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KERNEL SECTIONS FOR DAMPED NON-AUTONOMOUS WAVE
EQUATIONS WITH LINEAR MEMORY AND CRITICAL EXPONENT
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SHENGFAN ZHOU
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Abstract. We prove the existence of kernel sections for the process generated by a
non-autonomous wave equation with linear memory when there is nonlinear damping and
the nonlinearity has a critically growing exponent; we also obtain a more precise estimate
of upper bound of the Hausdorf{f dimension of the kernel sections. And we point out that
in the case of autonomous systems with linear damping, the obtained upper bound of
the Hausdorff dimension decreases as the damping grows for suitable large damping.

1. Introduction and Main Results.

In this paper, we consider the existence of the compact kernel sections and estimate
the Hausdorff dimension of sections for non-autonomous wave equations with linear mem-
ory when there is nonlinear damping and the nonlinearity satisfies the critical growth
condition.

Let © be an open bounded set of R? with a smooth boundary 9. We consider the
following non-autonomous wave equation with linear memory term:

2 oC
Tt h( 2y~ k(0) A - / K(s) Ault - s)ds+f(u,t)=g(x.1).2€Qt>7,7ER,
’ 0]

u(z.t)|zean =0, tER,
u(x,t) = ug(x,t), €, t<T,

(1)
with k(0), k(oo) > 0 and k'(s) < 0 for every s € RT, where u = u(z,t) is a real-valued
function on Q x [r,4+00), 7 € R, u(t — s) = u(z,t — s), h(v) € CHR;R), f(u,t) €
CHR x R;R), g(,t), gi(",t) = £g(-t) € Co(R,L*(2)), and Cy(R, L*(2)) denotes the
set of continuous bounded functions from R into L%().
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Equations of this kind (1) occur in the description of viscoelastic solids with fading
memory and dissipation due to the viscous resistance of the surrounding medium, in the
presence of a nonlinear external force, of which u represents the displacement vector.
Particularly, Eq. (1) can be regarded as a model of a viscoelastic membrane, where u
is the vertical displacement. If k' = 0, (1) reduces to a damped non-autonomous wave
equation (cf. [1]).

Following the idea of Dafermos [3], we introduce a new variable

n(x.t,s) = u(z, t) —u(z, t —s). (2)

For simplicity, we set u(s) = —k’(s) and k{oo) = 1. Setting v(z,t) = ws(z,t), Eq. (1) can
then be transformed into the following three-dimensional system:

Uy = v,
vy = Au+ /0 wn(sy An(s)ds — h(v) — f(u,t) + gz, t), (3)
Ne =V —1s

with initial-boundary conditions

u(z,t)[ze00 =0, t2>T,

n(z,t,8)|cco0 =0, s€RY, t>r,

n(z,t. ) 0, z€Q, t>r

w(z,7) =uo.(z), T€EQ, 4)
v(z, ) = (l‘), r €,

n(z, 7. 9) = nor(z,5), (z,8) € X x RY,

where we set
ugpr(z) = ug(x, 7),
0
vO'r(x) _uO( )|t:'ra

ot
Nor (2, 8) = uo(z, 7) — up({z, 7 — ).

We assume the memory kernel u satisfies:

(F1): p€ CHRYYNLARY), u(s) >0, i/ (s) <0,Vs € RT.

(Fa): 1/(8) +du(s) <0, Vs € Rt and some § > 0.

We denote by H™(2) the Sobolev space consisting of all functions for which, up
to mth-order, generalized derivatives are all in L2(Q) and H}(Q) = {g € HY(Q) :
g(x)|zean = 0}. Let A = —A with Dirichlet boundary conditions, D(A) = H2(Q) N
H} (). We can define the powers A" of A for r € R. The space Vo, = D(A") is a Hilbert
space with the inner product and norm:

(U, 0)or = (A", AT0), ||ul|3, = (A"u, A7u).
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In particular, V_; = H™Y(Q), Vo = L?(Q), Vi = H}(Q) and
(AY 2y, AY %) = (Vu, Vv), Vu,v € HHQ).

The injection V,, — V,, is compact if r; > ro.
In view of (Fy), let the “history space” ® = L2(R™, Hj(§2)) be the Hilbert space of
H}(Q)-valued functions on R*, endowed with the inner product and norm

[o0]

mmn= [ w(s)(Vn(s), Vm(s)ds., [Inls = mmn= [ u(s)(Vals), Tn(s))ds,
0 0
Vnﬂ?l € H.

The linear operator —ds on R is of domain

D(-0;)={ne H}L(R‘F,Hé) :n(0) =0} where
HY(R*, Hj) = {n:n(s), 8n € LL(R", H})}

which generates a right-translation semigroup (cf. [2]).
Introduce the Hilbert space

E=H}Q) x L*(Q) xR

with the inner product:

(ZI»Z2)E = (’LLI,UQ)Hé + ('Ul,’UQ)L2 + (n17n2)§R7 VZ1 = (uivv‘bni) € E, 1= 1a2

Setting the triplet Z = (u,v,7)7, then the system (3)—(4) is equivalent to the following
initial value problem in the Hilbert space E :

{Z,:L(Z)+N(Z,t), (r,s) e Qx RY, t>r, 5)

Z(t) = Zor = (uoT(x),vo.,.(a:),nOT(x,s))T, (z,s) € 2 x RT,

where

v 0
L(Z)= (Au+f0°° p(s) An(s)ds) , N(Z,t)= (—h(v) — f(u,t) +g(w,t)) , (6)

v — 1 0

wh [ ulenls € HH@) N H(©),

v € Hy(Q), n(s) € Hy(RY, Hy(Q)), 1(0) =0

D(L)={Z€E

Let f(u,t) = fi(u,t)+ fa(u, t), Gi(u,t) = fou fi(r,t)dr, i = 1, 2. We make the following

assumptions on functions G;(u,t), fi(u,t), i =1, 2, h(v):
(F3):
Go (u, t)

u2

filu,t)u >0, lim inf

[u]—+o0

>0, Vu,t€eR.
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(F4): There exist positive constants co; > 0, i = 1,2, such that

wfi(u,t) — coGi(u, t) >0

5 >0, VYu.teR.

lim inf
|u]—+> U

(Fs): Tiere arc constants ¢ > 0 and sufficient small v > 0 such that

G (ut) <G (wt), G (u,t) < yGo(u,t) +co, Yu.t € R.

(Fg): fi(u,t) € C*(R x R, R), f{ ,(0.t) = 0 and there exists a constant ¢; > 0 such
that

Il )] <er(L4[ul). |fl(ut)] <er(1+|ul®). Yu.t€R.

1o

(F7): Therc exists a constant ¢; > 0 such that

|fo () < ea(1+ |ulP). |f5 (ut)] < a1+ |ulP™). 0<p<2, Vu.t€R.
(Fg): There exist two positive constants «, /3 such that
RO)Y=0, 0<a<h'(v)<pB<+oc. YveER.
(Fg): The partial derivatives of G ,(u,t) = (,%G’i(u, 1), i =1.2 and g,(x, 1) satisfy

Lelut) + Gh (ut) — gi(x, t)u < 0,Vu. t € Rz € Q.

(Fig): For M > 0, there exist ¢3 = c3(M) and §; > 0 such that for any Vu;, us €
Hi (). Nurlly, [Juzlly < M,

[fo(rst) = folua )l Lmpoy.c2y) < cs(M)|Juy — usl|f'.t € R.
(F11): For Al’ > 0, there exist ¢g = c4(M’) and 83 > 0 such that for any vy, v € L?(£2),
Hoillos [lvallo < MY,

||h/(/l«71) - ”/(’1/’2) L(L2().L2(2) < (14(]\[/)||'U1 - ’“2|l(0)2~

Where {[-[[o, [I-]]1 denote the norms of L2(§2) and Hg(§2), respectively, ||||L(x.y) denotes
the norm of operator of L(X,Y} (the space of linear continuous operators from X into
Y), fi, is partial derivative with respect to ¢, and the inner product in L3(9) is denoted
by (-, ).

The exponential decay of the sciigroup associated to the system (5) with N(Z,#) =0
has been investigated by Z. Liu and S. Zheng and others; see [4-5). When the damping
is linear (h(v) = av) and the nonlincarity satisfies the noncritical growth conditions
(fi = 0), for the non-autonomous (or antonomous) system (5) with f independent of ¢,
V. Pata and A. Zucchi et al. proved the existence of its (uniform) global attractor and
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obtained an estimate of the Hausdorff dimension of attractor; see [1, 2] and references
therein. For the non-autonomous system (5) where &/ = 0, Le., (5) reduces to a non-
autonomous semilinear wave equation, V. Chepyzhov and M. Vishik in [6] proved the
existence of its kernel sections and obtained an upper bound of the Hausdorff dimension
of section. We observed from their estimates of [1, 6] that the upper bound of the
Hausdorff dimension increases as the damping a grows and tends to infinity as o tends
to positive infinity. From the physical intuition of Eq. (1), the Hausdorff dimension of
attractor (or section) should be smaller when the damping grows. If k' = 0, h(v) = av
and f(u.t) = f(u), g(z,t) = g(x) are independent of ¢, then the system (5) reduces to an
autonomous semilincar wave equation with linear damping for which the existence and
estimate of the Hausdorff dimension of the global attractor have been widely studied; see
[7-10]. Here it is worth mentioning that the author in [9] made a mistake in the proof of
the uniform boundedness of the compact component of the semigroup. Later, Y. Huang
et al. in [10] gave a correct proof.

In this paper, we generalize the existence and estimate of upper bound of the Haus-
dorff dimension of the kernel sections (or global attractor) in the previous works to the
process gencrated by system (5) with &' # 0 when there is a nonlinear damping and the
nonlincarity has a critical growth exponent. A more precise upper bound of the Haus-
dorff dimension for the kernel sections is obtained by carefully estimating the positivity
of operator in the corresponding evolution equation of the first order in time. According
to our estimate of dimension, in the case of autonomous systems with linear damping,
the kernel of process is just the global attractor, and the upper bound of the Hausdorff
dimnension decreases as the damping grows for suitable large damping. The main results
are the following theorems.

THEOREM 1. If the functions p(s). f(u.t), and h{v) satisfy conditions (F1)-(Fyg), then
the (mild) solutions of problem (5) exist globally and define a process

Ut.7): ('u,()T.'u()T.’z/()T)T — (u(t),'z,v(f).n(i))T. EFE—-FE, t>71 (7)
which possesses a non-empty kernel

K ={Z():Z(t). t€ R. is a solution of (3). ||Z(t)||g < Mz. Vt € R}

consisting of all bounded complete trajectories of the process, and the kernel sections at
times s € R :

K(s)={Z(s): Z(-) € K} (8)
are all compact. Moreover, let
= = )
T 34 ka4 2/A + /B Fra+ 3202 - 12ka’
2 1 )
K= M >0. o=min{=,-}.

2°4

4]
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If (F10)-(F11) hold, then the Hausdorff dimension dy of K(7), 7 € R satisfies:

+1,  (10)

3
1 — 2a0 Ak Bo
dy < mi eEN, =) W23 <
ysmn e, L3 <2 _[(2a0>

where {\j}jen 1 0 < Ay < Ap < -2 < Ay < ---, are the eigenvalues of operator —A
with the Dirichlet boundary condition on €2, 0 < vy < min{2 — 2,1}, ¢+ € (§, %), p is
as in (F7), k is a positive constant independent of 7, ¢’ > 0 is a constant only depending
on the shape of  and vq, and [¢] denotes the largest integer which is less than or equal

to £.

THEOREM II. If h(v) = aw is linear, the functions f, g are independent of ¢, and (Fy)-
F;1 hold, then the process U(t,0) associated to the autonomous system (5) with 7 =0
is a semigroup

U(tvo) = S(t) : (UOsUOanU)T - (U(t)ﬂ’(t),n(t))Tv E— Ea t Z 0.
The kernel section K(0) = © is just the global attractor of semigroup {S(t),t > 0}, and

for any fixed a9 > 0, if a > ag, then there exists a constant a; > 0 such that for any
@ > a1, the Hausdorff dimension dg (©) of attractor © satisfies:

3 1 - — [0230)]
dg(®) <min< m|m € N, _Z)‘j vy o Q€0
m ko
ik ¥
< <—1°> +1
07301}
3 1\
) =
< [(C'Alko(“‘z‘ + o4 —)) +1, (11)
o a A

where kj is a positive constant which is independent of «, and

20

o = . (12)
3+ ka+a?/A + /(3 + ka+a?/A)? — 12ka
Particularly, if
koK
azmax{al, #}» (13)
2(MT = ko)

then dy (©) = 0.

It is easy to see that dy in (9) is uniformly bounded. The upper bound in the right
side of (11) is a decreasing function in « for large damping a. Therefore, the asymptotical
behavior of (mild) solutions of system (1) ((5)) can be described by a finite number of

parameters.
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2. Existence and Uniqueness of Solutions.

In this section, we present the existence, uniqueness, and continuous dependence of
(mild) solutions of the initial problem (5) in E.

Assume that conditions (F;)—(Fg) hold. We know from [4] that the operator L in (6)
is the infinitesimal generator of a Cg-process e’t of contractions on the Hilbert space E
under assumptions (F1)—(F3).

By the embedding relation H}(2) — LS(Q), for any VZ,, Zy € E, ||Zi||g < b,
[|Z2|l|g < b,and t € R,

IN(Z1,t) — N(Z2,)l|% <||h(v1) — h(u)Il5 + | f(ur,t) — fluz,t)I[3
<B?||v1 — a3 + e5(b)[Jur — ua|[}
<Lo(b)||Z1 — Z»]|%,

that is, the function N(Z,t) : Z = (u,v,n)T — (0, —h(v) — f(u,t) + g(z,t),0)7 is locally
Lipschitz continuous with respect to Z from F into E and it is easy to see that N{(Z,t)
is continuously differentiable from E x R — E. By the standard theory of semigroup of
operators concerning the existence and uniqueness of solutions of evolution equations in
Chapter 6 of [11], we have the following Lemma.

LemMA 1. Consider the initial value problem (5) on the Hilbert space E.
(i) For any Zy, € E, there exists a unique function Z(-) = Z(-, Zo,) € C(|7, +x); E)
such that Z(r, Zy,) = Zy, and Z(t) satisfies the integral equation

t
Z(t) = b0z, 4 / DN (Z(r), r)dr, ¥t > T, (14)

In this case, Z(t) is called a mild solution of (5).

(i) If Zo, € D(L), there exists Z(-) € C([r,+0o0); D(L)) N C*([r,+o0); F) which
satisfies (5).

(iil) Z(t, Zo-) is jointly continuous in t and Zy,.

The local existence of mild solutions of (5) in E is obtained from Theorem VI. 1.4
and Theorem VI. 1.5 of [11], and the global existence of solutions can be obtained by the
boundedness of solutions in Lemma 3 below.

For any ¢ > 7, we introduce a map U(t,7) : Zor +— Z(t,Zyr), where Z(t,Zy.) is
the mild solution (or solution) of (5}, then {U(t,7),t > 7} define a strongly continuous
process:

U(t, T) : (uOTv Vor, nOT)T - (u(t)’ v(t)’ n(t))T’ t>T (15)
on E (or D(L)), which fulfills the following properties: (i) U(¢,7): E — E (or D(L) —
D(L)) forallt > 7, 7 € R; (ii) U(7, 7) is the identity on E (or D(L)) forallt > 7, 7 € R;
(iii) U(t,s)U(s,7) = U(t, ) forallt > s > 7, 7€ R; (iv) U(t,7)Z — Z as t \, 7 for
all Z € E (or D(L)), 7 € R; and (v) U(t,7) € C(E,E) (or C(D(L),D(L)) for all t > T,
TER.

In this article, we will prove the existence of non-empty compact kernel sections at
times s € R :

K(s)={Z(s): Z(t) is a solution of (5), ||Z(¢)||lg < Mz, Vt€ R} (16)

for the process {U(¢,7),t > 7} in F and give an upper bound of the Hausdorff dimension
of the kernel section K (7).
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3. Uniform Boundedness of Solutions.

u 100 u U
p=lw]=]¢ 1 0 v|=|v+eu |, an
n 0 01 i 7
where ¢ is chosen as in (10), here pu(s) # 0. The initial problem (5) is equivalent to the

following system in Hilbert space E :

(p + H(SO) = F(Qp,t)v @(T) = (UOTa'UO‘r + EUOTvnOT)Ta t 2 T, TE R7 (18)

where
fu — w
H(p) = | Au+c?u—ew+h(w—cu) + [ u(s)An(s)ds |, (19)
EU— W+ Ns
0
F(('pvt) = _f(u’t)+g($5t)
0

In this section, we suppose the assumptions (F;)-(Fg) hold. Firstly, we present a
positivity property of the operator H(y) in (19) which plays an important role in this
article.

LeEMMA 2. For any ¢ = (u,w,n)T € E,

(Hlg)o)e = Sl + Il) + il + 2wl 3 (20)
Proof. Tt is sufficient to prove (20) for ¢ = (u,w,n)T € D(L) since D(L) is dense in
E. Let ¢ = (u,w,n)T € D(L), from (Fg), (19), and the Poincaré inequality:
Milwlly < [lwllf,  Yw € Hy(Q), (21)
we have that
(H(p)9)e — 5 (llullf + lwl) - 5 llwll3

3 ol -

€
2

g 1 [
[[ally - Hfewllo + —/ u(s)dl|Vn(s)ils + e(u,n)z.
0

£ (87
> —|ul|? + (= —
2 Sllulli + (5 5 5 -

Integration by parts and (F3) yields

/0 ()l Vn(s)|E = — /O () n(s)12ds > 8117113,

K é
el mn > ~5ellull? ~ Gl
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Simple computation shows that

£

52[)»2

£ Koy 3
(3= 5005 2)~4)\1~ (23)
Thus by (22)-(23), we have that
3 @
(H(@),9)5 — 5 (1l + 1w - 5||w||8
£ K a 3
> (5 = 5l + (5 = il = Sl -l + 7l
)
2 ZH’IH%%
The proof is completed. O

It is easy to check from (17) and Lemma 1 that for any initial data ¢(7) € E, there
exists a unique continuous mild solution ¢(t) € C((7,+00), E) of system (18) which
defines a process

U(t,7) : (ugr, vor + €Uor, or) T — (u(t), v(t) + eu(t),n(t)T, t>7 (24)

from E into E, and Uc(t,7) = R.U(t,7)R_¢, where
100
Ro=|e 1 0}: (a,b,c)T — (a,b+€a,c)T
0 01

is an isomorphism of E. So we need to consider the equivalent system (18) only.

LEMMA 3. If 2y < emin{co1, coz}, then there exists a ball By of E, By = Bg(0,79),
centered at 0 of radius 7o > 0 such that for any bounded set B of E, there exists To(B) > 0
such that the mild solution ¢(t) = (u(t), w(t),n(t))T € E of (18) with ¢(r) € B satisfies

lle®)llz = (lu®I} + [w®l + In@lIR)? <o, vt =To(B) = 7, (25)

in which w = u; + eu and ry is independent of 7 € R; that is, the ball By = Bg(0,7¢) of
E is a uniformly bounded absorbing set of the process {U.(t,7),t > 7} in E with respect
tor € R.

Proof. Let

G(u,t) = /frtdr—Gl(utH—Gg(ut G(u,t) /Guz‘
Let ¢ = (u(t),w(t),n(t))T € E, t > 7, be a mild solution of (18) with initial value

o(1) = (ugr,vor + €lgr,nor)T € E. Taking the inner product (-,-)g of (18) with ¢ =
(u(t), w(t),n(t))T in which w = u; + eu, we find

Q.IQ

[||w||E+QG(u B+ (H(p), 9) 2 — Gylu,t) +&(f (u, t),u) = (g, 1), w), ¥t > 7. (26)

1
2
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By (F3)-(Fs), we have
Gi(u,t) >0, Gi(u,t) <yG(u,t) + co,

fu,t) — c6Glu,t) >0

im it S 500 i e . > 0,

Yu € HA(Q), Vi> T,
[uf =400 u? [u|—+o00 w o (€) 2

where ¢g = min{co1, coz}. Thus, there exist two positive constants k;, k2 > 0 such that

G(u,t) + lulf 4k >0, Yuec Hj(Q), vt>r,

4+406

— 1
u, f(u,t)) — c6G(u, t) + = ||ul]? + k2 >0, Yu€ H}(Q), Vt>T. (27)
4 0

Thus, by v < 3¢ and (20),

— 1 1 «
(H(9),9) = Gyl t) +2(f(u,8),0) 2 5py — (ekaco + kae + coll) + Swlld, vt 27,
where

— 1
v =l¢llE +2G(w,t) + 2k1 > SllolF 2 0,

p = min(§, g, 5ce), Q] = [, da. Hence,

d 1 1
prL +py < EHQH(Z] + 2(§5k106 + kae +co|Q]), Vt 2>, (28)

where |[g]|o = sup,er ||9(x, t){|o. By Gronwall’s inequality, we have the following absorb-
ing property:

o)1 <2y(1)
2(1ekyice + kae + co|Y)
o

1
§2y(T)e_p(t_T) +2 (gf—)HgH(Q) + > , Vt> T

(29)

Choosing 73 = 4 (aLpHg”g + 2(%Eklc“+pk25+c"’m)> (independent of 7 € R), by (29), the

proof is completed. O

COROLLARY 4. For any initial value ¢(1) € By, i.e.,

eIz = luor|F + llvor + cuor |5 + llmor |l < 73, (30)

there exists a constant r; = 71(rg) such that the mild solution of (18) (t) =
(u(t), w(t),n(t))T satisfies ||o(t)||g < 71, VE > T.




KERNEL SECTIONS FOR DAMPED NON-AUTONOMOUS WAVE EQUATIONS 741

4. Existence of Compact Kernel Sections.

To prove the existence of non-empty compact kernel sections for the process
{U(t,7),t > v} in E, we first present some definitions and results from [6].

DEFINITION 5. The kernel K of a process {U(#,7)} consists of all bounded complete
trajectories of the process {U(t,7)} :

K={Z(:): Z(t), t € R, is asolution of (5), ||Z(t)||lg < Mz, Vt€ R} (31)
and the section K(s) C E of the kernel K at time s € R is

K(s)={Z(s): Z() € K}. (32)

DEFINITION 6. A set A C FE is said to be a uniformly attracting set of a process
{U(t,7)} if for any bounded set B C E,

supdistg(U(t +7,7)B,A) - 0 as t — 400,
TER

where disty denotes the Hausdorff semidistance in E, defined as

distg (B, B2) = ZflelpBl Z;felfBz 12, — Z3]|E-

DEFINITION 7. A process {U(t,7)} possessing a compact uniformly attracting set is
said to be uniformly asymptotically compact.

LEeMMA 8. (cf. [6, Thm 2.2].) Let {U(¢,7)} be a uniformly asymptotically compact
process acting in a space F, with a compact uniformly attracting set A C E. Each
mapping U(t,7) : E — FE is assumed continuous. Then the kernel K of the process
{U(t, 1)} is non-empty, the kernel sections K (s) are all compact, and K(s) C A.

In this section, we will prove that the process {U.(¢,7),t > 7} is uniformly asymptot-
ically compact in F, that is, {U.(t,7),t > 7} possesses a uniformly attracting compact
set in E with respect to 7 € R.

Assume conditions (F;)—(Fg) hold. Let ¢(¢) (or u(t)) be a (mild) solution of system
(18) (or (1)) with the initial value ¢(7) = (ugr, vor + €uor,Mor)T € Bo, i-e., ||p(T)||% =
lluor |12 + [Jvor + €uor||2 + ||no-||% < 2. We decompose u(t) into u(t) = ur(t) + un(t),
where up(t) and up (t) satisfy, respectively,

uL,tt + h(ut) — h(UN,t) — k(O)A'U,L —_ /Ooo k/(s) A ’U,L(t - S)dS + fl(UL,t) = 0,

UL($,t)|z€aQ = Oa te Ra (33)
ur (@, 7) = wor (@), upi(x,7)=vo-(z), z€Q,
ur(z,t) =up(z,t), z€Q, t<T,
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and

un.e + hlun ) — k(0)Auy — /000 K (s) ANun(t — 8)ds + f(u,t) — filup,t) = glz,t),

un(z,t)|zcon =0, teR,

un(z,7) =une(z,7) =0, z€Q,

un(z,t) =0, z€Q, t<r
where ugp 44 = %‘a Ur s = ag, .

LEMMA 9. There exist two positive constants Mi(rg) and o1(rp) such that
lur (O + ur (O + [ (OIIF < Mi(ro) exp(=or(ro)(t = 7)), Vt=7,  (35)

provided that v in (F5) is small enough (see below), where ;. (x,t,8) = ur(z, ) —up(z, t—
s).

Proof. Let np(x,t,8) = up(2,t) —up(z,t —s), wp = upt +eur, Zp = (vp,wr, L)’
Then (33) can be written as

Zrs+Hi(Zy) + FL(Zp,t) =0,  Zp(1) = (uor,vor + €Uor,Mor)” € Bo, t>7, (36)

where

cuy — Wy,
Hp(Zy) = | Aup +e%up —ewp + h(ue) — h(uny) — [y pls) Anp(s)ds |, (37)
UL — WL +NL,s

0
Fr(Zp,t) = (f1(uL,t)) .
0

Write Gy (ur,t) = fQ G1(up,t)dz, similar to Lemma 2, for any Z;, = (up,wr,n.)T
E,

£
(Hp(ZL),ZL)E 2 §(||UL||¥ + lwell3) + ||77L||>n + = ||wL||o’

and similar to Corollary 4, there exists a constant ¢; = ¢7(rg) > 0 such that
NZLF = lu@F + llwe e OF +Incllk < cF, Ve

From (F3) and (Fg), we deduce that f1(0,¢) = 0 and |f1(u,t)] < cs(Jul® + |u|) (Vt € R);
hence for every u;, € H3(Q), by the Sobolev embedding H}(£2) C L*(€2), we have

0 < Gi(ur,t) < eolllucllis + [lucllf) < erolro)lluclli, (37)

_||“L||1 =2 Gi(up,t), VteR.

2¢; (o)
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By (F3),

e(filur,t),ur) > 0.
Choosing v < m in (F5), and taking the inner product (-,-)g of (36) with Zp =
(up,wr,n)T, we obtain that Vt > T,

d 2 — € 2 oy 0 9 € =
- b hd - < 0.
dt[”ZL”E +2G1(ur,t)] + 2(||uL||1 + [lwello) + 2||77L”§R + [2010(7,0) YG1(ur,t) <0
Thus,
d — _
E[HZLH% +2G:(ug, t)] + o1(ro) [l ZLlE + 2G1 (ug, 1)) <0, Vt >,
where )
£
= Linge, 6, [—5— 41 38
a1(ro) len{& [2010(7,0) 7]} (38)

By Gronwall’s inequality, we have
ZLlE <[1ZL(NIE + 2G1 (ur(7), 7)] exp(=01(ro)(t — 7))
<My (ro) exp(—o1(re)(t — 7)), Vi>T, (39)
where My (rg) = r2(1 + 2c10(rg)). The proof is completed. a
LEMMA 10. There exist constants Ma(rg) > 0 (independent of 7) and vy € (0, min{5 -2,
hoeeld, %) such that uy(t) satisfies
147 2un (O + 1A un (O + 11 21 € Ma(ro), VE 27, (40)
where p is as in (F7), nn(z,t,8) = un(z,t) —un(z,t — 8).
Proof. un and ny satisfy the following equation with zero initial value conditions at
timet =7 € R:

un e+ hluny) + Aun + /000 w(s)Any(s)ds + f(u,t) — fi(ur,t) = g(x,t), t>7, (41)

where u = ur + up is the solution of (1).

Set wny = uny +cun = NN + NN,s + Eun, Where ¢ is as in (10). Taking the inner
product of (41) in L?(Q) with A% wy = AQ"(uN,t +euy) = AQ"(nN,t +NN,s +Eun), we
have
1d
535 (142 un 414" B+l s +2 [ 000~ Awr, )=, 0] 4% s

)

—+ €||A"+1/2uN||(2) - 6|]AVUJN||(2) +e2(A%upn, A%wy) + (AYh(wy —eun), A¥wn)

1 o0
3 [ we) A

+ 6(/000 M(S)AﬁN(S)dS,A%UN) + €/§z[f(u’t) — filur,t) — g(z, )] ’AQUUNd:L‘

+ /Q[gi(x,t) — fle(ut),t) = foa(u(t),t) + f o (u(t),0)] - A% undz

- /52 ([f{,u(u’t) - f{,u(u[mt)]ut + f{’u(UL,t)UN,t + fé,u(u’ t)ut) ' AQUuNdx

=0, t>T.
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Following {7, 8], we introduce the intermediate Sobolev spaces H(§2) , v € (0, 1) with
the standard scalar product:

S // z1(x) — 21(y)) (22 (fﬂ)*22(y))d$dy. (43)
QJ0

2~ g%

Setting 0 < v < I, we have HY(Q) = D(Az) = H ()" 8l Thus, by (Fg) and the

mean value theorem, we obtain that
(A"h(wN hae EUN), AU’(UN)
= (h(wy —eun), wy)

(h(wn(z,t)—eun(z,t)) —h(wn(y, t) —cun(y, 1)) (wn(z, t) = (wn(y, 1))
* /Q Q |z — y|3+4v oy

K (& )wn,wy) —e(h' (&)un, wn)

/ / R (&) (wn (2, t) —eun(z,t) - N(y,t)+£uN(y,t))(wN(x,t)—(wN(y,t)))dxdy
Q

|I _y|3+4u
> a ( W W) / /Q wn(z,t) — wN(l|/; 1)(1|lgziiif,t) - (wN(y,t)))dxdy>
—ef < (un,wn) +/ / un(2,) “UN(yI; ?(;T?ig?t) - <wN(y’t)))d:cdy>

= o||A"wn |2 — eB(A%un, A¥wy).
Thus, similarly to the proof of Lemma 3, we have
e||AV T 2un| |2 — g|| A w2 + e2(AYun, AYwn) + (AYh(wy — eun), A¥wi)
by [ A g 4 e[ o A A% un) (44
> A unl B+ (5 + DlIAwE + 1AM a3

From Corollary 4 and Lemma 9, we know that ||un(¢)]|1 and |fun ¢(¢)}|o are uniformly
bounded, i.e.,

Hunw () < ei1(re),  une(B)llo < cr12(re), VE>T. (45)

We recall the embedding relations:
H(Q)c H*(Q) if vy >wve and HY(Q) C LYQ), where - =
q

From (Fg)-(F7), we obtain that

/Hf (u,t) — fi(ur,t) — gz, t)] A% un|dz

< |If(u(t),t) — filun(t),t) — gz, Hllo - [[A*un(t)]lo
<cis(ro), Vt=T (47)
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and by gj(z,t) € Cy(R, L*(Q2)),

/Q['gé(xvt)l+|f{,t(u(t)vt)|+|fé,t(u(t)vt)|+|f{,t(uL(t)v lA* un (s)ldz < cra(ro), Wt > 7.

(48)

Now we estimate the last term of the left-hand side of (42) which is similar to the
proof of Proposition 2 in [10]. Choosing two positive numbers é and k such that

N

v 2v

5 6 1 11 1 5

- - -_— = 1 = = = — - === - —

676 TR " 273 FT6 3 (49)

by Hélder’s inequality and (Fg), we have
11 (er (&), )un e ()] s <es||(Jur 1L+ Jur (@))un, (D5
<cigllur(®)]lze - [I(L+ lur )DL - Nune (O]l pox
<ar(ro)llun (Bl - ([|A"wn(s)llo +&), VE=T.
(50)

Similarly,
(AL (), 8) = £ u (e (), 0)ue(B)l| s < crs(ro)llue(®)llo- [| A" 2un ()]0, Vt> 7. (51)

On the other hand, we have

)- (52)

z- < ero(ro)l[ur(@)llo, Ve € (

[ =

12,0 (u(t), )ue (t)] ) g??‘_p

Let 6 < ¢, then

I1f2,0 (u(t), el s < caoll fo,n(wlt), ) (B)llLe < ear(ro)llue(®)llo, VE27.  (53)

Again,
1A% un ()] = ||A*"2 A*Bun (t)||Lr < el A" Zun ()]0, VE> T,  (54)
where % =1- %.
Set v = min{5 — 2, 1}, here . € (§, 3—_%). By the above inequalities and (42), for all

t2>T,

d «
L3t + pt) + 2| A w2
dty()+py(t)+21| wn|lo
< caa(ro){[luello - 1A 2un|lg + Jurll - [|A"wnllo - A" 2unlo

1
+{lue ()]0 - ||A" " 2unllo + €} + ec13(ro) + c1a(ro).

By the Young inequality, we have

1 3 1 [
lulls - [|A"wnllo - [[A"F2unllo < -2—al|uL|I? lAYF Tun ([ + §IIA“wN|l8
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and
(1A Zup |2 + 1),

DO =

1
lue(®)llo - 1A 2unllo = [lwe(t)]lo -
thus,
v+ i v+l 3 it 1
[luello - A" * Zun|[f + lue(®)llo - 14" 2 unllo = 3 llue@)llollA +2uN||(2)+§ |fue ()]l

hence,

d_ .. B 1 .
ay(t) + gy(t) <ezq(ro)[||utllo + a||uL||f] A" 2un|[5 + cas(ro)||uello + c26(ro)

1 -
<cor(ro)[[|utllo + a||UL||%]y(t) + cos(ro)l|usllo + c26(r0), VEt >,

(55)
where p = min{e, %} and
§(6) =5 1A 2un 3+ 1A 0l + 11w 2 2
+ / [f(u,t) — filur,t) — g|A% undz + c13(ro)
>0, Vi ZQT. (56)

By applying Gronwall’s inequality to (55), we have that for any t > s > 7,

“t ¢ "t t rt
§(t) < g(s)e™ls ™ 4 o (o) / Ilus (€)lloe™ e ™ de 4 co6(ro) / e~ Jemndrge,
S k-3 (57)
where . 1
m(r) = g = ea1(ro)[llue(r)llo + ~Ilur (M)I1F] (58)

Taking the inner product of (5) with Z = (u,us,n)T € E in E, by (F2) and (Fg), we
obtain that

1d

5 LUl + llueld + 1l + 26w, 1) — (9(a,0), )
)

+ Sl + el = [ Gifu.0) = gi(a yuld

<0, Vt>T.

From Corollary 4 and (Fg), it is easy to obtain that

+oc
o [ )R < eantro) (59)

We know from Lemma 9 that

lur ()17 < My(ro)e™ 0= vt > 7. (60)
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Thus, for any t > s > 7,
F;
/ m(r)dr = / (— ~ cxrlro)llue()lo + Llfun(r >||11)
t
/ =1 (ro)(r=7) g,

zg(t 3)"%9—)\/5———8—%- (61)
So,
/te—fg‘m(r)drd€ <eca1(ro)/ / —(§ (-0 2R VE=g
T r
—eean(ro)/a / H(V/a(e—¢)— 2Ly = dgbo) g
< eca2<’°>/“;1+Mx/§F] VE> T (62)
Tia , V>

(63)

—2]§m(r d'rd < 634(7‘0)/0‘14_M 2m vt > 7.
¢ [ Jra ], vt

Similarly,

By (47), (56), and the zero value conditions uy(z,7) = un ¢(z,7) = nn(z,7) =0,z € Q

]A2”uNdx + c13(ro) < 2¢13(ro)

at t =T,
- / f(u,t) = fi(ur,t) -
Q
From (57)—(63), for t > 7, we have
y(t) <g(r) 2 (t—r)+ <28lz0) F7y cantr)
m(?‘)d'rd{) + ¢ (7'0) / m(r)drd€
%

resstro) ([ ttoniae) " ([ e
) (ro) <_ec84(ro>/a[1 " 9’:’}%\/27})

czg(rQ /F—=a <30(rg
(t T>+ t— T+ozo‘1 (ro) +C36

<2c¢13(rgle” 2
+033(7‘0)\/2—7;]
Voo
4 jesstror/ap 4 35(10) o
[& [1+? 271']

4

+ —~C26(7"0)6032(T0 /a[l
2
por )

= (‘TO)) + c36(70) (of
(64)

ap

caplrg)
<2¢13(rp)ese1to) <1 +e
c33(ro) /5=
+ —cg6(ro)es2(m)/ a1 4 2220 /on),
Voo
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Hence for any t > 7, we have

AT 2un |18 + |A w5 + w12 2041
< 2g(t)

2¢2,(rg

£300r0). 2¢28(r0) 4 cs5(ro) :
< derg(ro)esmitol [ 14 e op + 2¢36(ro) | —zect (0ol 4+ 2222V on
< dez(ro)esmiCo < ; ) 36(r0) <ape [ o ]

8 c33(ro) m—
+ 1626(T0)6632(T0)/a[1 + ———V27
P V P& ]

= Mj(ro).

The proof is completed. [

COROLLARY 11. Let ny{(z,t,s) and vy are as in Lemma 11, then ||6s77N||,21,2,,0 < Ma(ro),
Vit > T
Proof. It is directly obtained from (40) and

un(z,t) —un(z,t—s), t—s>T,

77N($»t73) = { (65)

uN(CL’,t), t_SST»

unt(z, t—s), t—s=>r,

0, t—-s<T.

nN,s(z,t,8) = {

To obtain the existence of a uniformly attracting compact set for the process U, (¢, )
defined by (18), we need to use a Lemma from [1]. O

LeEMMA 12 (cf. [1, Lemma 5.5]). Let Xy, X, X; be three Banach spaces such that
Xo — X — Xy,

the first injection being compact. Let ¥ C Li(R”L, X) satisfy the following hypotheses:
(i). Y is bounded in LZ(R*, Xo) 0N H(RT, X1).
(i1). sup,cy lIn(s)Il% < U(s), Vs € RT for some | € L (R").
Then Y is relatively compact in Li(R*’7 X).
Let By C E be the bounded absorbing set for the process U.(t,7) in E as in Lemma
4. Define a set B as

B = UpeB, Utsr In(z,t,8), ¢ = (u,w,n)T is solution of (18), 7€ R. (66)

From Lemma 9 and Lemma 10, B is uniformly bounded in Li(R’L,VHgUO) N
Hi(R+,V2yO) with respect to 7 € R, where vy is defined by Lemma 10. It is easy
to see from (65) that sup, 5 g+ [[Vn(s)l|3 is bounded. Thus we have that the set B in
(66) is relatively compact in L2(R*, Hj(R)).
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LEMMA 13. Suppose the conditions (F;)—-(Fg) hold; then the process {U.(t,7),t > 7}
associated with (18) possesses a uniformly attracting compact set A C E with respect to
T € R, i.e., the process {Uc(t,7),t > 7} is uniformly asymptotically compact in E.

Proof. In view of Lemma 10, let B, be the ball of V},2,, x Va,, of radius Ma(rg) and
set

A=B, xBCE. (67)

From the compact embedding V) 1.2,, X Va,, < HE(2) x L#(Q) and the relative compact-
ness of B in L2(R*, H§(9)), A is compact in E. Now we show the attraction property
of A. Let B C E be a bounded set, with r = sup ¢ g ||||g and let t* = t*(B) such that
Uc(t,7)B C By, Yt > t*. Let t > t* and tg = ¢ — ¢* > 0. Using the process property (iii),
we have that

Ueto+t*,7)B = Uc(to + ", t")U(t*,7) B C Uc(to + t*,t%) By. (68)

Pick any ¢(t) = (u(t), w(t),n(t))T € U.(t,7)B for t > t*. From (68) and Lemma 10, we
have pn(t) = o(t) — pr(t) € A where on(t) = (un(t),wn(t),nn ()T is given by (34).
Therefore, by Lemma 9,

Jnf [le(t) - Yl < ller®lE < Mi(ro) exp(=o1(ro)(t — 7)), VE>¢* >

So,

disty (U.(t,7)B, A) < Ml(ro)exp(—al(;O)(t —7), Vt>t>T.

The proof is completed. g

LEMMA 14. The process {U.(¢,7),t > 7} possesses a non-empty kernel
K ={p(-): ¢(t), t € R, is asolution of (18), ||¢(t){|z < M,, Vt€ R} (69)
such that the kernel section K(s) at the time s:
K(s) = {@(s) : (t) is a solution of (18), ||¢(t)||lg < M,, Vt€ R} (70)

is compact and K(s) C A, Vs € R.
Proof. Tt is immediately proved from Lemma 8 and Lemma 13. a

5. Hausdorff Dimension of Kernel Sections.
In this section, we assume the assumptions (F;)—(F;;) hold. Firstly we prove the
differentiability of the process U(t, 7) defined by (3) (or (5)).

LEMMA 15. Consider the linearized equation of (3) (or (5)) with initial-boundary con-
ditions:
U, =V,
V=AU - K@)V + / wu(s) A Y(s)ds — fl(u,t)U,
0
T, =V -1, (71)

Ulz,t) = V(z,t) =T(z,t,8)=0, € or s=0, t>T,
Uz, 7) = Upr, V(z,7)=Vor, Y(z,7,8) = Tor, (z,8) € QxR
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where Z(x,t,5) = (u(z,t),v(x,t),n(z,t,5))T is a solution of (5) (or (3)). Then (71)
is a well posed problem in E, the process U(t,7) defined by (3) (or (5)) is uniformly
quasidifferentiable on the kernel section { K(7),7 € R} for t > 7, the quasidifferentiability
of U(t,7) at Z(7) = (uor,vor,Mor )" is the linear operator U'(t,7,Z) on E :

U'(t,7,2) : Uyy = (Uor, Vor, Tor)T — B(t) = (U®), V), YT € E,

where ¥ = (U, V, )T is the solution of (71).

Proof. Tt is clear from the assumptions (F;)~(F11) that the linear system (71) is well
posed in E. We first consider the Lipschitz property of U(f,7) on the bounded sets of E.
Let

ZO'r = (UOTy T)OTaUOT)T S E» ZUT = (UOT + UOT,UOT + VOT,T]OT + TOT)T ck

with ~
[|Zos||E < Ro, ||Zor||E < Ro (72)

and
U(t,7)Zor = Z(t) = (u(t),v(t),n(t,s))T € E,

U720, = 2(6) = (@), 50, i(t. ) € E.
Similarly to the proof of Corollary 5, there exists a constant v’ = r'(Ry) such that
1Z@Wlle <, [1Z@)lle <7, P27 (73)
The difference 1 = Z — Z = (.2, 13)7T satisfies
o1 = o,
Otz = Sy = () + (o0 + | (s) & va(o)ds = F(@.0) + f(u.t),

Oy = o — 053,
Y1(z,7) = Upr, ¥olx,7) = Voor, ¥s3(z,7,8) = Yor, (z,8) € Q2x R,

(74)

where J; = %. By (Fg)-(Fs), Young inequality, Poincaré inequality, embedding theorem,
and (73),

F @), t) = fult), t)llo = [1f (w+ 91(u - u)) - (@ = wllo < esz(r)[¥all1, VE =27
1h(¥) = h(v)llo = [|A'(v + 92(T — v))(@ = v)llo < Bll¢2llo, Yt =7
where 9; € (0,1), ¢ = 1, 2. Taking the inner product of (74) with ¢ in E, we have
d
a(ilwlllf + 2§ + 1sl1R) < css(r Y IwnllF + 1allf + 19sllR), V¢ > 7.

So, we have the Lipschitz property

IZ() = Z@)I < [(Uor, Vor, Tor) |26y > 1. (75)
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Consider the difference § = Z ~Z —¥ = P— U= (61.64,03)T € E, with ¥ the solution
of the linearized system (71). Obviously,

81;01 = 927
8t92 = Agl + / ,U(S) A 03(8)(18 + d,
0

0¢03 = B2 — 0,03,
01(x,7) = Oy(x,7) = O3(x,7,8) =0, (z,8) € QxR

where

d = —[f (@ t) = f(ut) = fo(w, ) @—w)+ fi,(u, )01 +h(D) = h(v) = b, (v) (V= v) + b, (v) 2]
= —[fulu+93(@ — u),t) = fo(u, )@ — u) = f,(u, £)6
— [P (v + 94(0 - v)) = ' ())(V - v) — h'(v)f2,

where 9; € (0,1), i = 3, 4. By the assumptions (Fg) and (F1p),
[ fo(u 4+ 93(T = u), ) ~ fr(u )| g ).22@) < c30¥3 [ — ul| (", (77)

and
W (v + 94(F — v)) — K ()| Le2y.rey < caodP [T~ v]37 (78)

Taking the inner product of each side of (76) with € in E, we obtain that
d - ~
7161 < cas(r)II6117 + eso(r')(|[2(t) — uw(®)|[FF2 + |[5(t) — w(0)]15772), ¢ > 7.
By the Gronwall inequality, we obtain
101IF < cae2 - 1Uor, Vor, Tor)TIIE " + [|(Uor, Vor, Tor) TIIZH2], VE > 7.

Therefore,

1Z(t) - Z(t) - ¥(t)|2 _
< 642(1, T) N T (126 T11262
||(U0T7V0T7TOT)T|I?E =ene [”(UOT,VOT’TOT) ||E +||(U0T’VOT,TOT) ”E ]

-0, Vt>rT,

as (Ugr, Vor, Yor)T — 0 in E. The proof is completed. O

Now, we estimate the Hausdorfl dimension of the kernel sections K(7) in E, 7 € R.
For this purpose, we consider the first variation equation of the equivalent system (18)
with initial condition

U, + H'(p)¥ = Fl(o,)¥, ¥(r) = U, W:,Y,)T € E, (79)

where ¥ = (U, W, T)T € E and o(t) = (u,w,n)T € E, t > 7 is the solution of (18),

el -1 0
H'(p) = (A + &2l —eh'(v—eu)l h(v—eu)l —el fooo n(s)A- ds) , (80)

el I s
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0 00
Fi(ot) = | —fu(w,t) 0 0
0 00

It is easy to see from Lemma 15 that (79) is a well-posed problem in E, the mapping
Uc(t,7) is uniformly quasidifferentiable on the kernel sections {K(7),7 € R} for t > 7,
that is, there exists a family of bounded linear operators (quasidifferentials) {U!(¢t, 7, ) :
@€ K(r),t > 71,7 € R} such that U/(t,7,¢) : E — E and

[Ue(t, 7)1 = Ue(t, 7)o = UL(t, 7, 0) (01 — )l e < Ut — 7, lle1 = ollB)llo1 — #llE,

where 1, p € K(71), £(t — 7,1 — ¢||g) — 0 as g1 — ¢ for all ¢ > 7. Here the quasidif-
ferential of U.(t,7) at ¢(7) = (ugr, vor + €Uor,Mo-)7 is the linear operator U/(t, T, ) on
E: (U, W, Y)T s (UW,T)T € E, where (U, W, T)T is the solution of (79).

LEMMA 16 (cf. [6, Thm. 4.1]). Consider the system (18). Let ¢ denote a set of m

vectors {®y, s, -+ ,P,,} which are orthonormal in E. If
qm =
1 T+t M
lim infsupsup sup / S (~H () + Fl(p(s), 5)); (s), @, (s)) ds <0,
to+0C  LeRGCE p(r)eK(r) b ot (81)

and there exists a continuous function of (t — 7), ¥t > 7 such that

sup ULt 7@ )llupp) S Clt—7), Vt>T, (82)

wr EK(T)

then the Hausdorff dimension of the kernel section K(7) is less than or equal to m,
VT € R.

LEMMA 17. For any orthonormal family of elements of E, {(&;,7;, Cj)T}}":h we have

dollArglg < oAt wwelo). (83)
=1 =
Proof. Similar to the proof of Lemma VI. 6.3 of [12]. 0O

LEMMA 18. For any ¢ = (u,w, )7, o1 = (£,7,)T € E

2 (84)

§
(H'(@)oro0)e = (16N + 17113) + ZICI + 511

Nt ™

Proof. Similar to the proof of Lemma 2. O
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LEMMA 19. If the assumptions (F)-(F11) hold, then the Hausdorff dimension dg (K (7)),
7 € R of the kernel section K(7) of the process {U.(t,T), t > 7} generated by system
(18) in E satisfies

3

1 <& 200 Mk Bo

dg (K (1)) < mi N, =Y V<« 1, (85
M) <mindmime N, L3 xw < _[(M) f1(8)

where k = k(rg) is a positive constant, o, €, ¢, v, are defined in Theorem I.

Proof. Tt is easy to obtain (82) by taking the inner product of (79) with ¥ in F, and
the function C(t — 7) is an exponential function of (¢ — 7).

Let m € N be fixed. Consider m solutions ¥y, ¥q, ---, ¥, of (79). At a given
time g > 7, let Qn{q) denote the orthogonal projection in E onto the space span
{U1(q), Ya(q),- -, Um(q)}. Let ®5(q) = (§.%5,¢)" € E, j =1,2,---,m, be an or-
thonormal basis of @, (q)E.

Suppose ©(7) = (u(7),w(r),n(1))T € K(r) C By; then ||pt)||lg < m,t > 7 (r1 is
defined by Corollary 5). By Lemma 18 and ||®,||g = 1, we have

~(HY (0(0))20), #5(a)) 5 < — SUIEIR + 1AlI) ~ HClfR — 113

Q.
<—o- Il gz (36)

On the other hand,

(Fo(v(9),0)25(a), 25(a)) e = (= fu(w(9), ©)&;(2), m (D)) L2 < [1£(ulq), )&;(Dllo - HImllo-

By (F¢)-(F7), Lemma 9, Lemma 10, Young’s inequality, Holder’s inequality, and the
embedding theorem,

152 (u(@) 965 (@12 <eas /Q 1+ (uz(q) + un(9)12€2(q)dz

<eus /9[1 T ud(g) + ud ())€X(q)dx
<eusllbuz @l (@ Ee+ s @I+ lun @I g l&s @I g ]

<eas (o) eI (@ + 14T Fun (@I ATE & (@)l
_4do _r 1-duy
<ear(ro)[e™ i (o) + 1A (I, Ve

where 1 is as in Lemma 10. Thus, there exists a constant k£ = k(r¢) > 0 such that

(Fo(v(2), 9)2;(0), ®;(0)E

k(r _do —r 1—4v, a
0) fomsor ola=) g, )} + 14526, (@)1) + Sy (IR, ¥ > 7

IN

(87)
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Thus, by 11§ (@)113 < [19,(g)|[% = 1, (86)-(87), we have

1 T+t ™
m = Jim_infsup sup sup 4 [ S (T 0l0) +FLpla) )2, (0). 5 (0)) oy
to+o  reRecEp(nek(r) tlr T
k(ro)m 4 k(ro) o= . _
< li — — = (1—e oy (ro)t /\_41/(,
t—}E‘P ma+801(r0)at( € )+ 20 ; J

mk(rg) 201(7 1 & \- i
< _ _ 0
- 2a m Z:l

If

200
— AT < ,
m ; J k(ro)

then ¢,, < 0. By Lemma, 16, the first inequality in (85) is proved. By Remark VI. 6.1 of
[12],

1 m N

_ _ g
— E A o < dIA\ym” 3,
m

where the constant ¢ is as in Theorem I. The second inequality in (85) is obtained
provided that

c'/\lm

-~ 2a0 S Mk e
, Le., m .
k(ro) 200

Combining with Lemma 1, Lemma 14, and Lemma 19, the proof of Theorem I is
completed. O

It is easy to see that Theorem II is a simple corollary of Theorem I. In the following,
we state that the upper bound of the Hausdorff dimension decreases as the damping
grows for suitable large damping.

If the damping h(v) = aw is linear and the functions f, g are independent of ¢, then
the problem (5) reduces to the following autonomous system with the initial value at
7 = 0 in Hilbert space F :

Zy = L()(Z)+N()(Z), (I,S)GQX R+, t>0,
{ - (88)
Z(0) = Zy = (uo(z),vo(x), no(x,8))", (x,8) € 2 x RY,
where Z = (u,v,n)T,
v 0
Lo(Z) = | Du—av+ [ p(s) An(s)ds |, No(Z) = —f(u)+g(z) | .  (89)
v — ns 0

Obviously, the solutions of autonomous system (88) define a semigroup on E :

S(t) : (ug,vo,m0)T — (u(t),v(t),n(tH)T, E —E, t>0. (90)
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&

For fixed ap > 0, setting ap = max{ay, %[do—||u||L1(Q)]}, where dy = min(%, €01.€02)-
It is possible to check from the proof of Lemma 3 that if & > «», then the radius nunber
7o of the bounded absorbing set By for semigroup {S(#)}:>0 can be chosen as

1
7‘:() = 2\/d_0[b0||g||(2) + 4(]{31(3(‘, + 2k2)], CGy kla ]\’32 are in (29), (91)
3 k1 3 0k 1\* 12«
by = — 4+ — + — S i) - = 92
0 a§+a2+/\1+\/(a§+a2+/\1> ol (92)

which is independent of a.

Set ag = max{%[Z — ||N||L1(S2)]v %[dl(fg) — H/‘L||L1(Q)]}» where dy(7y) = min{l,
Tml(;—o)}, c10(Fo) = cag(72 + 1) is defined by (38) in which c47 is constant depending
on ¢, embedding constant of H}(2) — L*(Q) and A\;. Set a; = max{as,a3}. From
the proof of Lemma 9 and Lemma 10, if o > a3, we can carefully choose the constant
M;(7y) in Lemma 10 such that it is also independent of «, say,

1
2

Afg(fo) :4049(7:0) (4b06c49(f0)b0 [1 + Cs1 (fo)\/ 2b07f]>
-+ 16652(7:())6653(;0)1)0[1 + ()54(f())\/ 2b07r]. (93)

Hence, the constant kg in the right side of inequality (11) is independent of & and g < %
Obviously, the upper bound on the right side of (11) is decreasing in « for a > «;.

Particularly, if
]\”,0/{/\1
@2 MaxX | X, T
2(A7 — ko)

then 220 _ X0 > (. Thus, for any unit element ® = (£,7,¢)7 € E,

k(ro)
k(rg) [ 2ac _4
<_ — AT
D= k(ro) ! <0

hence, the first largest Lyapunov exponent p; of semigroup {S(¢),t > 0} on attractor ©
is negative: pq < 0, which implies that the Hausdorff dimension of © is zero.

REMARK. In the autonomous case, if f, f' are uniformly bounded, i.e., |f(s)| < ag
(const), |f'(s)] < ao, Vs € R and g(z) € HE}(Q), then we can prove the existence
of a global attractor for the semigroup defined by (88) when the damping term h(v)
vanishes. Let’s state this fact. In this case, the linear operator Ly in (88) is Ly =

0 I 0

A0 [7u(s)A-ds |. From [4], we know that the semigroup efof, ¢ > 0 gen-

0 I —0s
erated by Ly decays exponentially, that is, there exist positive constants w, w > 0
such that ||[elot||] < we ¢, Wt > 0, where ||| - ||| denotes the norm of operator. By
Lemma 1, the solution Z(t) = S(t)Zy of (88) can be expressed as S(t)Zy = efo!Z, +
fot ebot="INo(S(r)Zo)dr, ¥t > 0. Then there exists a bounded set By attracting any
bounded set B of E. Since |f(s)| < ap, Vs € R, g(x) € L?(Q), and No(Z) = (0, g(x) —
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f(u),0)T, there exists a constant a; > 0 such that ||[No(Z(7))||g < a1. For any Zy € B,
we have

wa)

1S(t) Zolle < we (| Zolle + —— (1 —e™"), ¥t >0. (94)

w
Thus we can choose By being a ball with radius 7 = 2. For any Zg € By, let Z(t) =
S(t)Zy be a solution of (88) and let Z;, = S.(t)Zy = ekt Zy = (ug, v n.)" and Zy =
Sn(t)Zy = fﬂt et NG (S (1) Zo)dr = (un,vnnn)T,Vt > 0; then S(t) = SL(t) + Sn (1),
where |||SL(t)|l| < we™*, V¢ > 0 and S2(0)Zp = 0. It is easy to see that Zy = Sy ()2
satisfies:

8:Zn(t) = Lo(Zn) + No(S(8)Zo),  Zn(0) = (0,0,0)", Vi >o0. (95)

Let ( = 8,Zn(t) = (Owun,Bwn dmn)T. By differentiating (95), 9:¢ = Lo(¢) +
(0, —f"(w)v,0)T, ¢(0) = (0, g(x) — f(uo),0)T, ¥t > 0. Thus ¢(t) can be expressed as

C(t) = ebot¢(0) + /t elo®=m 0 — f'(u(r))v(r),0)Tdr, Vvt >0.
0

Here ||C(0)|le < a1, |f'(s)] < ag, and |[v(t)|lo < (w + 1)7 imply that there exists

a constant az > 0 such that ||(0, —f'(u(t))v(t),0)T||g < ag for all £ > 0. Similarly

to (94), we have [|((t)||r < wa; + =22, Vt > 0; hence, ((t), vy = Oyun, Osnn are
uniformly bounded in E, H{ (), Li(R+;H§(Q)), respectively. Let & = AY2Zy, by
(95), i€ = Lo(€) + (0, AY2[g(x) — f(w)],0)T, C(0) = (0,0,0)T, ¥t > 0. Thus, &(t) =
S eboe=r) (0, AV2(g(z) ~ f(w)], 0)Tdr, ¥t > 0. And [|(0, AY2[g(x) — F(w)], 0)7|3 = || -
f(W)Vu + Vg(@)]|I3 < 8[a27? + ||g]/?] = a2, t > 0. Thus we obtain that ||((t)||g =
(I|Aunl|?® + ||AY 2un |2 + ||77N|[ﬁ,2)1/2 < 2% vt > 0 which implies the corresponding
results in Lemma 10, and finally we obtain the existence of the global attractor for the

semigroup {S(¢)}t>o0-
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