + 2 sin(ωt))2

)

−5 exp
(
−(x1 − 2 cos(ωt))2 − (x2 − 2 sin(ωt))2

)

in which x1 and x2 represent coordinates in the input space,
ω is a constant fixed at ω = π/(2× 40 000), and t = 1, 2, . . .
represents the temporal index. At each time instant t , one
observation yt is obtained at one node xt of the input space
grid. This surface contains two Gaussian bumps, one positive
and one negative, that perform a rotation of π/2 radians
between t = 1 and t = 40 000, as illustrated in Fig. 4(a). Note
that these Gaussians are moving considerably slower than the
period required to scan the entire grid.

Given the successive input–output patterns {xt , yt } we
apply KRLS-T to model the entire observed space, using

1324 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

−4 −2 0 2 4
−4

−2

0

2

4

x
1

x 2

1

2

3

4

5

6

7

8

9
x 10

−3

Fig. 5. Predictive variance obtained by KRLS-T, which quantifies its
uncertainty about its own predictions.

back-to-the-prior forgetting, λ = 0.9999 and 10−5 regulariza-
tion. The number of bases for KRLS-T is chosen as M = 20,
which is substantially lower than the number of grid nodes.
Fig. 4(b) shows snapshots of the active bases chosen at four
time instants during the experiment. The first snapshot is
taken after the first full scan of the grid. As can be observed,
KRLS-T chooses its bases to cover the entire region of interest,
and it adapts its dictionary correctly over time. In Fig. 5, we
illustrate the predictive variance of KRLS-T about the entire
space, at t = 40 000. The lower the predictive variance, the
more confident the algorithm is about its prediction. Note
that the regions of high confidence correspond nicely to the
positions of the active bases at this time step, which are shown
in Fig. 4(b).

Next, we compare KRLS-T’s performance to EW-KRLS
and SW-KRLS. We measure the prediction error of the entire
surface, during the entire experiment. EW-KRLS is applied
with λ = 0.99 and evergrowing memory. SW-KRLS and
KRLS-T are first given the full budget M = 625 to obtain their
baseline performance, and then a reduced budget of M = 20,
as in Fig. 4. The results are shown in Fig. 6. EW-KRLS runs
into numerical problems that cause it to diverge after 1000
iterations. With the full budget M = 625, SW-KRLS and
KRLS-T both obtain very good results that oscillate between
−30 and −33 dB. With the reduced budget, the strength of
KRLS-T’s basis pivoting mechanism becomes clear. It detects
which bases should be maintained in the dictionary and
which ones should be replaced, during the entire experiment.
SW-KRLS does not possess such a mechanism, and it
performs poorly. It cannot adequately model examples that
have received more than M time steps before.

E. Modeling the Changing Dynamics of an Attitude Control
System

In the last experiment, we illustrate the proposed algorithm’s
capability to model changing nonlinear dynamics using real-
world data gathered from an attitude estimation system.
Attitude estimation is concerned with determining the orien-
tation of a vehicle, commonly an aircraft, and it is essential
in flight control and navigation [25]. The basic components
of attitude estimation systems are inertial measurement units
(IMUs) that typically contain three-axis accelerometers to
measure acceleration and three-axis gyroscopes to measure

0 2000 4000 6000 8000 10000 12000
−35

−30

−25

−20

−15

−10

−5

0

iteration

N
M

S
E

 [d
B

]

EW−KRLS, λ=0.99, M=∞
SW−KRLS, M=625
SW−KRLS, M=20
KRLS−T, λ=0.9999, M = 625

KRLS−T, λ=0.9999, M = 20

Fig. 6. NMSE results of predicting the nonstationary surface.

Fig. 7. Picture of the experimental setup. The IMU is contained within the
box indicated by the arrow.

the vehicle’s angular velocities. The performance of these
components is affected by sensor noise, especially in the
accelerometers, and sensor bias, which can lead to significant
drift when integrated out. For these reasons many navigation
systems rely on additional components such as GPS,
pedometers, or a magnetic compass [26].

The experimental setup, which has been used for a parallel
ongoing research project, is shown in Fig. 7. The IMU,
which contains low-end accelerometers and gyroscopes, is
mounted on a round table that is rotated by a motor and
that provides acceleration and angular velocity measurements.
The tracking algorithm needs to learn the slowly changing
nonlinear relationship between the gyroscope measurements
and the rotation angle reported by the motor, on the one
hand, and the noisy acceleration signal, on the other hand.
By modeling this relationship, a de-noised version of the
instantaneous acceleration signal is obtained, which can be
used to improve different aspects of the navigation system
such as the detection of movement and the calibration of the
accelerometers.

The described setup includes a nonstationary component
in the form of the gyroscope bias, which changes slowly
over time. We add further nonstationarity by triggering abrupt
changes in the inclination of the table at different time instants,
which require the learned model to re-converge.

Fig. 8 (top) illustrates the table movement. The initial
position of the IMU is referenced as a table rotation of
0°. The table then performs a series of 360° rotations,

VAN VAERENBERGH et al.: KERNEL RECURSIVE LEAST-SQUARES TRACKER FOR TIME-VARYING REGRESSION 1325

0

180

360
table position [°]
table angular velocity [°/s]

−0.2

−0.1

0

0.1

0.2

0.3

ou
tw

ar
d

ac
ce

le
ra

tio
n

[g
]

measured
EW−KRLS, M=∞
KRLS−T, M=100

0 34.72 70.89 108.1
0

0.5

1

1.5

sq
ua

re
 e

rr
or

(x
 1

0−
3)

Time [s]

KRLS−T

(a) (b) (c)

inclination change inclination change

Fig. 8. Results of the fourth experiment. Top plot: angular position measured by the table motor and angular velocity measured around the (upward-pointing)
z-axis of the IMU, which are used as the input signals in the experiment. During segment (a) table inclination is 7.9°, (b) at 34.72 s the inclination is changed
to 14.5°, and (c) at 70.49 s it is changed back to 7.9°. Middle plot: measured outward acceleration and learned de-noised accelerations. Bottom plot: square
error between the measured acceleration and de-noised acceleration obtained by KRLS-T.

alternatingly counterclockwise and clockwise. At the start
of the experiment, the table inclination amounts to 7.9°. After
four entire rotations, the inclination is changed to 14.5°,
and afterwards it is returned to 7.9°. The input signal in
this experiment consists of the angular velocity measured
around the (upward-pointing) z-axis of the IMU, and the
table rotation angle reported by the motor. The desired output
signal is the noisy outward acceleration as measured by
the corresponding accelerator of the IMU. All signals are
sampled at a rate of 100 samples per second. A Gaussian
kernel is used on the input data, and its hyperparameters
are determined by offline GP regression on a data register
containing a single revolution at a table inclination of 7.9°.

We perform tracking by KRLS-T (B2P) with λ = 0.999999,
and as a reference we include results for EW-KRLS with
λ = 0.999. Although the maximum budget of KRLS-T
is fixed at 100 bases, EW-KRLS is allowed evergrowing
memory. The results of the tracking experiment can be seen in
Fig. 8. The middle plot shows the measured noisy acceleration
and the learned de-noised accelerations. A misadjustment of
the algorithms is clearly visible after every table inclination
change, and both algorithms require around two rotations to
re-converge. EW-KRLS diverges around the instant t = 76.4 s,
where it uses a memory of M = 7640 slots. Although its
divergence can be postponed by raising λ, this would reduce
its already poor tracking ability. Furthermore, it is clear that
its evergrowing budget causes a too large computational and
memory burden when using long data sequences. KRLS-T
obtains good results. Its square error, visualized in the bottom
plot, shows that it is capable of reconverging and reaching
excellent steady-state performance after each model change.

VI. CONCLUSION

In this paper, we have addressed an issue that we believe
has been overlooked to some extent in kernel-based versions of
adaptive filtering algorithms, in particular the tracking ability

in nonstationary scenarios. Although linear adaptive filtering
algorithms can typically be used on both stationary and non-
stationary scenarios with little or no modifications, this is not
true for kernel adaptive filtering algorithms. These algorithms
are commonly designed to construct the solution to a batch
problem in an online manner, and up till this point the only
approaches that aimed to perform tracking on nonstationary
data were formulated either as an evergrowing network or
in a sliding-window fashion, both of which show numerous
difficulties.

We have introduced a Bayesian framework that unifies
existing KRLS theory and provides additional insight by
explicitly handling uncertainty, which allows to define the
concept of “forgetting” in a natural manner in the context
of KRLS. Then, we have described two sensible forgetting
techniques, and we have shown how one of them reduces
exactly to the exponentially weighted RLS algorithm when a
linear kernel is used. The presented framework naturally intro-
duces regularization into KRLS, and it provides uncertainty
estimates for its predictions, which can be turned directly into
confidence intervals. Finally, we have combined these ideas
into a concrete algorithm, KRLS-T, which works with fixed
memory and computational requirements per time step, and
allows for simple, practical implementation.

We have included different numerical experiments that
show how the proposed algorithm outperforms existing online
kernel methods not only in the nonstationary scenarios for
which it was designed, but also in stationary scenarios
(by setting its forgetting factor to λ = 1) due to its
basis trading mechanism and its more rigorous approach to
regularization.

The described Bayesian framework opens the door to a
number of interesting future research lines. First, although
the two proposed types of forgetting are well-motivated,
our proposal allows for other forgetting schemes. Moreover,
by using a linear kernel, each type of forgetting yields a
corresponding linear adaptive filtering algorithm. Finally, the

1326 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

proposed tracking algorithm and framework could be extended
to the fields of complex [27] and quaternionic nonlinear
adaptive filtering [28].

ACKNOWLEDGMENT

The authors would like to thank TTI Norte, Santander,
Spain, for providing us the data and picture used in the
experiment on inertial measurement units.

REFERENCES

[1] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA:
MIT Press, Dec. 2001.

[2] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
London, U.K.: Cambridge Univ. Press, Jun. 2004.

[3] C. Williams and M. Seeger, “Using the Nyström method to speed
up kernel machines,” in Advances in Neural Information Processing
Systems, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge,
MA: MIT Press, 2000, pp. 682–688.

[4] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
Aug. 2004.

[5] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least squares
algorithm,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[6] W. Liu, J. C. Príncipe, and S. Haykin, Kernel Adaptive Filtering: A
Comprehensive Introduction. New York: Wiley, 2010.

[7] W. Liu, I. Park, and J. C. Príncipe, “An information theoretic approach
of designing sparse kernel adaptive filters,” IEEE Trans. Neural Netw.,
vol. 20, no. 12, pp. 1950–1961, Dec. 2009.

[8] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice Hall,
Sep. 2001.

[9] A. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley,
2003.

[10] W. Liu, I. Park, Y. Wang, and J. C. Príncipe, “Extended kernel recursive
least squares algorithm,” IEEE Trans. Signal Process., vol. 57, no. 10,
pp. 3801–3814, Oct. 2009.

[11] S. Van Vaerenbergh, J. Vía, and I. Santamaría, “A sliding-window kernel
RLS algorithm and its application to nonlinear channel identification,”
in Proc. IEEE Int. Conf. Acoustics Speech Signal Process., vol. 5.
Toulouse, France, May 2006, pp. 789–792.

[12] L. Csató and M. Opper, “Sparse online Gaussian processes,” Neural
Comput., vol. 14, no. 3, pp. 641–668, 2002.

[13] M. Lázaro-Gredilla, S. Van Vaerenbergh, and I. Santamaría, “A Bayesian
approach to tracking with kernel recursive least-squares,” in Proc. IEEE
Int. Workshop Mach. Learn. Signal Process., Sep. 2011, pp. 1–6.

[14] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA: MIT Press, 2006.

[15] L. Csató and M. Opper, “Sparse representation for Gaussian process
models,” in Advances in Neural Information Processing Systems. Cam-
bridge, MA: MIT Press, 2001, pp. 444–450.

[16] B. De Kruif and T. De Vries, “Pruning error minimization in least
squares support vector machines,” IEEE Trans. Neural Netw., vol. 14,
no. 3, pp. 696–702, May 2003.

[17] Y. L. Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” Adv.
Neural Inform. Process. Syst., vol. 2, no. 1, pp. 598–605, 1990.

[18] O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The forgetron: A kernel-
based perceptron on a fixed budget,” in Advances in Neural Information
Processing Systems, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cam-
bridge, MA: MIT Press, 2006, pp. 259–266.

[19] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning RBF GGAP-RBF neural network for function
approximation,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57–67,
Jan. 2005.

[20] A. Kuh and P. De Wilde, “Pruning error minimization in least squares
support vector machines,” IEEE Trans. Neural Netw., vol. 18, no. 2, pp.
606–609, May 2007.

[21] S. Van Vaerenbergh, I. Santamaría, W. Liu, and J. C. Príncipe, “Fixed-
budget kernel recursive least-squares,” in Proc. IEEE Int. Conf. Acoustics
Speech Signal Process., Apr. 2010, pp. 1882–1885.

[22] S. Van Vaerenbergh, J. Vía, and I. Santamaría, “Nonlinear system
identification using a new sliding-window kernel RLS algorithm,” J.
Commun., vol. 2, no. 3, pp. 1–8, May 2007.

[23] W. Liu, P. P. Pokharel, and J. C. Príncipe, “The kernel least-mean-square
algorithm,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 543–554,
Feb. 2008.

[24] S. Van Vaerenbergh, J. Vía, and I. Santamaría, “Adaptive kernel canon-
ical correlation analysis algorithms for nonparametric identification of
Wiener and Hammerstein systems,” EURASIP J. Adv. Signal Process.,
vol. 1, pp. 1–13, Apr. 2008.

[25] D. Titterton and J. Weston, Strapdown Inertial Navigation Technology.
Stevenage, U.K.: Peregrinus, 2004.

[26] H. Rehbinder and X. Hu, “Drift-free attitude estimation for accelerated
rigid bodies,” Automatica, vol. 40, no. 4, pp. 653–659, 2004.

[27] P. Bouboulis, K. Slavakis, and S. Theodoridis, “Adaptive learning
in complex reproducing kernel hilbert spaces employing wirtinger’s
subgradients,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3,
pp. 425–438, Mar. 2012.

[28] B. Che Ujang, C. Took, and D. Mandic, “Quaternion-valued nonlinear
adaptive filtering,” IEEE Trans. Neural Netw., vol. 22, no. 8, pp. 1193–
1206, Aug. 2011.

Steven Van Vaerenbergh (S’06–M’11) received the
B.S. degree in electrical engineering from Ghent
University, Ghent, Belgium, in 2003, and the Ph.D.
degree from the University of Cantabria, Santander,
Spain, in 2010.

He is a Post-Doctoral Associate with the Depart-
ment of Telecommunications Engineering, Univer-
sity of Cantabria. He was a Visiting Researcher
with the Computational NeuroEngineering Labora-
tory, University of Florida, Gainesville. His current
research interests include machine learning, infor-

mation theory, and their applications to adaptive learning and tracking.

Miguel Lázaro-Gredilla (M’11) received the
Telecommunication Engineering degree (Hons.)
from the University of Cantabria, Santander, Spain,
and the Ph.D. degree (Hons.) from the Universidad
Carlos III de Madrid, Leganés, Spain, in 2004 and
2010, respectively.

He is currently a Visiting Professor with the
Universidad Carlos III de Madrid, after stays with
the University of Cambridge, Cambridge, U.K., the
University of Manchester, Manchester, U.K., and
the University of Cantabria. His current research

interests include Gaussian processes and Bayesian models.

Ignacio Santamaría (M’96–SM’05) received the
Telecommunication Engineering degree and the
Ph.D. degree in electrical engineering from the
Polytechnic University of Madrid, Madrid, Spain, in
1991 and 1995, respectively.

He joined the Department of Telecommunications
Engineering, University of Cantabria, Santander,
Spain, in 1992, where he is currently a Full Pro-
fessor. He was a Visiting Researcher with the Com-
putational NeuroEngineering Laboratory, University
of Florida, Gainesville, and the Wireless Networking

and Communications Group, University of Texas at Austin, Austin. He has
published more than 100 publications in refereed journals and international
conference papers. His current research interests include signal processing
algorithms for wireless communication systems, multivariate statistical tech-
niques, and machine learning theories.

