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KERNEL SECTIONS FOR DAMPED NON-AUTONOMOUS WAVE
EQUATIONS WITH LINEAR MEMORY AND CRITICAL EXPONENT

By

SHENGFAN ZHOU

Department of Mathematics, Shanghai University, Shanghai, 200436, People's Republic of China

Abstract. We prove the existence of kernel sections for the process generated by a
non-autonomous wave equation with linear memory when there is nonlinear damping and
the nonlinearity has a critically growing exponent; we also obtain a more precise estimate
of upper bound of the Hausdorff dimension of the kernel sections. And we point out that
in the case of autonomous systems with linear damping, the obtained upper bound of
the Hausdorff dimension decreases as the damping grows for suitable large damping.

1. Introduction and Main Results.
In this paper, we consider the existence of the compact kernel sections and estimate

the Hausdorff dimension of sections for non-autonomous wave equations with linear mem-
ory when there is nonlinear damping and the nonlinearity satisfies the critical growth
condition.

Let be an open bounded set of R3 with a smooth boundary We consider the
following non-autonomous wave equation with linear memory term:

d2u 8u f°°
-j—^ +h( — ) — k(0)Au — / k'(s) Au(t. — s)ds-\-f(u,t)=g(x,t),x£$l,t>T,T£R,
ot ut J o

u(x,t)\xedn = 0, t £ R,

u(x,t) = Uo(x,t), X £ 0, t < T,

(1)
with fc(0), k(oo) > 0 and k'(s) < 0 for every s £ R+, where u = u(x,t) is a real-valued
function on Q, x [r,+oo), t £ R, u(t — s) = u(x,t — s), h(v) £ Cl(R\R), f(u,t) £
C1(R x R;R), = J\g(-,t) £ Cb{R, L2(Sl)), and Cb(R,L2(f2)) denotes the
set of continuous bounded functions from R into L2(Q,).
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Equations of this kind (1) occur in the description of viscoelastic solids with fading
memory and dissipation due to the viscous resistance of the surrounding medium, in the
presence of a nonlinear external force, of which u represents the displacement vector.
Particularly, Eq. (1) can be regarded as a model of a viscoelastic membrane, where u
is the vertical displacement. If k! = 0, (1) reduces to a damped non-autonomous wave
equation (cf. [1]).

Following the idea of Dafermos [3], we introduce a new variable

r)(x,t, s) = u(x,t) — u{x,t — s). (2)

For simplicity, we set //(s) = —k'(s) and fc(oo) — 1. Setting v(x,t) = ut(x,t), Eq. (1) can
then be transformed into the following three-dimensional system:

' ut = v,
poo

vt = Au+ / /j,(s) A rj(s)ds — h(v) — f(u, t) + g{x, t), (3)
Jo

nt =v -t)s

with initial-boundary conditions

' u(x,t) U€an = 0, t > r,
r](x,t,s) Ixean = 0, seR+, t>T,
rt(x,t,0) = 0, x 6 t > t,' ' (4)
u(x, t) = Uot-(x), X e (I,

v(x, t) — VoT(x), X 6 fi,

, T){x, T, s) = 1]0t (x,s), (x, s) € fl X R+,

where we set

U0t(x) = Uq(x,t),

d
Vo T(x) = ~u0(x,t)\t=T,

r]0t(x, s) = U0(x, T) - U0(x, T - s).

We assume the memory kernel // satisfies:
(Fi): At e C1{R+) D L2(JR+), n(s) > 0, /z'(s) < 0, Vs G R+.
(F2): /i'(s) + Sfj,(s) < 0, Vs G i?+ and some (5 > 0.
We denote by Hm(Q) the Sobolev space consisting of all functions for which, up

to mth-order, generalized derivatives are all in L2(fl) and Hq(Q) = {g £ :
g{x)\x£dn = 0}. Let A = —A with Dirichlet boundary conditions, D(A) = fl
Hq(Q). We can define the powers Ar of A for r £ R. The space Vir = D(Ar) is a Hilbert
space with the inner product and norm:

(u,v)2r = (Aru,Arv), \\uW2r = (Aru, Aru).
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In particular, V_i = H~1(Q), Vq = L2(f2), V\ = and

{A1/2u,A1'2v) = (Vu.Vu), Vu,v G

The injection Vri VT2 is compact if r\ > r2-
In view of (Fi), let the "history space" 5ft = L2(R+, Hq (fi)) be the Hilbert space of

Hq (fi)-valued functions on R+, endowed with the inner product and norm

rOC pOC

(V,mh= n(s){Vr](s),VT]i(s))ds, Nil = (77,17)31 = / m(s)(V?7(s),Vrj(s))ds,
Jo Jo

V?7, r/i G H.

The linear operator — ds on 3? is of domain

D(-da) = {r,e Hl(R+, H^) : t?(0) = 0} where
Hl(R+,H10) = {r, : 77(a), dsV G L2(i?+,Z^1)}

which generates a right-translation semigroup (cf. [2]).
Introduce the Hilbert space

E = f#(fi) x L2(0) x 3?

with the inner product:

(Zi,Z2)e = (ui,u2)ffi + (vi,v2)L2 + (r/i,772)3?, VZj = (■Ui,Vi,r)i) G E, i = 1,2.

Setting the triplet Z = (u, v, 7/)T, then the system (3)-(4) is equivalent to the following
initial value problem in the Hilbert space E :

Zt — L(Z) + N(Z, f), (x, s)e!lx i?+, t > r,

Z(r) = Z0t = (w0t(®), forM, Vot{x, s))T, (x,s) 6 fi x /?+,
(5)

where

L(Z) = | Au + /0°° /x(s) A r;(s)ds J , iV(Z, t) = ( -/i(u) - /(«, t) + g(x, t) ) , (6)
v - 77s / \ 0

D(L) = {Z eE
U + J n{s)r](s)ds G H2(Q) n Hq(Q), 1

uG^A), 77(s) G Hjl(R+, Hq(Q,)), 77(0) = 0.

Let /(u, £) = /i(u, t) + f2(u, t), Gi(u, t) — Jq fi(r, t)dr, i = 1, 2. We make the following
assumptions on functions Gi(u,t), fi(u,t), i — 1, 2, /i(v):

(Fs):
fi(u,t)u > 0, lim inf —^ > 0, Vii,t G

|u|—>+oo U
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(F4): There exist positive constants coi >0, i — 1,2, such that

ufi(u,t)-c0iGi(u,t)
11111 lnf ^  > 0, iu,t G R.

| it | —► H-oo U

(F5): There are constants Cq > 0 and sufficient small 7 > 0 such that

G\ ,{u.t) < ~.(1 1 (u. t). C'2 l(u.t) < ~:C2(uJ) 1 ('0, Vu,teR.

(Fe): E C2(R, x R,R), f[ u(0,t) = 0 and there exists a constant C\ > 0 such
that

< d(l + |ti])n < ci(l + |u|3), Vu,t€R.

(F7): There exists a constant C2 > 0 such that

< ''2(1 ' |« \f^t{u,t)\<c2{l + \u\p+1), 0 < p < 2. Vu, t e R.

(Fg): There exist two positive constants a, /3 such that

/).(0) =0, 0 < a < h'(v) < /3 < +00, Vi> E R.

(Fg): The partial derivatives of G\ t(u,t) = J-Gi(u,t), i = - 1.2 and g[{x,t) satisfy

G'l t(u,t) + G'2t{u,t) — g't(x,t)u < 0,V«, i E R,x E fl.

(F10): For M > 0, there exist C3 = cs(AI) and <5i > 0 such that for any V«i, u2 E
IKIK, IJualli < M,

||/u(Ul,£) - /u(^2i ^)IIl(//q(0),L2(0)) < C3(M)\\lli - U2\\{1 ,t E R.

(Fn): For M' > 0, there exist c4 = c±(M') and S2 > 0 such that for any Vi, v2 E L2({~1),
ll"l ||o, 11^2 110 < M',

||/i'(vi) - h'(v2)\\L(L2(CI),L2(SI)) < C4(M')||wi - v2|lo2-

Where || • ||o, || ■ ||i denote the norms of L2(Q) and Hq(Q), respectively, || • ||l(x,y) denotes
the norm of operator of L(X, Y) (the space of linear continuous operators from X into
Y), f'iq is partial derivative with respect to q, and the inner product in L2(Vt) is denoted
by (-,-)■

The exponential decay of the semigroup associated to the system (5) with N(Z,t) = 0
has been investigated by Z. Liu and S. Zheng and others; see [4-5]. When the damping
is linear (// ((?) = av) and the nonlinearity satisfies the noncritical growth conditions
(fi = 0), for the non-autonomous (or autonomous) system (5) with / independent of t,
V. Pata and A. Zucchi et al. proved the existence of its (uniform) global attractor and
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obtained an estimate of the Hausdorff dimension of attractor; see [1, 2] and references
therein. For the non-autonomous system (5) where k' = 0, i.e., (5) reduces to a non-
autonomous semilinear wave equation, V. Chepyzliov and M. Vishik in [6] proved the
existence of its kernel sections and obtained an upper bound of the Hausdorff dimension
of section. We observed from their estimates of [1, 6] that the upper bound of the
Hausdorff dimension increases as the damping a grows and tends to infinity as a tends
to positive infinity. From the physical intuition of Eq. (1), the Hausdorff dimension of
attractor (or section) should be smaller when the damping grows. If k' = 0, h(v) = av
and f(u, t) — f(u), g(x, t) = g(x) are independent of t, then the system (5) reduces to an
autonomous semilinear wave equation with linear damping for which the existence and
estimate of the Hausdorff dimension of the global attractor have been widely studied; see
[7-10]. Here it is worth mentioning that the author in [9] made a mistake in the proof of
the uniform boundedness of the compact component of the semigroup. Later, Y. Huang
et al. in [10] gave a correct proof.

In this paper, we generalize the existence and estimate of upper bound of the Haus-
dorff dimension of the kernel sections (or global attractor) in the previous works to the
process generated by system (5) with k' ^ 0 when there is a nonlinear damping and the
nonlinearity has a critical growth exponent. A more precise upper bound of the Haus-
dorff dimension for the kernel sections is obtained by carefully estimating the positivity
of operator in the corresponding evolution equation of the first order in time. According
to our estimate of dimension, in the case of autonomous systems with linear damping,
the kernel of process is just the global attractor, and the upper bound of the Hausdorff
dimension decreases as the damping grows for suitable large damping. The main results
are the following theorems.

Theorem I. If the functions /x(s), /(u,i), and h(v) satisfy conditions (Fi)-(Fcj), then
the (mild) solutions of problem (5) exist globally and define a process

U{t,r) : (u0T,v0T,ri0T)T -> (u(t),v(t),r){t))T, E -» E, t>r (7)

which possesses a non-empty kernel

K = {Z(-) : Z(t), t £ R, is a solution of (5), ||Z(f)||£; < Mz, € R}

consisting of all bounded complete trajectories of the process, and the kernel sections at
times s£i?:

K(s) = {Z(s) : Z(-) e K} (8)

are all compact. Moreover, let

e=  2a , (9)
3 + kq + (32/\\ + \/(3 + Ka + /32/ Ai )2 — 12kch

k =    >0, a — mm{-, -}.
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If (Fio)-(Fn) hold, then the Hausdorff dimension dfj of K(t), satisfies:

dn < min < m m
c'Aifc^ 8"°
2aa

+ 1, (10)

where {Ajjjgjv : 0 < Aj < A2 < • • • < Am < ■ • • , are the eigenvalues of operator —A
with the Dirichlet boundary condition on Q, 0 < vq < min{| — |}, t G (|, 3^-), p is
as in (F7), k is a positive constant independent of r, c' > 0 is a constant only depending
on the shape of and uq, and [i\ denotes the largest integer which is less than or equal
to I.

Theorem II. If h(v) = av is linear, the functions /, g are independent of t, and (Fi)-
Fn hold, then the process U(t, 0) associated to the autonomous system (5) with r = 0
is a semigroup

V(t, 0) = S{t) : (■u0, v0, r]o)T -> (u(t),v{t), r^(t))T, E —> E, t > 0.

The kernel section A'(0) = 0 is just the global attractor of semigroup {S(t),t > 0}, and
for any fixed Qo > 0, if a > a0, then there exists a constant a\ > 0 such that for any
a > Qi, the Hausdorff dimension 0?// (©) of attractor 0 satisfies:

d„(0) < min

'c'Xik0 \ 8"o

Lme  51° II m k k°)
<

<
ae0

+ 1

( /* 7 , 3 K 1 A 8*°( c Aifc0(—j H 1- ~r—) )
\ a* a Ai J

+ 1, (11)

where Uq is a positive constant which is independent of a, and

2 ot
£0 =  . =. (12)

3 + na + a2/X\ + y/{3 + na + a2/Ai)2 — 12ko:

Particularly, if

°-maX{a" -*,)}' (13)

then dn(Q) = 0.
It is easy to see that dn in (9) is uniformly bounded. The upper bound in the right

side of (11) is a decreasing function in a for large damping a. Therefore, the asymptotical
behavior of (mild) solutions of system (1) ((5)) can be described by a finite number of
parameters.
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2. Existence and Uniqueness of Solutions.
In this section, we present the existence, uniqueness, and continuous dependence of

(mild) solutions of the initial problem (5) in E.
Assume that conditions (Fi)-(Fg) hold. We know from [4] that the operator L in (6)

is the infinitesimal generator of a Co-process eLt of contractions on the Hilbert space E
under assumptions (Fi)-(F2).

By the embedding relation <-» L6(tt), for any VZ\, Z2 G E, ||Zi||,e < b,
\\Z2\\e < b, and t G R,

||N(Zut) - N(Z2,t)\\2E <IIMfi) " Hv2)||§ + - f(u2,t)\\l
</?2||^i - v2\\l + c5{b)\\ui - u2 li

<L0(b)\\Zi-Z2\\2E,
that is, the function N(Z, t) : Z = (u, v, ??)T —>■ (0, —h(v) — f(u, t) + g(x, t), 0)T is locally
Lipschitz continuous with respect to Z from E into E and it is easy to see that N(Z,t)
is continuously differentiable from E x R —> E. By the standard theory of semigroup of
operators concerning the existence and uniqueness of solutions of evolution equations in
Chapter 6 of [11], we have the following Lemma.

Lemma 1. Consider the initial value problem (5) on the Hilbert space E.
(i) For any Zqt G E. there exists a unique function Z (•) = Z {•. Zqt ) G C([t,+oo);E)

such that Z(t,Zqt) = Zqt and Z(t) satisfies the integral equation

Z{t) = eL^-T)Z0T + J eL{t~^N{Z{r),r)dr, Vt > r. (14)

In this case, Z(t) is called a mild solution of (5).
(ii) If Z0t g D(L), there exists Z(-) G C([r,+oo); £>(L)) fl C1([r,+oo); £") which

satisfies (5).
(iii) Z(t, Zqt) is jointly continuous in t and Zqt-
The local existence of mild solutions of (5) in E is obtained from Theorem VI. 1.4

and Theorem VI. 1.5 of [11], and the global existence of solutions can be obtained by the
boundedness of solutions in Lemma 3 below.

For any t > r, we introduce a map U(t,r) : Zqt i—> Z(t,ZoT), where Z(t,ZoT) is
the mild solution (or solution) of (5), then {U(t,r),t > r} define a strongly continuous
process:

U(t,r) : {u0T,v0T,r]0T)T -> (u(t),v(t),rj{t))T, t>r (15)

on E (or D(L)), which fulfills the following properties: (i) U(t,r) : E —> E (or D{L) —>
D(L)) for all t > r, r G R; (ii) U(r, r) is the identity on E (or D(L)) for all t > r, r G R;
(iii) U(t, s)U(s,t) = U(t,r) for all t > s > r, r G R; (iv) U(t,r)Z —> Z as t \ r for
all Z G E (or D(L)), r G R\ and (v) U{t,r) G C(E,E) (or C{D{L),D(L)) for all t > r,
r G R.

In this article, we will prove the existence of non-empty compact kernel sections at
times s G R :

K(s) = {Z(s) : Z(t) is a solution of (5), ||Z(f)||B < Mz, Vt G R} (16)

for the process {U{t, r), t > r} in E and give an upper bound of the Hausdorff dimension
of the kernel section K{t).
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3. Uniform Boundedness of Solutions.
Let

/u\ /I 0 0\ (u\ ( u
= I to I = I £ 1 o||i;j = |u + £,u|) (17)

\r,) \0 0 1/ \T) / \ r,

where e is chosen as in (10), here /z(s) 0. The initial problem (5) is equivalent to the
following system in Hilbert space E :

<p +H(<p) = F{ip,t), <p(r) = {u0t,v0t + eu0r,r]0T)T, t>T, r G R, (18)

where
eu — w

H(tp) = ( Au + e2u - ew + h(w - eu) + /0°° n(s)Arj(s)ds ) , (19)
eu — w rjs

F{<p,t) = | -f{u,t) + g(x,t) | .

In this section, we suppose the assumptions (Fi)-(F§) hold. Firstly, we present a
positivity property of the operator H(p) in (19) which plays an important role in this
article.

Lemma 2. For any <p = (it, w, r/)7 G E,

(H{<p),<p)E > §(IMI? + IHIo) + l\\v\\l + f IMIo- (20)

Proof. It is sufficient to prove (20) for <p = (u,w,r])T G D(L) since D(L) is dense in
E. Let (p = (u,w,r/)T G D(L), from (F8), (19), and the Poincare inequality:

AilMlo<IMIi, V^G/fo1^), (21)

we have that

(H(<p),<p)E - |(IMI? + IHIo) - |lMlo

> |ll«lli + (f - y)IHIo - ■ IHIo + \ r v(s)d\\Vr,(s)\\t + e(u,„)H.
Z Z Z yj A1 Z Jo ^22)

Integration by parts and (F2) yields

rOG rOO

/ v(s)d\\Vri(s)\\l = - /x'(s)||V7/(s)||gds > <5||r?|||,
Jo Jo

e(u,ri)j} > -~e2||u||i - ^\\v\\l-
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Simple computation shows that

4 2 ^2 2 ' 4Ai ' ^

Thus by (22)-(23), we have that

{H(v),<p)E ~ |(||«|li + IHIo) " f IMIo
> (| - p)IMI? + (f - y)IHIo - j=Mi • IHIo + ~M\l

5

The proof is completed. □
It is easy to check from (17) and Lemma 1 that for any initial data ip(r) G E, there

exists a unique continuous mild solution <p(t) G C((t,+oo), E) of system (18) which
defines a process

U£(t,r) : {u0r,v0T + ewor,r?or)T -+ (u(t),v(t) + su(t),r](t))T, t>r (24)

from E into E, and UE(t, r) = ReU(t,r)R-E, where

/1 0 °\
Re = I e 1 0 I : (a, 6, c)T —> (a, 6 + ea,c)T

\0 0 1/

is an isomorphism of E. So we need to consider the equivalent system (18) only.

Lemma 3. If 27 < emin{coi, C02}, then there exists a ball Bo of E, Bq = Be{0, ro),
centered at 0 of radius ro > 0 such that for any bounded set B of E, there exists Tq(B) > 0
such that the mild solution <p(t) = (u(t),w(t):rj(t))T G E of (18) with ip(r) G B satisfies

IbWIIE = (H*)||i + ||w(i)||o + IhWIlif)^ < r0, Vt > T0(B) > r, (25)

in which w = ut + su and r0 is independent of r G R; that is, the ball Bq = Be{0, r0) of
E is a uniformly bounded absorbing set of the process {U£(t, T),t>r}mE with respect
to r G R.

Proof. Let

G(u,t) — f f(r,t)dr = Gi(u,t) + G2{u,t), G(u,t) = I G(u,t)dx.
Jo Jn

Let ip = (u(t),w(t),r](t))T G E, t > r, be a mild solution of (18) with initial value
<p(r) = (uqti Vqt + £Uot,tiot)T G E. Taking the inner product of (18) with p =
(u(t),w(t),r/(t))T in which w = ut + eu, we find

^[|Mli; + 2G(u,t)] + (H(ip),ip)E - G,t(u,t) +e(f(u,t),u) = (g(x,t),w), Vf > t. (26)
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By (F3MF5), we have

Gi(u, t) > 0, G't(u,t) < iG{u,t) + c0,

. oG(u, t) n „uf(u,t) — CaG(u.t) ^lim mf  — > 0, lim mf    >0, Vu € i/0(O), Vt > r,
| | —► -\- 00 U |u|—»+oo U

where Cq = minjcoi, 002}- Thus, there exist two positive constants k\, k2 > 0 such that

G(u,t) + -———WuWl+kx > 0, Vu£Hq(£1), Vt > t,
4 + 4 Cq

(u, f(u,t)) - c6G(u,t) + |||m||i + k2 > 0, Vu £ Hq (S7), Vt > r. (27)

Thus, by 7 < |c6 and (20),

(H(<p),<p)e ~ G't{u,t)+e(f(u,t),u) > ^py - (^e/cic6 + k2e + c0|O|) + Vt > r,

where

2/ = I Mil: + 2G(u, t) + 2fci > -||^||b > 0,

p = min(|, |, |c6), |0| = fn dx. Hence,

+ PV < -\\g\\l + 2{]:£kic6 +k2e + c0\tt\), Vt > r, (28)
at a Z

where ||<?||o = supfefl \\g(x, t)||o. By Gronwall's inequality, we have the following absorb-
ing property:

MOIII <2y(t)
+ 2 (-119112 + + ̂  + , „ > r.

V«C P J (29)

Choosing rg = 4 f^||ff||o + j (jn(}ependent 0f r £ iJ), by (29), the
proof is completed. □

Corollary 4. For any initial value <£>(r) £ B0, i.e.,

Mr)lll =]|wOr|li + Ikor+eWOrllo + lborllK < ̂ 0, (30)

there exists a constant r\ = ri(ro) such that the mild solution of (18) <p(t) =
(u(t),w(t),rj(t))T satisfies ||i/j(t)||£ < n, Vt > r.
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4. Existence of Compact Kernel Sections.
To prove the existence of non-empty compact kernel sections for the process

{U(t,r),t > r} in E, we first present some definitions and results from [6].
Definition 5. The kernel K of a process {U(t,r)} consists of all bounded complete

trajectories of the process {U(t,r)} :

K = {Z(-) : Z(t), t G R, is a solution of (5), \\Z(t)\\E < Mz, Vi G i?} (31)

and the section K(s) C E of the kernel K at time s G R is

K(s) = {Z{s) : Z(-) G K}. (32)

Definition 6. A set A c E is said to be a uniformly attracting set of a process
{U(t, r)} if for any bounded set B C E,

sup dist#([/(£ + r, t)B, A) —> 0 as t —> +oo,
tG-R

where disti/ denotes the Hausdorff semidistance in E, defined as

distH(B1,B2) = sup inf \\Zi — Z2\\e-
ZieBi z2eB2

Definition 7. A process {U(t,r)} possessing a compact uniformly attracting set is
said to be uniformly asymptotically compact.

Lemma 8. (cf. [6, Thm 2.2].) Let {U(t,r)} be a uniformly asymptotically compact
process acting in a space E, with a compact uniformly attracting set Ac E. Each
mapping U(t,r) : E —> E is assumed continuous. Then the kernel K of the process
{U(t,r)} is non-empty, the kernel sections A"(s) are all compact, and K(s) C A.

In this section, we will prove that the process {Ue(t,r),t > r} is uniformly asymptot-
ically compact in E, that is, {Ue(t,T),t > r} possesses a uniformly attracting compact
set in E with respect to t E R.

Assume conditions (Fi)-(Fg) hold. Let ip(t) (or u(t)) be a (mild) solution of system
(18) (or (1)) with the initial value <p(r) = (won^or + £Uot,Vot)T G Bo, i.e., ||v'('r)|||; =
ll^orlli + ll^or + £Wor||o + Ihorlljf < rq. We decompose u(t) into u(t) = uL(t) + Ujv(f),
where ui(t) and «Ar(i) satisfy, respectively,

rOO

UL,tt + h{ut) - h(uN<t) - k(0)AuL - / k'(s) A uL(t - s)ds + fi{uL, t) = 0,
Jo

UL{x,t)\xedn = 0, t G R, (33)

UL(x, T) = U0r(x), ULj(x, t) = Vqt (x), X G fi,

, Ul(x,t) = Uo(x,t), X G fl, t <T,
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and

. poo

uN,tt + h(uN,t) - k(0)AuN - / fc'(s) A uN{t - s)ds + f(u,t) - f\(uL,t) = g{x,t),
Jo

UN{x,t)\xed n = 0, teij,

un(x, t) = Uff,t(x, r) = 0, ie!l,

, Un(x, t) = 0, x 6 f2, £ < r,
(34)

where uLM = uL>t =

Lemma 9. There exist two positive constants Mj(ro) and cri(ro) such that

IK(f)lli + IK.tWHo + II^lWIII < Mi(r0)exp(-ffi(r0)(f - r)), Vi > r, (35)

provided that 7 in (F5) is small enough (see below), where t]l(x, t, s) = Ul{x, t) — UL{x, t—
s).

Proof. Let r]L(x,t,s) = uL(x,t) - uL(x,t - s), wL = uL<t + euL, ZL = (uL,wL,r]L)T.
Then (33) can be written as

ZL,t + HL(ZL) + FL(ZL,t) = 0, Zl(t) = (u0T,v0T +Eu0T,r/0T)T e B0, t > t, (36)

where

/ euL - wL
Hl{Zl) = AuL + e2uL - ewL + h(ut) - h(uN,t) - Ms) A VL(s)ds j , (37)

\ euL -wl + tjL)S

FL{ZL,t) = (fi{uL,t)

Write Gi(u£,t) = JQGi(uL,t)dx, similar to Lemma 2, for any Zl = {ul,wl,Vl)T G
E,

(.Hl(Zl),Zl)e > 2(llMilli + II^lIIo) + jlbills + 2 ll^llo'
and similar to Corollary 4, there exists a constant C7 = C7(ro) > 0 such that

\\ZL{t)\\2E = \\uL{t)\\\ + ||WL,tW||o + \\Vl\\x < 4, Vt > T.

From (F3) and (Fe), we deduce that — 0 and \fi(u,t)\ < cg(|u|3 + |u|) (W G R);
hence for every ui € Hq(Q), by the Sobolev embedding Hq(Q) C L4(fl), we have

0 < G\(uL,t) < eg(|\ul1\\± + ||wl||o) < ci0(r0)||uL||?, (37)

lll"ili;-2^3l(°l't)' V'Ca
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By (F3),
e{fi(uL,t),uL) > 0.

Choosing 7 < 2cio(r0) 'n (^5)' anc^ taking the inner product (■,-)e °f (36) with Zi, =

(ul, wl, t]l)t: we obtain that V< > r,

jt[\\zL\\l + 2G1(uL,t)] + |(||«l||? + II^lIIo) + ^IkLllI + - 7]Gi(«L,t) < 0.
Thus,

-~^[\\Zl\\2e + %G\{uL,t)\ + o"i(t"o)[||^l|||; + 2Gi(ul,<)] <0, Vf > r,

where
°i(ro) = x min{e, 6, [ £ >-7]}- (38)

2 2ci0(r0)
By Gronwall's inequality, we have

\\Zl\\e <[\\Zl(t)\\2e + 2G1(uL{T),T)]exp{-a1(r0)(t - t))

<Mi(r0)exp(—0i(ro)(f-T)), Vt > r, (39)

where Mi(ro) = Tq(1 + 2cio(ro)). The proof is completed. □

Lemma 10. There exist constants M2(tq) > 0 (independent of r) and ^0 £ (0, min{| —
|})i 1 ̂  (|) 3+^) such that wjv(t) satisfies

P"°+W(t)Ho + P"°Miv,t(i)||o + IIw1£,2*0+1 ^ M2M, v* > (40)
where p is as in (F7), t]n(x, t, s) = u^(x, t) — u^(x, t — s).

Proof, ujv and 77^ satisfy the following equation with zero initial value conditions at
time t = t E R:

poo

uNitt + h(uN]t) + AuN+ / n(s)AriN(s)ds +f(u,t) - fi(uL,t) = g(x,t), t > r, (41)
Jo

where u — ul + w./v is the solution of (1).
Set wn = UN,t + = r]N,t + Vn,s + £mjv, where e is as in (10). Taking the inner

product of (41) in L2(f2) with A2vwn = A2l/(uj\r,t + £«w) = A2u(t)nj + + sun), we
have

\jt (\\A'H'1/2v,n\Io + II^wjvIlo + lb/vl IjUn-i +2 Jjf{u,t)-f1(uL,t)-g(x,t)]A2"uNdx^
+ e||yl1/+1/2MAr||o - £\\Avwn\[q + £2(Auun,A"wn) + (.Auh(wN - £un),Auwn)

1 f°°+ 2 Jq At(s)' ̂ll^1/2+J/?7(s)llo

+ e{[ fi(s)Ar]N(s)ds,A2vuN)+£ [ [f{u,t) - fi{uL,t) - g{x,t)} ■ A2vuNdx
Jo J n

+ [ Wt(x,t) - f'ht(u{t),t) - + f[ t{uL(t),t)}- A2l/uNdx
Jq

- / (L/i,Ju, t) - f[,u(.uL,t)}ut + f[tU(uL, t)uNit + f2 (u, t)ut) ■ A2"uNdx
Jn

= 0, t > T.

(42)



744 SHENGFAN ZHOU

Following [7, 8], we introduce the intermediate Sobolev spaces , v £ (0,1) with
the standard scalar product:

/ \ , [ [ (ziix) ~ zi(y))(z2(x) ~ z2{y)) . .
< zi, 22 >„ = (21, Z2) + J' J'  \X-y\Z+2v (43)

Setting 0 < v < |, we have Hq (Q| = 81. Thus, by (Fg) and the
mean value theorem, we obtain that

(A"h(wN - eun), A"wn)
= (h(wN - £UN),WN)

f f (h{wN(x, t)-suN(x, t)) — h(wN(y, t)-euN(y, t)))(wN{x, t)-(wN{y, £)))
Jn Jn \x - y|3+4" * y

= (h'{£i)wN,wN) -e(h'(£i)uN,wN)

[ [ h'(^2)(wN(x,t)-£uN(x,t)-wN(y,t)+EuN(y,t))(wN(x,t)-(wN(y,t)))
+ / /  n— dxdV

Jn Jnm \x ~ y|3+4l/

//Jn Jn
(wN(x,t) - wN(y,t)){wN(x,t) - (wN{y,t)))

|a; - y|3+4ly
>a (wN,wN)+ :—il ...1.^4 ''  —dxdv

o(, \ , f [ (uN{x,t)-uN(y,t))(wN(x,t)-{wN{y,t))) \- 0 [[uN,wN) + Ja  .tafcj
= a||^4"wjv||o - e/3(Auun,Auwn).

Thus, similarly to the proof of Lemma 3, we have

e\\Av+1/2un\\q - £||A"«;jv||o + e2(A"un, Auwn) + (Avh(wN ~ £Un), Auwn)
-i poo roo

+ 2 J v(s)d\\Al,2+UVN(s)\\l +£(J fj.(s)AilN(s)ds,A2'yuN) (44)

> £-\\A^'2uN\\l + (£ + ^)\\avwn\\20 + IwAWmUl

From Corollary 4 and Lemma 9, we know that ||ujv(^)||i and ||ujv,t(0llo are uniformly
bounded, i.e.,

||wjv(t)||i < cn(r0), ||ujv,t(i)||o < ci2(r0), Vt > t. (45)

We recall the embedding relations:

if"1 (ft) C £T2(ft) if V!>iy2 and tf"(ft) C L9(ft), where - = \ - (46)
Q Zd

From (Fe)-(Fy), we obtain that

[ |[/(M) - fi(uL,t) - g(x,t)]A2"uN\dx
Jn

< IIf(u(t),t) - fi(uL(t),t) - g(x,t)||o • \\A2,/uN(t)\\0
< ci3(r0), Vt > r (47)
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and by g[(x,t) £ Cb{R, L2(Q)),

[ [Wt{x,t)\ + \f[^t{u{t),t)\ + \f^t(u(t),t)\ + \f[ t(uL(t),t)\}\A2vuN(s)\dx < ci4(r0), \/t > r.
Jn

(48)
Now we estimate the last term of the left-hand side of (42) which is similar to the

proof of Proposition 2 in [10]. Choosing two positive numbers 5 and k such that

6 6 1 „ 1 1 2v 1 5 2v
a ^ a ^ — — o q~' 1 ~ r o"' (^9)66k 2 3 <5 6 3

by Holder's inequality and (Fg), we have

\\f[,u(uL{t),t)uN!t(t)\\Ls <ci5||(K(i)|(l + \uL{t)\)\uNtt(t)\)\\Le

<f'i6; ■ 11(1 + \uL(t)|)||l6 • ||uNti{t)\\Lik

<Ci7(r0)||uAr(t)||i • (P'y«;Ar(s)||o + e), Vt > r.

(50)

Similarly,

\\(fi,u{u(t)'t) - fi,u(uL(t),t))ut(t)\\Ls < ci8M|Mi)||o-p"+W(f)||o, Vi>T. (51)

On the other hand, we have

\\f^u(t),t)ut(t)\\LL <c19{r0)\\ut(t)\\a, Vt G (^, —). (52)5 3 +p

Let S < l: then

II/2,«(mW>*HWIIl« < c2o||/2,u(■"(*)>WIU' < C2i(ro)||wt(t)||o, Vt > t. (53)

Again,

\\A2»uN(t)\\Lr = \\A^A^uN{t)\\L, < c22\\A»+l2uN(t)\\0, Vi > r, (54)

where A = 1 — A.<5
Set = min{| — |}, here t G (|, qr-)- By the above inequalities and (42), for all

t>T,
-4 2(' 4 J ' ^ V5' 3+p>

Jtvif) + py{t) + ^\\AvwN Ho

< C23(?'o){||Wt||o • \\Av+*UN\\l + IKIli • H^Wjvllo • ||^4iy+2UAr||o
+ IMOIIo ' ]|^"+5«Jv||o + e} + £Ci3(ro) + ci4(ro).

By the Young inequality, we have

IKIli • II^atIIo ■ ]K+W||o < J"IKI|? ■ ||A"+W||o + f ll^vllo
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and

IkWHo ■ \\A^un\\0 = IkWHo • \{W+1*uN\\l + 1),
thus,

IKIlo • W+^uN\\l + ||ut(t)||o • W+iuNllo - l\\ut(t)MA»+luN\\l + i IKWIlo
hence,

+ ^y(t) <C24(ro)[||u«||o + —||ml|Ii] • \\A»+1zuN\\l + c25(r0)\\ut\\0 + c26(r0)at 2 a

<C27(ro)[||ut||o + -\\uL\\l}y(t) + c25(r0)IKI|o + c26(r0), V* > r,
a

(55)

where p = min{e, |} and

m =\W+l/2UN\\l + Jp"lU*|lo + 1\\Vn\\1,2u+1

+ [ [/(«,*) - fi(uL,t) - g\A2"uNdx + Ci3(r0)
J n

>0, V* > t. (56)

By applying Gronwall's inequality to (55), we have that for any t > s > r,

j/(i) <y(s)e-/>^ + c25(ro) /* | |«t (Olloe- m(r)drd£ + c26(r0) f e~ $ m{r)drd^
J S J S

(57)
where

m(r) = | - c27M[|Mr)llo + -||wL(r)||?]. (58)
Z a

Taking the inner product of (5) with Z = (u,Ut,rj)T G E in E, by (F2) and (Fg), we
obtain that

\jt( llVullo + IKIlo2 + WvWu + 2G{u,t) - (,g{x,t),u))

+ 21 Mis+ a|M!o~ [ [G't(u,t) - g't(x,t)u]dx
Jn

< 0, V£ > r.

From Corollary 4 and (Fg), it is easy to obtain that

/+oo \\ut{r)\\ldr < c28(r0). (59)

We know from Lemma 9 that

WuLiml < M1(r0)e~'T^t-T\ Wt > t. (60)
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Thus, for any t > s > r,

m(r)dr = J^ ^ -- (•27(r0):| u,(r) \(] + i Ky('\)|T) dr

>£(t-s) - C29^°) [ e-ai^r-T)dr
2 sja a Js

— 2 ; VS aai(ro) v ;

So,

J e-Slm^drd^ <ec3i(ro)/Q J

. . . C* _ 1 [f ./o(t-f)- c28(ro) -)2+ c28(r0) 1
=eC3i(ro)/a / e !llVpl' 4; > + 2«p 1=gC3Ur0j/a / g / 2oP

<feP32(r0)/a[1 + C33^]g^ V2?r], Vt > T. (62)
P \JpOL

Similarly,

f e~2Slm(r)drdi < ieC34(ro)/a[l + C3b^ V2n], Vt > r. (63)
Jt P VP®

By (47), (56), and the zero value conditions Un(x,t) = un^(x,t) = t]n(x,t) = 0, x G 0
at t = t,

y(T) = [ - fi(uL,t) - g\A2"uNdx + ci3(r0) < 2ci3(r0).
Jn

From (57)—(63), for t > r, we have

y(t) <y{T)e ^

+ C25(r0) Qf IK(OII^)2 (f e-2%mWdrdtY +c26(v0)Jt e~^m^drd^

<2ci3(r0)e~2(t~r)+"2t^v^~7+^(4) + c36(r0) ( ^-eCS4(r°^a[l + °35j^} v/27r]^)
\ap y/ pa J

+ *c26(r0)ec^a[ l + ^01v^]
P VP"

<2ci3(ro)eQ'"'ro) ^1 + e 2*» ° j + c36(r0) n/^t] j

+ ^26(ro)ec-(''c)/«[i + £30) (64)
P V Pa
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Hence for any t > t, we have

\\A^2un\\1 + \\A^wn\\2o + \\vn\\1^+1
< 2yit)

< 4c13(ro)e°»^^ (\ + e 2°f + 2c36(r0) f-i-eC84(ro)/,a[l + \Z27r]
V / \aP VP®

+ ?c26(ro)ec-('-o)/Q[1 + ^0)^]
P Vpa

= M2(r0).

The proof is completed. □

Corollary 11. Let r)N(x,t,s) and vq are as in Lemma 11, then ||<9s??jv||^ 2u0 — ̂ 2(^0),
Vi > T.

Proof. It is directly obtained from (40) and

( un(x, t) — un(x, t — s), t — s > r,
r]N{x,t,s) = < (65)

I Un{X, I), t — S < T,

rjN)S(x,t,s) =
UN,t(x,t-s), t-S>T,

0, t — S < T.

To obtain the existence of a uniformly attracting compact set for the process U£(t,r)
defined by (18), we need to use a Lemma from [1]. □

Lemma 12 (cf. [1, Lemma 5.5]). Let Xq, X, X± be three Banach spaces such that

Xo^X^Xi,

the first injection being compact. Let Y C L^(R+, X) satisfy the following hypotheses:
(i). Y is bounded in L2^{R+ ,X0) fl H^(R+,X 1).
(ii). sup^gy ||?7(s)||x < l(s), Vs € R+ for some I € Ljx(R+).
Then Y is relatively compact in L^(R+, X).
Let Bo c E be the bounded absorbing set for the process Ue(t,r) in E as in Lemma

4. Define a set B as

B = Uv6b0 U(>T tin(x, t, s), ip=(u,w,ri)T is solution of (18), r G R. (66)

From Lemma 9 and Lemma 10, B is uniformly bounded in L^(R+, Vi+2i>0) fl
^(^+>^2y0) with respect to t £ R, where i/q is defined by Lemma 10. It is easy
to see from (65) that sup^jj ||Vt7(s)||q is bounded. Thus we have that the set B in
(66) is relatively compact in L^(i?+, Hq (Q)).
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Lemma 13. Suppose the conditions (Fi)-(Fg) hold; then the process {Ue(t,r),t > r}
associated with (18) possesses a uniformly attracting compact set Ac E with respect to
r G R, i.e., the process {Ue(t,r),t > r} is uniformly asymptotically compact in E.

Proof. In view of Lemma 10, let BVo be the ball of V\+2v0 x V2v0 of radius M^ro) and
set

A = B„0 x B c E. (67)

From the compact embedding Vi+2i,0 x Hoity x and the relative compact-
ness of B in L2^(R+, A is compact in E. Now we show the attraction property
of A. Let B C E be a bounded set, with r = supveB \\^\\e and let t* = t*(B) such that
Ue(t,r)B C Bo, Mt > t*. Let t > t* and to = t — t* >0. Using the process property (iii),
we have that

Ue{t0 + t*,T)B = Ue(t0 + t*,t*)Ue(t*,T)BcU£(t0 + t*,t*)B0. (68)

Pick any <p(t) = (u(t),w(t),ri(t))T G Ue(t,r)B for t > t*. From (68) and Lemma 10, we
have = <p(t) — G A where ipjv(£) = w^it), ??Ar(i))T is given by (34).
Therefore, by Lemma 9,

inf \\<p(t) - V>||| < \\<PL{t)\\2E < Mi(r0)exp(—CTi(r0)(i - r)), Mt > t* > r.
il>€ A

So,

distH{Ue{t,T)B, A) < ^M1(r0)exp(-ai ^ (t - r)), Mt > t* > t.

The proof is completed. □

Lemma 14. The process {UE(t,r),t > r} possesses a non-empty kernel

K = {</?(■) : <p(t), t G R, is a solution of (18), | |v(*)|Is < Mv, Vt G R} (69)

such that the kernel section K(s) at the time s:

K(s) = {<p(s) : ip(t) is a solution of (18), ||¥>(£)||e < Mu, \/t G i?} (70)

is compact and K(s) C A, Vs G R.
Proof. It is immediately proved from Lemma 8 and Lemma 13. □

5. Hausdorff Dimension of Kernel Sections.
In this section, we assume the assumptions (Fi)-(Fn) hold. Firstly we prove the

differentiability of the process U(t,r) defined by (3) (or (5)).

Lemma 15. Consider the linearized equation of (3) (or (5)) with initial-boundary con-
ditions:

Ut = V.,
/»oo

Vt = AU - h'{v)V + / n{a) A T(s)ds - f'u{u, t)U,

Tt — V - Ys, (71)
U(x,t) = V(x,t) = T(x,t,s) — 0, x G dfl or s — 0, t > r,

U(x,t) = U0t, V(x,t) = V0t, T(x,t,s) = T0t, (x, s) g ft x R+
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where Z(x,t,s) = (u(x, t), v(x, t), r}(x, i, s))T is a solution of (5) (or (3)). Then (71)
is a well posed problem in E, the process U(t,r) defined by (3) (or (5)) is uniformly
quasidifferentiable on the kernel section {A'(r), r G i?} for t > r, the quasidifferentiability
of f/(t, r) at Z(t) = {uoT,VQT,riOT)T is the linear operator U'(t,T, Z) on E :

U'(t, r, Z) : $0t = {U0r, Vqt, T0r)T - (t) = (U(t), V(t), X(t))T e E,

where ^ = (U, V., Y)T is the solution of (71).
Proof. It is clear from the assumptions (Fi)-(Fn) that the linear system (71) is well

posed in E. We first consider the Lipschitz property of U(t,r) on the bounded sets of E.
Let

Zftr — (^0r > VOr) VOt ) G E, Zqt = (uoT 4" Uqt , Vqt + Vqt > VOt 0r ) G E

with
\\Z0t\\e<Ro, \\Z0t\\e<Ro (72)

and
U{t,T)Zor = Z(t) = {u{t),v(t),T](t,s))T G E,

U(t,T)Z0T = z(t) = (u(t),v(t),rj(t,s))T G E.

Similarly to the proof of Corollary 5, there exists a constant r' = r'(Ro) such that

\\Z(t)\\E<r\ \\Z(t)\\E<r\ Vi>r. (73)

The difference ip = Z ~ Z = (•0i,V,2j V^)7 satisfies

dtipi =
r OO

dtip2 = A^i - h(v(t)) + /i(u(t)) + / aKs) a ips{s)ds - f(u, t) + f(u, t),
Jo

dti>3 = -02 —
„ Vi{x,t) = U0t, ip2{x,T) = V0t, ip3(x,T,s) = T0t, (x, s) G X R+,

(74)

where dt = ^. By (Fg^Fg), Young inequality, Poincare inequality, embedding theorem,
and (73),

\\f(u(t),t) - f{u(t),t)||o = ||/'(u +tfi(u-u)) • (u-u)||o < c37(r')||Vi||i, Vf > r

||/i(tJ) - /i(u)||o = ||/i'(w + I?2(w - v))(u - u)||o < PW1P2W0, Vt > r

where G (0,1), i = 1, 2. Taking the inner product of (74) with ijj in E, we have

^(IIV'illi + ll^llo + HV'slll) < c38(r/)(||-0i||? + ll^llo + \\W\x), Vt > r.
So, we have the Lipschitz property

\\Z(t) - Z(t)\\l < ||(C/or, Vor, Tor)T||2EeC38(r')(^r\ Vt > r. (75)
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Consider the difference 9 = Z — Z-ty=ip — ty = (#i,#2,#3)r € E, with ^ the solution
of the linearized system (71). Obviously,

dt0i = 82,
poo

dtd2 = A(?i + / n(s) A 03(s)ds + d,

where

(76)
dtd 3 = 02 — ds03,
0\{x, t) = 02{x, t) = 03{x, t, s) = 0, (x, s)e!!x R+

d = ~[f{u,t)-f(u,t)-fn(u, t)(u-u) + fl(u,t)01 + h(v)-h(v)-tiv(v)(v-v)+tiv(v)02]
= -[f'u(u + &3(u-u),t)~ f'u(u,t)\(u - u) - f'u(u,t)0i

— [h'(v + i?4(v — v)) — h'(v)](v — v) — h'(v)02,

where £ (0,1), i = 3, 4. By the assumptions (F9) and (F10),

\\f'u(u + ti3(u - u),t) - fl(u,t)\\L{H^n),LHn)) < c39t?3'\\u -u||f\ (77)

and
\\h'(v + d4(v - v)) - h'(v)\\L{L2in)tL2{n)) < ci0ti{*\\v - v\\s02. (78)

Taking the inner product of each side of (76) with 0 in E, we obtain that

jt\\0\\2E < C38(r')l|0||| + c39(r')(\\u(t) - «(f)||?+Ml + \\v(t) - v(t)\\2+2S°), t > r.

By the Gronwall inequality, we obtain

||0(t)||| < C4ieC-(4-T) • [||(£/or,Vb.,T0r)T||'+251 + \\(Uor,VoT,Tor)T\\2E+2S2}, Vt > T.

Therefore,

11 m! ~V{t)T ^2* <c4ieC42(t~T) ■ [IKC^Or, y0.,T0r)T||2/1 + \\(UoT,Vor,Tor)T\\l62}
IK^Or, VQt, J-OrJ ||E

—>0, Vt > r,

as (Uot, Vot, Tor)T —5• 0 in E. The proof is completed. □
Now, we estimate the Hausdorff dimension of the kernel sections K(r) in E, r € R.

For this purpose, we consider the first variation equation of the equivalent system (18)
with initial condition

9t+H'{<p)9^F^ip,t)% \I/(t) = (Ut,Wt,Tt)t e E, (79)

where ^ = (U, W, Y)T € E and ip(t) = (u, w, r/)T G E, t > r is the solution of (18),

el -I 0
H'(ip)= ( A + e2/ - eh'(v - eu)I h'(v-eu)l — el (jl(s)A-ds ], (80)

el I ds
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0 0 0'
K&'t)= I o 0

0 0 0,

It is easy to see from Lemma 15 that (79) is a well-posed problem in E, the mapping
Ue(t,T) is uniformly quasidifferentiable on the kernel sections {A'(t),t G /?} for t > r,
that is, there exists a family of bounded linear operators (quasidifferentials) {U^(t, r, <p) :
<p G K(t), t. > t, t £ R} such that U^(t,T,ip) : E —> E and

\\U£(t,T)ipi - Ue(t,T)<p - Ue(t,T,ip)(<pi - p>)\\E < t(t - r, - ip\\e)\\Vi ~ VWe,

where ipi, ip £ K(t), l(t — r, ||i^i — p>\\e) —* 0 as p\ —* p for all t > r. Here the quasidif-
ferential of Ue(t,r) at <£>(t) = (Uqt,vqt +£Uot,Vot)T is the linear operator U'E(t.,T,(p) on
E : {UT, WT, Yr)T ^ (U, W, T)T £ E, where {U, W, T)T is the solution of (79).

Lemma 16 (cf. [6, Thm. 4.1]). Consider the system (18). Let <E> denote a set of to
vectors {<3>i, $9, ■ • • , 3>m} which are orthonormal in E. If

Qm =
i nT -\-t

lim inf sup sup sup - "S2((-H\<p(s)) + F'((p(s),s))$j(s),$j(s))Eds<0,
t^+oo TeR$cE v{t)€K(t) t JT pi (81)

and there exists a continuous function of (t — t), \/t > t such that

sup \\U'£(t,T,<pT)\\L{E,E) < C(t - t), Vt>T, (82)

then the Hausdorff dimension of the kernel section K(t) is less than or equal to to,
Vt e R.

Lemma 17. For any orthonormal family of elements of E, {(£j, %■, Cj)T}7Lii we have

£ll^%'llo ^EArX' Vi/e[0,l). (83)
j=l 3=1

Proof. Similar to the proof of Lemma VI. 6.3 of [12]. □

Lemma 18. For any p = (u, w, rj)T, pi = (£, /), ()T £ E,

> ̂ mwi + \mi) + >111 + f m\i (84)

Proof. Similar to the proof of Lemma 2. □
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Lemma 19. If the assumptions (Fi)-(Fn) hold, then the Hausdorff dimension
t e R of the kernel section K(t) of the process {Ue(t,r), t > r} generated by system
(18) in E satisfies

c[h{K(t)) < min < m
1 , 4j, 2aa

TO
TO

3=1

c'\\k \ 8"o
2a(T

+1, (85)

where k = k(ro) is a positive constant, a, e, d, z^o, are defined in Theorem I.
Proof. It is easy to obtain (82) by taking the inner product of (79) with 'I/ in E, and

the function C(t — t) is an exponential function of (t — r).
Let to £ N be fixed. Consider to solutions \&i, $2, of (79). At a given

time q > r, let Qm{q) denote the orthogonal projection in E onto the space span
{vfi(g),^2(g),"- ,*m(9)}- Let $,(<?) = (^,%,Cj)T G E, j = 1,2, • • • , m, be an or-
thonormal basis of Qm(q)E.

Suppose <p(t) = {u(t),w{t)^{t))t G K(t) C B0; then ||y(i)||B < n, t > r (ri is
defined by Corollary 5). By Lemma 18 and ||$j||j5 = 1, we have

$&))*; < - £-m\\l + M\l) ~ ̂ IICIll " flfellg-
<-^-|ll%llo. 1>T- (86)

On the other hand,

{F!p(<p{q),q)^j(q),^j{q))E = (-fL(u{q),q)^j{q),r]j{q))L2 < \\fi(u(q),q)^(q)\\0 ■ IMIo-

By (F6)-(F7), Lemma 9, Lemma 10, Young's inequality, Holder's inequality, and the
embedding theorem,

\\K(u(q),q)Zj(q)\\l <c43 [ [1 + (uL{q) + uN(q))2]2tf(q)dx
JQ

<c44 [ [1 + u4L(q)+u%(t)]£?(q)dx
Jq

<C45[||«L(«)||^||^(9)llL- + lfe(?)llo + ll«Ar(9)||4^||^(9)l|2rtS_]L1-4"o L1+s" 0

<C46(r0)[e-4ffl(ro>('-T)||^(g)||? + \\A^uN{q)\\t\\A^ i0{q)\\l\

<cM[e-^ro)(q-T)\Uq)\\i + IIA^O^IIol, V<? > r,

where Vq is as in Lemma 10. Thus, there exists a constant k = k(ro) > 0 such that

(F!p{'fi{q),q)^j{q),^j{q))E

< ^[e-4CTl(ro)(9-T)|fe(g)||? + + f ||%(r)||g, Vq > r.
2a 2 (g7)
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Thus, by i|^(g)[|i < \\^j(q)\\2E = 1, (86)-(87), we have

rT+t rnrT ~t~c "L

qm= lim inf sup sup sup - 'S2{(-H'(<p(q))+F'(ip(q),q))$j(q),$>J(q))Edq
* 00 reRQCE v(t)EK(t) tJT~[

< lim + L(1_e->».M.) + ar«)y-A-^
t->+oo I 8ai(ro)at 2a 2

^ mk(ro) I 2aa 1- — A-4"0
2a ^ k(ro) m 2

If
— V] A74"0 <
m ' ■j=1 3 ^ k(r0y

then qm < 0. By Lemma 16, the first inequality in (85) is proved. By Remark VI. 6.1 of
[12],

1 m

777 ZJ Jm
J=1

where the constant c' is as in Theorem I. The second inequality in (85) is obtained
provided that

3
, _iia. 2aa f c'X\k \ 8"°

c Aim 3 <77—r, i.e., m >
k(ro)' 1 \ 2aa

Combining with Lemma 1, Lemma 14, and Lemma 19, the proof of Theorem I is
completed. □

It is easy to see that Theorem II is a simple corollary of Theorem I. In the following,
we state that the upper bound of the Hausdorff dimension decreases as the damping
grows for suitable large damping.

If the damping h(v) = av is linear and the functions /, g are independent of t, then
the problem (5) reduces to the following autonomous system with the initial value at
t = 0 in Hilbert space E :

f Zt = Lq(Z) + N0{Z), (x, s) £!!xfl+, t > 0,

\ Z{0) = Z0 = (u0(x),v0{x),ri0(x, s))T, (x, s) £ !) x i}+,

where Z = (u,v,rj)T,

L0{Z) = J Au-av + /0°° A r](s)ds j , Na(Z) = i -f(u) + g(x) ] . (89)
V v - Vs J \ 0

Obviously, the solutions of autonomous system (88) define a semigroup on E :

S(t) : (u0,v0,Tlo)T -> {u(t),v{t),Ti(t))T, E -> E, t> 0. (90)
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For fixed «o > 0, setting a2 = max{a0, ^[d0 — j|//||z,1(n)]}, where do = min(|,c0i,C02)-
It is possible to check from the proof of Lemma 3 that if a > a2, then the radius number
?~o of the bounded absorbing set Bo for semigroup {S(t.)}t>o can be chosen as

?o = 2]J^ [&o "<?| IB + 4(/cic6 + 2k2)}, c6, fei, k2 are in (29), (91)

3 k 1 /3 k 1\" 12s
bo — ~2  (-T b \/ ( —2  ^ T~ ) 3" (92)ai a2 Ai II \a2 a2 Ai / od

which is independent of a.
Set a3 = max{^[2 - ||^||Li(n)], ^f[di{r0) ~ I|a*|(O)]}, where d1(r0) = min{l,

2cio\fo))' cio(^o) = c48(^o + 1) is defined by (38) in which C47 is constant depending
on c\, embedding constant of Hq(Q) L4(f2) and Ai. Set a\ = max{«2,a3}- From
the proof of Lemma 9 and Lemma 10, if a > aj, we can carefully choose the constant
M2(r0) in Lemma 10 such that it is also independent of a, say,

M2(f0) =4c49(fo) ^460eC49(ro)6o[l + c5i(f0)\/2b0n}^

+ 16c52(fo)eC53(fo)b«[l + CsifrolVV). (93)

Hence, the constant ko in the right side of inequality (11) is independent of a and £0 < §•
Obviously, the upper bound 011 the right side of (11) is decreasing in a for a > a\.
Particularly, if

koK Xi
a > max < ai,

2(Af0+1 - fc.oj

then - \1 Av° > 0. Thus, for any unit element <3? = (£, f), QT £ E,

hence, the first largest Lyapunov exponent /ii of semigroup {S(t),t > 0} on attractor 0
is negative: /ii < 0, which implies that the Hausdorff dimension of 0 is zero.

Remark. In the autonomous case, if /, /' are uniformly bounded, i.e., |/(s)| < ao
(const), |/'(s)| < ao, Vs £ R and g(x) £ Hq(Q), then we can prove the existence
of a global attractor for the semigroup defined by (88) when the damping term h(y)
vanishes. Let's state this fact. In this case, the linear operator Lq in (88) is Lq =

0 / 0 \
A 0 /0°° fi(s) A -ds . From [4], we know that the semigroup eLot, t > 0 gen-
0 / -ds )

erated by Lq decays exponentially, that is, there exist positive constants w, u> > 0
such that |||eLot||| < roe-"4, Vi > 0, where |j| • ||| denotes the norm of operator. By
Lemma 1, the solution Z(t) = S(t)Z0 of (88) can be expressed as S(t)Zo = eLotZ0 +
l^eL^t-r)N0(S(r)Z0)dr, Vt > 0. Then there exists a bounded set Bq attracting any
bounded set B of E. Since |/(s)| < ao, Vs £ R, g(x) £ and N0(Z) = (0,g(x) —
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f{u), 0)T, there exists a constant aj > 0 such that \\No(Z(r))\\E < ai- For any Zq £ B,
we have

\\S(t)Z0\\E<we-"t\\Zo\\E + —(l-e-"t), Vi > 0. (94)
w

Thus we can choose Bq being a ball with radius r = For any Zq £ Bo, let Z(t) =
S(t)Z0 be a solution of (88) and let Zl = Si(t)Z0 = eLotZo = (ul,vl,til)t and Zjv =
SN(t)Z0 = £ eLo(t_r)N0(S(r)Z0)dr = {uN,vN^N)T,Vt > 0; then S(t) = SL(t) + SN(t),
where |||5x(i)||| < we~ut, Vi > 0 and S2(0)Zq = 0. It is easy to see that Zn = Spf(t)Zo
satisfies:

dtZN(t) = L0(ZN) + N0(S(t)Z0), ZN(0) = (0,0,0)T, Vi> 0. (95)

Let C = dtZN(t) = (dtuN,dtvNdtT]N)T■ By differentiating (95), dt( = L0{C) +
(0, — f'(u)v, 0)T, £(0) = (0, g(x) — /(uo),0)T, Vt > 0. Thus ((t) can be expressed as

C(t) = eLot£(0) + [ eL°^~r\0,—f'(u(r))v(r),0)Tdr, Vi > 0.
Jo

Here ||C(0)||£ < fli, |/'(s)| < a0i and lluWllo < (^ + l)?1 imply that there exists
a constant <22 > 0 such that \\(0,—f'(u(t))v(t),0)T\\E < <22 for all t > 0. Similarly
to (94), we have ||C(£)||e < ®oi + Vi > 0; hence, ((i), — 5tujv, dsr]^ are
uniformly bounded in E, Hq(£1), L2(i?+; Hq(Q)), respectively. Let £ = Al/2Zjy, by
(95), dt(, = L0(0 + (0,AV2[g{x) - /(«)], 0)T, C(0) = (0,0,0)T, Vi > 0. Thus, £(t) =
fo eL°(t~r)(0,A1/2[g(x) - f(u)],0)rdr, Vi > 0. And ||(0, A1/2[g(a;) - /(u)],0)r||| = || -
/'(u)Vti + V<7(x)]||q < 8[agf2 + ||gr||f] = a§, t > 0. Thus we obtain that ||C(i)||.E =
(||>1mjv||2 + \\A1^2vn\\2 + \\t)nH^^)1^2 — Vi > 0 which implies the corresponding
results in Lemma 10, and finally we obtain the existence of the global attractor for the
semigroup {S(i)}t>o-
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