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Kernel Spectral Clustering for dynamic data Multiple Kernel

Learning

D. Peluffo-Ordóñez S. Garcı́a-Vega R. Langone J. A. K. Suykens G. Castellanos-Domı́nguez

Abstract— In this paper we propose a kernel spectral

clustering-based technique to catch the different regimes experi-
enced by a time-varying system. Our method is based on a mul-
tiple kernel learning approach, which is a linear combination of
kernels. The calculation of the linear combination coefficients is
done by determining a ranking vector that quantifies the overall
dynamical behavior of the analyzed data sequence over-time.
This vector can be calculated from the eigenvectors provided by
the the solution of the kernel spectral clustering problem. We
apply the proposed technique to a trial from the Graphics Lab
Motion Capture Database from Carnegie Mellon University, as
well as to a synthetic example, namely three moving Gaussian
clouds. For comparison purposes, some conventional spectral
clustering techniques are also considered, namely, kernel k-
means and min-cuts. Also, standard k-means. The normalized
mutual information and adjusted random index metrics are
used to quantify the clustering performance. Results show the
usefulness of proposed technique to track dynamic data, even
being able to detect hidden objects.

I. INTRODUCTION

Spectral clustering has taken an importan place in pattern

recognition due to its capability of accurately grouping

data having complex structure. There are several spectral

clustering approaches mainly related to graph partitioning

[1]. The most suitable techniques are those based on kernels.

Nevertheless, one of the biggest disadvantages of spectral

clustering techniques is that most of them have been designed

for static data analysis, that is to say, without taking into

consideration the changes along the time. Some works have

been developed taking into account the temporal information

for the clustering task, mainly in segmentation of human

motion [2], [3]. Other approaches include either the design

of dynamic kernels for clustering [4], [5] or a dynamic kernel

principal component analysis (KPCA) based model [6], [7].

Another study [8] modifies the primal functional of a KPCA

formulation for spectral clustering to add the memory effect.

Another approach, known as multiple kernel learning

(MKL), has emerged to deal with different issues in machine

learning, mainly, regarding support vector machines (SVM)

[9], [10]. The intuitive idea of MKL is that learning can be

enhanced when using different kernels instead of an unique

kernel. Indeed, local analysis provided by each kernel is of

benefit to examine the structure of the whole data.

From this idea, in this work, we introduce a dynamic

kernel spectral clustering (DKSC) approach that is based on
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MKL. Our approach uses the so-called kernel spectral clus-

tering (KSC), introduced in [11], which is based on KPCA

formulation from least-square support vector machines and

has shown to be a powerful tool for clustering hardly separa-

ble data allowing also out-of-samples extensions [12]. MKL

is used in such a manner that kernel matrices are computed

from an input data sequence, in which each data matrix

represents a frame in a different time instance. Afterwards, an

accumulative kernel is calculated as a linear combination of

the previously obtained kernels where the weighting factors

are obtained by ranking each sample contained in the frame.

Such ranking is done by combining the relevance procedure

proposed in [13] and the MKL approach presented in [14].

Experiments are carried out using two databases. On one

hand, a subject from Graphics Lab Motion Capture Database

from Carnegie Mellon University, here called Motion Cap-

tion. On the other hand, an artificial three-moving Gaussian

clouds in which the mean of each cloud is changed along the

frames. For comparison purposes, some conventional spectral

clustering techniques are also considered, namely, kernel k-

means (KKM) and min-cuts (MC) [1]. Also, standard k-

means is considered. The normalized mutual information

[15] and adjusted random index [16] metrics are used to

quantify the clustering performance.

II. THEORETICAL BACKGROUND

A. Kernel Spectral Clustering

The kernel spectral clustering (KSC), introduced in [11], is

aimed to split a data set of N samples into K homogeneous

and disjoint subsets. Define a data matrix X ∈ R
N×d

in the form X = [x⊤
1 , . . . ,x

⊤

N ]⊤, where xi ∈ R
d is a

sample vector. Data are first mapped and then projected.

Assume a mapping function φ(·), which maps data from

the original dimension to a higher one dh, so: φ(·) :
R

d → R
dh ,xi 7→ φ(xi). Then, the mapping matrix Φ =[

φ(x1)
⊤, . . . ,φ(xN )⊤

]⊤
, Φ ∈ R

N×dh . The projections

E ∈ R
N×ne follow a latent variable model in the form:

E = ΦW + 1N ⊗ b⊤, (1)

Notation ⊗ the Kronecker product and term ne denotes

the number of considered support vectors. Then, according

to [11] within a least-square-support vector machine frame-

work, a matrix primal formulation of KSC can be stated as:



min
E,W ,b

1

2N
tr(E⊤V EΓ )−

1

2
tr(W⊤W ) (2a)

s.t. E = ΦW + 1N ⊗ b⊤ (2b)

where Γ = Diag([γ1, . . . , γne
]) is a diagonal matrix formed

by the regularization terms. Notations tr(·) and ⊗ denote the

trace and the Kronecker product, respectively.
To solve the KSC problem, we form the corresponding

Lagrangian of previous problem, as follows:

L(E,W ,Γ ,A) =
1

2N
tr(E⊤

V E) −
1

2
tr(W⊤

W )

− tr(A⊤(E −ΦW − 1N ⊗ b
⊤))

where matrix A ∈ R
N×ne contains the Lagrange multiplier

vectors such that A = [α(1), · · · ,α(ne)], and α(l) ∈ R
N is

the l-th vector of Lagrange multipliers.

Then, we determine the Karush-Kuhn-Tucker conditions

by solving the partial derivatives on L(E,W ,Γ ,A). After-

wards, by eliminating the primal variables, the optimization

problem posed in equation (2) is reduced to the following

dual problem:

AΛ = V HΦΦ
⊤A, (3)

where Λ = Diag(λ1, . . . , λne
) is a diagonal matrix formed

by the eigenvalues λl = N/γl, matrix H ∈ R
N×N

is the centering matrix that is defined as H = IN −
1/(1⊤

NV 1N )1N1
⊤

NV , being IN a N -dimensional identity

matrix. In addition, by applying the kernel trick in such a

way that Ω ∈ R
N×N be the kernel matrix Ω = [Ωij ] =

K(xi,xj), i, j ∈ [N ], we have that Ω = ΦΦ
⊤. Notation

K(·, ·) : Rd×R
d → R stands for the kernel function. Notice

that matrix A becomes the eigenvectors. As a result, the set

of projections can be calculated as follows:

E = ΩA+ 1N ⊗ b⊤ (4)

Taking into account that the kernel matrix represents the

similarity matrix of a graph with K connected subgraphs

and assuming V = D−1 being D ∈ R
N×N the degree

matrix defined as D = Diag(Ω1N ); we can infer that the

K − 1 eigenvectors associated to the largest eigenvalues are

cluster indicators [12]. Therefore, value ne is fixed to be

K − 1. Afterwards, since each cluster is represented by a

single coordinate in the K − 1-dimensional eigenspace, we

can encode the eigenvectors considering that two points are

in the same cluster if they are in the same orthant in the

corresponding eigenspace [12]. Therefore, by binaryzing the

rows of the projection matrix E, we obtain the code book

as Ẽ = sgn(E), where sgn(·) is the sign function. Thus, its

corresponding rows are codewords, which allow to form the

clusters according to the minimal Hamming distance.

B. Multiple Kernel Learning

Let us consider a sequence of Nfm input data ma-

trices such that {X(1), . . . ,X(Nfm)}, where X(t) =

[x
(t)⊤
1 , . . . ,x

(t)⊤
N ]⊤ is the data matrix associated to time

instance t. In order to take into consideration the time

effect within the computation of kernel matrix, we can

apply a Multiple Kernel Learning approach, namely a linear

combination of all the input data matrices until the current

matrix. Then, at instance T , the accumulated kernel matrix

can be computed as:

Ω̃(T ) =

T∑

t=1

ηtΩ
(t) (5)

where η = [η1, . . . , ηT ] are the weighting coefficients or

coefficients and Ω(t) is the kernel matrix associated to X(t)

such that Ω
(t)
ij = K(x

(t)
i ,x

(t)
j ).

Regarding the weighting factor estimation, we take ad-

vantage of the relevance ranking introduced in [13], which

is aimed to selecting a subset of features founded on spectral

properties of the Laplacian of data matrix. This approach is

based on a continuous ranking of the features by means of a

least-squares maximization problem. Here, instead of using

this approach for feature selection, we introduce a new for-

mulation able of getting ranking values for the corresponding

frames in the analyzed sequence. Also, it is worth mentioning

that the proposed approach coheres to the clustering method.

In this connection, the optimization problem formulation is

as follows: Consider the frame matrix X which is formed

in such a way that each row is a frame by letting x̂t is the

vectorization of coordinates representing the t-th frame. In

other words, X = [x̂⊤
1 , . . . , x̂T ] and x̂t = vec(X(t)). Also,

consider its corresponding kernel matrix Ω̂ ∈ R
Nfm×Nfm

such that Ω̂ij = K(x̂i, x̂j). By recalling equation (4), an

energy maximization problem can be written as:

max
U

tr(U⊤Ω̂⊤Ω̂U); s.t. U⊤U = Ine
(6)

Note that previous statement comes from a liner projection

of kernel matrix in the form Z = ΩU , where U is an

orthonormal matrix in size Nfm × n̂e when considering

n̂e support vectors. According to the clustering method

described in section II-A, we can infer that

tr(U⊤Ω̂⊤Ω̂U) = tr(Z⊤Z) = tr(Λ̂2),

and therefore a feasible solution of the problem is U = A.

Similarly as the MKL approach explained in [14], we intro-

duce coefficient vector η ∈ R
N as the solution of minimizing

‖Z−Z̃‖22 subject to some orthogonality conditions, being Z̃

a lower-rank representation of Z. The solution can be written

as:

η =

n̂e∑

l=1

λ̂lα̂
(l) ◦ α̂(l) (7)

where ◦ denotes Hadamard (element-wise) product. Accord-

ingly, the ranking factor ηi is a single value representing an

unique frame in a sequence. Notation â means that variable

a is related to Ω̂.



C. Dynamic KSC

By combining MKL and KSC, we introduce a

KSC for dynamic data, termed DKSC. This approach

works as follows: Given a sequence of data matrices

{X(1), . . . ,X(Nfm)} representing frames, being Nfm the

number of frames, the corresponding kernel matrices are

calculated {Ω(1), . . . ,Ω(Nfm)} with Ω
(t)
ij = K(x

(t)
i ,x

(t)
j ).

Then, the weighting factor or coefficient vector η is calcu-

lated by using (7) with the frame matrix X . Afterwards,

MKL is applied by means of equation (5) to obtain the

accumulated kernel matrices {Ω̃(1), . . . , Ω̃(Nfm)}. Finally,

assuming a certain number of clusters K , KSC is applied

over each pair (X(t), Ω̃(t)) with t ∈ {1, . . . , Nfm}. Since

accumulated kernel matrix is used, when clustering data

at time instance T the information of the previous frame

clustering, besides the current frame, is taken into account.

Hence, this approach can be called as dynamic.

III. EXPERIMENTAL SET-UP

A. Databases

1) Motion caption: The data used in this work was

obtained from mocap.cs.cmu.edu. The database was cre-

ated with funding from NSF EIA-0196217. Such database

is named Graphics Lab Motion Capture Database from

Carnegie Mellon University. In this work, we use the trial

number 1 (01 01.bvh), particularly, the subject #1 (progres-

sive jump). The two first jumps are considered, such that

the first one is between frames 1 and 280, while the second

one between 281 and 560. Each frame X(t) per jump is

in size 280 × 114 whose rows contain the vectorization

of coordinates X , Y and Z of the subject’s body points,

therefore each x̂i is the dimension of 31920. Note that we

consider two jumps which means Nfm = 2. Then, frame

matrix X is in size 2× 31920.
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Fig. 1. Motion Caption Database

2) Three-moving Gaussian clouds: An artificial three

dimensional Gaussian data sequence is considered, which

consists of Gaussian data with 3 clusters in such a way

the deviation standard is static for all the frames and means

are decreasing to move per frame each cluster towards each

other. Namely, for a total of Nfm frames the mean and

standard deviation vectors for t-th frame are respectively in

the form µ = [µ1, µ2, µ3] = [−5 − t, 0,−5 − 0.5 ∗ t] and

s = [s1, s2, s3] = [0.1, 0.3, 0.8], being µj and sj the mean

and standard deviation corresponding to the j-th cluster,

respectively, with j ∈ {1, 2, 3} and r ∈ {1, . . . , Nfm}. The

number of data samples per cluster is 200 and the considered

total of frames is 10. Thus, each frame X(t) is in size 600×3
which means that x̂i is of length 1800 as well as frame matrix

X in size 10× 1800. In Fig. 5, some frames of moving

Gaussian clouds are depicted.
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Fig. 2. Three-moving Gaussian clouds

In addition, before starting the clustering process, data ma-

trices from the both above databases are z-score normalized

regarding their columns.

B. Clustering and Kernel Parameters

All the experiments are performed under specific initial

parameters, namely, the number of clusters K per each

frame and the kernel function. For Motion Caption database

(subject #1), parameter K is set to be 3, in order to recognize

three underlying movements. In the case of moving Gaussian

clouds, we beforehand know that K = 3. The kernel matrices

associated to the data sequence are calculated by the local-

scaled Gaussian kernel [17]. Then, each entry of kernel

matrix related to frame t is given by:

Ω
(t)
ij = K(xi,xj) = exp

(
−
‖xi − xj‖

2
2

σiσj

)
, (8)

where ‖ · ‖ denotes the Euclidean norma and the scale

parameter σi is chosen as the Euclidean distance between

the sample xi and its corresponding m-th nearest neighbor.

Free parameter m is empirically set by varying it within an

interval and then it is chosen as that one showing greatest

Fisher’s criterion value. In the case of Motion Caption, we

obtain m = 10; while m = 10 for the moving Gaussian

clouds. To compute Ω̂ is applied (8) as well. The clustering



for the pair (X , Ω̂) is done by setting the number K = Nfm

and m as the entire number closest to 0.1Nfm for Motion

Caption, and 1 for moving-Gaussian clouds.

For comparison purposes, kernel K-means (KKM) and

min-cuts(MC) are also considered [1], which are applied over

the data sequence by applying the same MKL approach as

as that considered for KSC. The clustering performance is

quantified by two metrics: normalized mutual information

(NMI) [15] and adjusted random index (ARI) [16]. Both

metrics return values ranged into the interval [0, 1], being

closer than 1 when better is the clustering performance.

IV. RESULTS AND DISCUSSION

A. Results for Motion Caption Database

Motion caption database has not a ground truth to apply

label-based metric to assess the clustering performance.

However, because weighting factors η are ranking values

related to samples, we can considere each instance (man

position) as a sample. Then, KSC can be applied to generate

the eigenvectors needed to compute η. If analyzing each

jump separately, corresponding η vectors should provide

information about the clusters contained in the frame (jump).

Fig. 3 shows the η vector corresponding to each jump.
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Fig. 3. MKL weighting factors for Subject #1

We can observe that η has a multi-modal shape. According

to (7), η is computed from the eigenvectors α(l). Such

eigenvectors point out the direction where samples have the

most variability measured in term of a generalized inner

product (Φ⊤Φ). Then, we can argue that each mode might

represent a different cluster. Under this assumption, we

obtain the reference label vectors by detecting the local

minima, considering each inflection as a cluster.

In Fig. 4, we can notice that for both jumps

DKSC identifies three meaningful movements, namely:

starting/preparing the jump, on the air and

arrival to ground. In contrast, the remaining methods

cluster either no contiguos instances what does not make

sense since they are in a sequence, and incomplete underlying

movements, i.e., incomplete jumps or static position split into

two clusters.
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Fig. 4. Clustering results for Subject #1

Despite of that kernel k-means and min-cuts are applied

within the proposed MKL framework, DKSC outperforms

them. It can be also appreciated in Table I. Results are ob-



tained by comparing the clustering indicators of each method

with the determined reference labels. Our approach reaches

greater values than the other methods, then in terms of NMI

and ARI it is posible to affirm that DKSC is a suitable

approach to cluster frames in this kind of applications.

Measure Frame
Clustering Method

DKSC KKM KM MC

NMI
1 0.9181 0.8427 0.4736 0.7065
2 0.7624 0.7202 0.6009 0.4102

ARI
1 0.9448 0.8761 0.3777 0.6239
2 0.7000 0.6762 0.4991 0.2755

TABLE I

NMI AND ARI FOR Subject # 1 CLUSTERING PERFORMANCE

B. Results for Three-moving Gaussian clouds

In Fig 5, we can appreciate 4 selected frames from the

total of 10 representing the three-moving Gaussian clouds.

In particular, we select 1, 7, 8 and 10 since they show

significant changes in the performance of considered clus-

tering methods. We can appreciate when Gaussian clouds

are relatively far to each other, all considered clustering

methods work well. In contrast, when they are closer –

showing overlapping– the best performance is achieved by

DKSC. K-means, since it is a center-based approach, is not

able to identify the clusters properly. Even, kernel k-means,

despite of the use of MKL, no performs a right clustering in

all cases. For instance, note that in frame 7 and 8 clusters are

mixed. This can be attributed to the random initial centers

selected to start the algorithm. The NMI and ARI values for

the clustering performance are shown in Table II. Again, we

can appreciate that proposed method outperforms kernel k-

means despite the dynamic scheme as well as well as the

standard k-means.

Then, our approach is an alternative to manage applica-

tions involving both hidden objects and dynamic data.

V. CONCLUSIONS

This work introduces an approach to tracking time varying

data by means of spectral clustering within a multiple kernel

framework. We proved that a linear combination of kernels

is an alternative to cluster dynamic data taking into account

past information, where coefficients or weighting factors can

be obtained from an eigenvector-based problem. Also, we

verified that there exists a direct relationship between the

weighting factors and the supposed ground truth.

As a future work, we are aiming to exploit more spectral

properties and techniques, mainly, those ones based on

multiple kernel learning to design clustering approaches able

to deal with dynamic data.
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GAUSSIAN CLOUDS DATABASE
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