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Abstract. Recent research has shown the effectiveness of using sparse
coding(Sc) to solve many computer vision problems. Motivated by the
fact that kernel trick can capture the nonlinear similarity of features,
which may reduce the feature quantization error and boost the sparse
coding performance, we propose Kernel Sparse Representation(KSR).
KSR is essentially the sparse coding technique in a high dimensional
feature space mapped by implicit mapping function. We apply KSR to
both image classification and face recognition. By incorporating KSR
into Spatial Pyramid Matching(SPM), we propose KSRSPM for image
classification. KSRSPM can further reduce the information loss in fea-
ture quantization step compared with Spatial Pyramid Matching using
Sparse Coding(ScSPM). KSRSPM can be both regarded as the gener-
alization of Efficient Match Kernel(EMK) and an extension of ScSPM.
Compared with sparse coding, KSR can learn more discriminative sparse
codes for face recognition. Extensive experimental results show that KSR
outperforms sparse coding and EMK, and achieves state-of-the-art per-
formance for image classification and face recognition on publicly avail-
able datasets.

1 Introduction

Sparse coding technique is attracting more and more researchers’ attention in
computer vision due to its state-of-the-art performance in many applications,
such as image annotation [25], image restoration [20], image classification [28]
etc. It aims at selecting the least possible basis from the large basis pool to
linearly recover the given signal under a small reconstruction error constraint.
Therefore, sparse coding can be easily applied to feature quantization in Bag-of-
Word(BoW) model based image representation. Moreover, under the assumption
that the face images to be tested can be reconstructed by the images from the
same categories, sparse coding can also be used in face recognition [26].

BoW model [23] is widely used in computer vision [27,21] due to its con-
cise representation and robustness to scale and rotation variance. Generally, it
contains three modules: (i) Region selection and representation; (ii) Codebook
generation and feature quantization; (iii) Frequency histogram based image rep-
resentation. In these three modules, codebook generation and feature quantiza-
tion are the most important portions for image presentation. The codebook is
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a collection of basic patterns used to reconstruct the local features. Each basic
pattern is known as a visual word. Usually k -means is adopted to generate the
codebook, and each local feature is quantized to its nearest visual word. However,
such hard assignment method may cause severe information loss [3,6], especially
for those features located at the boundary of several visual words. To minimize
such errors, soft assignment [21,6] was introduced by assigning each feature to
more than one visual words. However, the way of choosing parameters, including
the weight assigned to the visual word and the number of visual words to be
assigned, is not trivial to be determined.

Recently, Yang et al. [28] proposed the method of using sparse coding in
the codebook generation and feature quantization module. Sparse coding can
learn better codebook that further minimizes the quantization error than k-
means. Meanwhile, the weights assigned to each visual word are learnt concur-
rently. By applying sparse coding to Spatial Pyramid Matching [13] (referred
to as: ScSPM), their method achieves state-of-the-art performance in image
classification.

Another application of sparse coding is face recognition. Face recognition is a
classic problem in computer vision, and has a great potential in many real world
application. It generally contains two stages. (i): Feature extraction; and (ii):
Classifier construction and label prediction. Usually Nearest Neighbor (NN) [5]
and Nearest Subspace(NS) [11] are used. However, NN predicts the label of
the image to be tested by only using its nearest neighbor in the training data,
therefore it can easily be affected by noise. NS approximates the test image by
using all the images belonging to the same category, and assigns the image to the
category which minimizes the reconstruction error. But NS may not work well
for the case where classes are highly correlated to each other[26]. To overcome
these problems, Wright et al. proposed a sparse coding based face recognition
framework [26], which can automatically selects the images in the training set to
approximate the test image. Their method is robust to occlusion, illumination
and noise and achieves excellent performance.

Existing work based on sparse coding only seeks the sparse representation
of the given signal in original signal space. Recall that kernel trick [22] maps
the non-linear separable features into high dimensional feature space, in which
features of the same type are easier grouped together and linear separable. In
this case we may find the sparse representation for the signals more easily, and
the reconstruction error may be reduced as well. Motivated by this, we propose
Kernel Sparse Representation(KSR), which is the sparse coding in the mapped
high dimensional feature space.

The contributions of this paper can be summarized as follows: (i): We pro-
pose the idea of kernel sparse representation, which is sparse coding in a high
dimensional feature space. Experiments show that KSR greatly reduces the fea-
ture reconstruction error. (2): We propose KSRSPM for image classification.
KSRSPM can be regarded as a generalized EMK, which can evaluate the sim-
ilarity between local features accurately. Compared with EMK, our KSRSPM
is more robust by using quantized feature other than the approximated high
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dimensional feature. (3): We extend KSR to face recognition. KSR can achieve
more discriminative sparse codes compared with sparse coding, which can boost
the performance for face recognition.

The rest of this paper is organized as follows: In Section 2, we describe the
details of KSR, including its objective function and its implementation. By incor-
porating KSR into SPM framework, we propose KSRSPM in Section 3. We also
emphasize the relationship between our KSRSPM and EMK in details. Image
classification performance on several public available datasets are also reported
at the end of this section. In Section 4, we use KSR for face recognition. Results
comparisons between sparse coding and KSR on Extended Yale B Face Dataset
are listed in this section. Finally, we conclude our work in Section 5.

2 Kernel Sparse Representation and Implementation

2.1 Kernel Sparse Representation

For general sparse coding, it aims at finding the sparse representation under the
given basis U(U ∈ R

d×k), while minimizing the reconstruction error. It equals
to solving the following objective.

min
U,v

‖x − Uv‖2 + λ‖v‖1

subject to : ‖um‖2 ≤ 1
(1)

where U = [u1, u2, ..., uk]. The first term of Equation (1) is the reconstruction
error, and the second term is used to control the sparsity of the sparse codes v.
Empirically larger λ corresponds to sparser solution.

Suppose there exists a feature mapping function φ: Rd → RK , (d < K). It
maps the feature and basis to the high dimensional feature space: x −→ φ(x), U =
[u1, u2, ..., uk] −→ U = [φ(u1), φ(u2), . . . , φ(uk)]. We substitute the mapped fea-
tures and basis to the formulation of sparse coding, and arrive at kernel sparse
representation(KSR):

min
U,v

‖φ(x) − Uv‖2 + λ‖v‖1 (2)

where U = [φ(u1), φ(u2), . . . , φ(uk)]. In our work, we use Gaussian kernel due to
its excellent performance in many work [22,2]: κ(x1, x2) = exp(−γ‖x1 − x2‖2).
Note that φ(ui)T φ(ui) = κ(ui, ui) = exp(−γ‖ui − ui‖2) = 1, so we can remove
the constraint on ui. Kernel sparse representation seeks the sparse representation
for a mapped feature under the mapped basis in the high dimensional space.

2.2 Implementation

The objective of Equation (2) is not convex. Following the work of [28,14], we
optimize the sparse codes v and the codebook U alternatively.
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Learning The Sparse Codes in New Feature Space. When the codebook
U is fixed, the objective in Equation (2) can be rewritten as:

min
v

‖φ(x) − Uv‖2 + λ‖v‖1

=κ(x, x) + vT KUUv − 2vT KU (x) + λ‖v‖1

=L(v) + λ‖v‖1

(3)

where L(v) = 1 + vT KUUv− 2vT KU (x), KUU is a k ∗ k matrix with {KUU}ij =
κ(ui, uj), and KU (x) is a k ∗ 1 vector with {KU (x)}i = κ(ui, x). The objective is
the same as that of sparse coding except for the definition of KUU and KU (x). So
we can easily extend the Feature-Sign Search Algorithm[14] to solve the sparse
codes. As for the computational cost, they are the same except for the difference
in calculating kernel matrix.

Learning Codebook. When v is fixed, we learn the codebook U . Due to the
large amount of features, it is hard to use all the feature to learn the codebook.
Following the work [28,2], we random sample some features to learn the codebook
U , then use the learnt U to sparsely encode all the features. Suppose we randomly
sample N features, then we rewrite the objective as follows (m, s, t are used to
index the columns number of the codebook.):

f(U) =
1
N

N∑

i=1

[‖φ(xi) − Uvi‖2 + λ‖vi‖1]

=
1
N

N∑

i=1

[1 +
k∑

s=1

k∑

t=1

vi,svi,tκ(us, ut) − 2
k∑

s=1

vi,sκ(us, xi) + λ‖vi‖1]

(4)

Since U is in the kernel (κ(ui, .)), it is very challenging to adopt the commonly
used methods, for example, Stochastic Gradient Descent method [2] to find the
optimal codebook. Instead we optimize each column of U alternatively. The
derivative of f(U) with respect to um is (um is the column to be updated):

∂f

∂um
=

−4γ

N

N∑

i=1

[

k∑

t=1

vi,mvi,tκ(um, ut)(um − ut) − vi,mκ(um, xi)(um − xi)] (5)

To find the optimal um, we set ∂f
∂um

= 0. However, it is not easy to solve the
equation due to the terms with respect to κ(um, .). As a compromise, we use
the approximate solution to replace the exact solution. Similar to fixed point
algorithm [12], in the nth um updating iteration, we use the result of um in the
(n− 1)th updating iteration to compute the part in the kernel function. Denote
the um in the nth updating process as um,n, then the equation with respect to
um,n becomes:

∂f

∂um,n

∼= −4γ

N

N∑

i=1

[
k∑

t=1

vi,mvi,tκ(um,n−1, ut)(um,n − ut)− vi,mκ(um,n−1, xi)(um,n − xi)]

= 0
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When all the remaining columns are fixed, it becomes a linear equation of um,n

and can be solved easily. Following the work [2], the codebook is initialized as
the results of k-means.

3 Application I: Kernel Sparse Representation for Image
Classification

In this Section, we apply kernel sparse representation in SPM framework, and
propose the KSRSPM. On the one hand, KSRSPM is an extension of ScSPM [28]
by replacing sparse coding with KSR. On the other hand, KSRSPM can be
regarded as the generalization of Efficient Match Kernel(EMK) [2].

3.1 Sparse Coding for Codebook Generation

k-means clustering is usually used to generate the codebook in BoW model. In
k-means, the whole local feature space X = [x1, x2, . . . , xN ] (where xi ∈ R

d×1) is
split into k clusterings S = [S1, S2, . . . , Sk]. Denote the corresponding clustering
centers as U = [u1, u2, . . . , uk] ∈ R

d×k. In hard assignment, each feature is only
assigned to its nearest cluster center, and the weight the feature contributing to
that center is 1. The objective of k-means can be formulated as the following
optimization problem:

min
U,S

k∑

i=1

∑

xj∈Si

‖xj − ui‖2 = min
U,V

N∑

i=1

‖xi − Uvi‖2

subject to : Card(vi) = 1, |vi| = 1, vi � 0, ∀i.

(6)

Here V is a clustering indices, V = [v1, v2, . . . , vN ] (where vi ∈ R
k×1). Each

column of V indicates which visual word the local feature should be assigned to.
To reduce the information loss in feature quantization, the constraint on vm is
relaxed. Meanwhile, to avoid each feature being assigned to too many clusters,
the sparse constraint is imposed on vm. Then, we arrive at the optimization
problem of sparse coding:

min
U,V

N∑

i=1

‖xi − Uvi‖2 + λ‖vi‖1

subject to : |uj | ≤ 1, ∀j = 1, . . . , k.

(7)

3.2 Maximum Feature Pooling and Spatial Pyramid Matching
Based Image Representation

Following the work of [28,4], we use maximum pooling method to represent the
images. Maximum pooling uses the largest responses to each basic pattern to
represent the region. More specifically, suppose one image region has D local
features, and the codebook size is k. After maximum pooling, each image will be
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represented by a k dimensional vector y, and the lth entry is the largest response
to the lth basis vector of all the sparse codes in the selected region(vD is the
sparse codes of the Dth feature in this local region, and vDl is the lth entry of
vD):

yl = max{|v1l|, |v2l|, . . . , |vDl|} (8)

SPM technique is also used to preserve the spatial information. The whole image
is divided into increasing finer regions, and maximum pooling is used in each
subregion.

3.3 KSRSPM – An Generalization of Efficient Matching Kernel

Besides interpreted as an extension of ScSPM [28], KSRSPM can also be in-
terpreted as a generalization of Efficient Matching Kernel (EMK) [2]. Let X =
[x1, x2, . . . , xp] be a set of local features in one image, and V (x) = [v1(x), v2(x),
. . . , vp(x)] are the corresponding clustering index vector in Equation (6). In BoW
model, each image is presented by a normalized histogram v̄(X)= 1

|X|
∑

x∈X v(x),
which characterizes its visual word distribution. By using linear classifier, the
resulting kernel function is:

KB(X, Y ) =
1

|X||Y |
∑

x∈X

∑

y∈Y

v(x)T v(y) =
1

|X||Y |
∑

x∈X

∑

y∈Y

δ(x, y) (9)

where

δ(x, y) =

{
1, v(x) = v(y)
0, otherwise

(10)

δ(x, y) is positive definite kernel, which is used to measure the similarity between
two local features. However, such hard assignment based local feature similarity
measuring method increases the information loss and reduces classification ac-
curacy. Thus a continuous kernel is introduced to more accurately measure the
similarity between local feature x and y:

KS(X, Y ) =
1

|X ||Y |
∑

x∈X

∑

y∈Y

k(x, y) (11)

Here k(x, y) is positive definite kernel, which is referred to as local kernel. This
is related to the normalized sum match kernel [19,9].

Due to the large amount of local features, directly using local kernel is both
storage and computation prohibitive for image classification. To decrease the
computation cost, Efficient Match Kernel(EMK) is introduced. Under the def-
inition of finite dimensional kernel function [2], k(x, y) = φ(x)T φ(y), we can
approximate φ(x) by using low dimensional features v̄x in the space spanned by
k basis vectors H = [φ(u1), φ(u2), . . . , φ(uk)]:

min
H,vx

‖φ(x) − Hvx‖2 (12)

In this way, each image can be represented by v̄(X)new = 1
|X|H

∑
x∈X vx be-

forehand. As a consequence, the computation speed can be accelerated.
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EMK maps the local feature to high dimensional feature space to evaluate the
similarity between local features more accurately, and uses the approximated
feature Hvx to construct the linear classifier for image classification. It can be
summarized as two stages: (i): x

φ−→ φ(x): Map the feature to new feature space;
(ii): φ(x) H−→ v̄x: Reconstruct φ(x) by using the basis H .

Note that directly using original feature for image classification may cause
overfitting [3]. To avoid this, and following the BoW model, we use vx for image
classification. We hope each φ(x) is only assigned several clusterings, so we add
the sparse constraint in the objective of EMK:

min
H,vx

‖φ(x) − Hvx‖2 + λ‖vx‖1 (13)

This is the same as the objective of our kernel sparse representation. So EMK
can be regarded as the special case of our KSRSPM at λ = 0. Compared
with EMK, our KSRSPM uses the quantized feature indices for image classi-
fication, so it is more robust to the noise. What’s more, by using maximum
pooling, the robustness to intra-class and noise of our KSRSPM can be further
strengthened.

3.4 Experiments

Parameters Setting. SIFT [16] is widely used in image recognition due to its
excellent performance. For a fair comparison and to be consistent with pre-
vious work [28,13,2], we use the SIFT features under the same feature ex-
traction setting. Specifically, we use dense grid sampling strategy and fix the
step size and patch size to 8 and 16 respectively. We also resize the maximum
side(width/length) of each image to 300 pixels1. After obtaining the SIFT, we
use �2-norm to normalize the feature length to 1. For the codebook size, we
set k = 1024 in k-means, and randomly select (5.0 ∼ 8.0) ∗ 104 features to
generate codebook for each data set. Following the work [28], we set λ = 0.30
for all the datasets. As for the parameter γ in the Gaussian kernel, we set γ to
1
64 , 1

64 , 1
128 , 1

256 on Scene 15, UIUC-Sports, Caltech 256 and Corel 10 respectively.
For SPM, we use top 3 layers and the weight for each layer is the same. We use
one-vs-all linear SVM due to its advantage in speed [28] and excellent perfor-
mance in maximum feature pooling based image classification. All the results for
each dataset are based on six independent experiments, and the training images
are selected randomly.

Scene 15 Dataset. Scene 15 [13] dataset is usually used for scene classification.
It contains 4485 images, which are divided into 15 categories. Each category con-
tains about 200 to 400 images. The image content is diverse, containing suburb,
coast, forest, highway, inside city, mountain, open country, street, tall building,

1 For UIUC-Sport dataset, we resize the maximum side to 400 due to the high reso-
lution of original image.
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office, bedroom, industrial, kitchen, living room and store. For fair comparison,
we follow the same experimental setting [28,13]: randomly select 100 images each
category as training data and use the remaining images as test data. The results
are listed in Table 1.

Table 1. Performance Comparison on Scene 15 Dataset(%)

Method Average Classification Rate

KSPM[13] 81.40±0.50

EMK[2] 77.89±0.85

ScSPM[28] 80.28±0.93

KSRSPM 83.68±0.61

Caltech 256. Caltech 2562 is a very challenging dataset in both image content
and dataset scale. First of all, compared with Caltech 101, the objects in Caltech
256 contains larger intra-class variance, and the object locations are no longer in
the center of the image. Second, Caltech 256 contains 29780 images, which are di-
vided into 256 categories. More categories will inevitably increase the inter-class
similarity, and increase the performance degradation. We evaluate the method un-
der four different settings: selecting 15, 30, 45, 60 per category as training data
respectively, and use the rest as test data. The results are listed in Table 2.

Table 2. Performance Comparison on Caltech 256 dataset(%) (KC: Kernel codebook;)

Trn No. KSPM[8] KC[6] EMK[2] ScSPM[28] KSRSPM

15 NA NA 23.2±0.6 27.73±0.51 29.77±0.14

30 34.10 27.17±0.46 30.5±0.4 34.02±0.35 35.67±0.10

45 NA NA 34.4±0.4 37.46±0.55 38.61±0.19

60 NA NA 37.6±0.5 40.14±0.91 40.30±0.22

UIUC-Sport Dataset. UIUC-Sport [15] contains images collected from 8 kind
of different sports: badminton, bocce,croquet, polo, rock climbing, rowing, sailing
and snow boarding. There are 1792 images in all, and the number of images ranges
from 137 to 250 per category. Following the work of Wu et al. [27], we randomly
select 70 images from each category as training data, and randomly select another
60 images from each category as test data. The results are listed in Table 3.

Table 3. Performance Comparison on UIUC-Sport Dataset(%)

Method Average Classification Rate

HIK+ocSVM[27] 83.54±1.13

EMK[2] 74.56±1.32

ScSPM[28] 82.74±1.46

KSRSPM 84.92±0.78

2 www.vision.caltech.edu/Image_Datasets/Caltech256/

www.vision.caltech.edu/Image_Datasets/Caltech256/
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Table 4. Performance Comparison on Corel10 Dataset(%) (SMK:Spatial Markov
Model)

Method Average Classification Rate

SMK [17] 77.9

EMK [2] 79.90±1.73

ScSPM [28] 86.2±1.01

KSRSPM 89.43±1.27

Corel10 Dataset. Corel10 [18] contains 10 categories: skiing, beach, buildings,
tigers, owls, elephants, flowers, horses, mountains and food. Each category con-
tains 100 images. Following the work of Lu et al. [18], we randomly select 50 images
as training data and use the rest as test data. The results are listed in Table 4.

Results Analysis. From Table 1-4, we can see that on Scene, UIUC-Sports,
Corel10, KSRSPM outperforms EMK around (5.7 ∼ 10.4)%, and outperforms
ScSPM around (2.2 ∼ 3.4)%. For Caltech 256, due to too many classes, the
improvements are not very substantial, but still higher than EMK and ScSPM.
We also list the confusion matrices of Scene, UIUC-Sports and Corel10 datasets
in Figure 1 and Figure 2. The entry located in ith row, jth column in confusion
matrix represents the percentage of class i being misclassified to class j. From
the confusion matrices, we can see that some classes are easily be misclassified
to some others.

Feature Quantization Error. Define Average Quantization Error ( AverQE )
as: AverQE = 1

N

∑N
i=1 ‖φ(xi)−Uvi‖2

F . It can be used to evaluate the information
loss in the feature quantization process. To retain more information, we hope the
feature quantization error can be reduced. We compute the AverQE of our kernel
sparse representation (KSR) and Sparse coding (Sc) on all the features used for
codebook generation, and list them in Table 5. From results we can see that
kernel sparse representation can greatly decrease the feature quantization error.
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highway 0 2.5 0.1 89.7 2.92 1.15 1.77 0.83 0.63 0 0 0.21 0 0 0.21
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store 0 0.08 0.39 0 3.64 1.86 0 0.54 0.85 1.55 1.47 3.95 2.87 3.88 78.9

Fig. 1. Confusion Matrix on Scene 15 dataset(%)
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owls 0.33 4.67 84.33 0.00 1.00 0.67 0.00 3.00 2.33 3.67
tiger 1.00 0.00 0.00 99.00 0.00 0.00 0.00 0.00 0.00 0.00
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Fig. 2. Confusion Matrices on UIUC-Sports and Corel10(%)

Table 5. Average Feature Quantization Error on Different datasets

Scene Caltech 256 Sport Corel

Sc 0.8681 0.9164 0.8864 0.9295

KSR 9.63E-02 5.72E-02 9.40E-02 4.13E-02

This may be the reason that our KSRSPM outperforms ScSPM. The results
also agree with our assumption that sparse coding in high dimensional space
can reduce the feature quantization error.

4 Application II: Kernel Sparse Representation for Face
Recognition

4.1 Sparse Coding for Face Recognition

For face recognition, “If sufficient training samples are available from each class,
it would be possible to represent the test samples as a linear combination of
those training samples from the same class [26]”.

Suppose there are N classes in all, and the training instances for class i are
Ai = [ai,1, . . . , ai,ni ] ∈ R

d×ni , in which each column corresponds to one instance.
Let A = [A1, . . . , AN ] ∈ R

d×∑N
i=1 ni be the training set, and y ∈ R

d×1 be the
test sample. When noise e exists, the problem for face recognition [26] can be
formulated as follows:

min ‖x0‖1 s.t. y = AxT + e = [A I ][xT eT ]T = A0x0 (14)

sparse coding based image recognition aims at selecting only a few images
from all the training instances to reconstruct the images to be tested. Let
αi = [αi,1, . . . , αi,ni ](1 ≤ i ≤ N) be the coefficients corresponds to Ai in x0.
The reconstruction error by using the instances from class i can be computed
as: ri(y) = ‖y − Aiαi‖2. Then the test image is assigned to the category that
minimizes the reconstruction error: identity(y) = arg mini {r1(y), . . . , rN (y)}.

4.2 Kernel Sparse Representation for Face Recognition

Kernel method can make the features belonging to the same category closer to
each other [22]. Thus we apply kernel sparse representation in face recognition.
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Firstly, the �1 norm on reconstruction error is replaced by using �2 norm(We
assume that the noise may not be sparsely reconstructed by using the training
samples). By mapping features to a high dimensional space: y −→ φ(y), A =
[a1,1, . . . , aN,nN ] −→ A = [φ(a1,1), . . . , φ(aN,nN )], we obtain the objective of kernel
sparse representation for face recognition:

min λ‖x‖1 + ‖φ(y) −Ax‖2
2 (15)

In which the parameter λ is used to balance the weight between the sparsity
and the reconstruction error. Following the work of John Wright et al., the test
image is assigned to the category which minimizes the reconstruction error in
the high dimensional feature space.

4.3 Evaluation on Extended Yale B Database

We evaluate our method on Extended Yale B Database [7], which contains 38
categories, 2414 frontal-face images. The cropped image size is 192×168. Follow-
ing the work [26], we randomly select a half as training images in each category,
and use the rest as test. The following five features are used for evaluation:
RandomFace [26], LaplacianFace [10], EigenFace [24],FisherFace [1] and Down-
sample [26], and each feature is normalized to unit length by using �2 norm.
Gaussian kernel is used in our experiments: κ(x1, x2) = exp(−γ‖x1 − x2‖2). For
Eigenfaces, Laplacianfaces, Downsample and Fisherfaces, we set γ = 1/d where
d is the feature dimension. For Randomfaces, γ = 1/32d.

The Effect of λ. We firstly evaluate λ by using 56D Downsample Feature. We
list the results based on different λ in Table 6. When λ 	= 0, as λ decreases, the
performance increases, and the proportion of non-zero elements in coefficients
increases. But computational time also increases. When λ = 0, it happens to be
the objective of Efficient Match Kernel, but the performance is not good as that
in the case of λ 	= 0. This can show the effectiveness of the sparse term.

Result Comparison. Considering both the computational cost and the accu-
racy in Table 6, we set λ = 10−5. The experimental results are listed in Table 7.
All the results are based on 10 times independent experiments. Experimental
results show that kernel sparse representation can outperform sparse coding in
face recognition.

Table 6. The Effect of Sparsity Parameter: 56D Downsample Feature (Here sparsity
is percentage of non-zeros elements in sparse codes)

λ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 0

sparsity(%) 0.58 0.75 0.88 2.13 4.66 8.35 16.69 -

reconstruction error 0.2399 0.1763 0.1651 0.1113 0.0893 0.0671 0.0462 -

time(sec) 0.0270 0.0280 0.0299 0.0477 0.2445 0.9926 6.2990 -

accuracy(%) 76.92 84.12 85.19 90.32 91.65 93.30 93.47 84.37
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Table 7. Performance of Sparse Coding for Face Recognition(%)

Feature Dimension 30 56 120 504

Sc [26] 86.5 91.63 93.95 96.77
Eigen KSR 89.01 94.42 97.49 99.16

Sc [26] 87.49 91.72 93.95 96.52
Laplacian KSR 88.86 94.24 97.11 98.12

Sc [26] 82.6 91.47 95.53 98.09
Random KSR 85.46 92.36 96.14 98.37

Sc [26] 74.57 86.16 92.13 97.1
Downsample KSR 83.57 91.65 95.31 97.8

Sc [26] 86.91 NA NA NA
Fisher KSR 88.93 NA NA NA

To further illustrate the performance of KSR, we calculate the similarity be-
tween the sparse codes of KSR and Sc in three classes(each classes contains 32
images). We list the results in Figure 3, in which the entry in (i, j) is the sparse
codes similarity (normalized correlation) between image i and j. We know that
a good sparse coding method can make the sparse codes belonging to same class
more similar, therefore, the sparse codes similarity should be block-wise. From
Figure 3 we can see that our KSR can get more discriminative sparse codes than
sparse coding, which facilitates the better performance of the image recognition.

Similarity bettwen the sparse codes of KSR
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Fig. 3. Similarity between the sparse codes of KSR and Sc

5 Conclusion

In this paper, we propose a new technique: Kernel Sparse Representation, which
is the sparse coding technique in a high dimensional feature space mapped by
implicit feature mapping feature. We apply KSR to image classification and
face recognition. For image classification, our proposed KSRSPM can both be
regarded as an extension of ScSPM and an generalization of EMK. For face
recognition, KSR can learn more discriminative sparse codes for face category
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identification. Experimental results on several publicly available datasets show
that our KSR outperforms both ScSPM and EMK, and achieves state-of-the-art
performance.
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