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Summary. This article proposes a class of kernel stick-breaking processes (KSBP) for un-

countable collections of dependent random probability measures. The KSBP is constructed

by first introducing an infinite sequence of random locations. Independent random probabil-

ity measures and beta-distributed random weights are assigned to each location. Predictor-

dependent random probability measures are then constructed by mixing over the locations,

with stick-breaking probabilities expressed as a kernel multiplied by the beta weights. Some

theoretical properties of the KSBP are described, including a covariate-dependent predic-

tion rule. A retrospective MCMC algorithm is developed for posterior computation, and the

methods are illustrated using a simulated example and an epidemiologic application.
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1. Introduction

This article focuses on the problem of choosing priors for an uncountable collection of random

probability measures, GX = {Gx : x ∈ X}, where X is a Lesbesgue measurable subset of
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<p and Gx is a probability measure with respect to (Ω,F), with Ω the sample space and F

the corresponding Borel σ-algebra. A motivating application is the problem of estimating

the conditional density of a response variable using the mixture specification f(y |x) =∫
f(y |x, φ)dGx(φ), with f(y |x, φ) a known kernel and Gx an unknown probability measure

indexed by the predictor value, x = (x1, . . . , xp)
′.

The problem of defining priors for dependent random probability measures has received

increasing attention in recent years. Most approaches focus on generalizations of the Fergu-

son (1973; 1974) Dirichlet process (DP) prior, with methods varying in how they incorpo-

rate dependency. One approach is to include a regression in the base measure (Cifarelli and

Regazzini, 1978), which has the disadvantage of capturing dependency only in aspects of the

distribution characterized by the base parametric model.

Much of the recent work has instead relied on generalizations of Sethuraman (1994)’s

stick-breaking representation of the DP. If G is assigned a DP prior with precision α and

base measure G0, denoted G ∼ DP (αG0), then the stick-breaking representation of G is

G =
∞∑
h=1

phδθh
, ph = Vh

h−1∏
l=1

(1− Vl), Vh
iid∼ beta(1, α), θh

iid∼ G0, (1)

where δθ is a probability measure concentrated at θ. MacEachern (1999; 2001) proposed the

dependent DP (DDP), which generalizes (1) to allow a collection of unknown distributions

indexed by x by assuming fixed weights p = (ph, h = 1, . . . ,∞) while allowing the atoms

θ = (θh, h = 1, . . . ,∞) to vary with x according to a stochastic process. The DDP has

been successfully applied to ANOVA (De Iorio et al., 2004), spatial modeling (Gelfand et

al., 2005), functional data (Dunson and Herring, 2006), and time series (Caron et al., 2006)

applications.

Noting limited flexibility due to the fixed weights assumption, Griffin and Steel (2006)

and Duan et al. (2006) have recently developed methods to allow p to vary with predictors.

Griffin and Steel’s (2006) approach is based on an innovative order-based DDP, which in-
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corporates dependency by allowing the ordering of the random variables {Vh, h = 1, . . . ,∞}

in the stick-breaking construction to depend on predictors. Motivated by spatial applica-

tions, Duan et al. (2006) instead propose a multivariate extension of the stick-breaking

representation. An alternative to these approaches is to incorporate dependency through

weighted mixtures of independent DPs. Müller et al. (2004) used this idea to allow depen-

dency across experiments, while Dunson (2006) and Pennell and Dunson (2006) considered

discrete dynamic settings.

A conceptually-related idea was proposed by Dunson, Pillai and Park (2006), who defined

a prior for GX conditionally on a sample X = (x1, . . . ,xn)
′ as follows:

Gx =
n∑
j=1

(
γjK(x,xj)∑n
l=1 γlK(x,xl)

)
G∗j ,

γj ∼ gamma(κ, nκ), G∗j ∼ DP (αG0), j = 1, . . . , n, (2)

which expresses Gx as a weighted mixture of independent random probability measures

introduced at the observed predictor values. Here, γ = (γ1, . . . , γn)
′ is a vector of random

weights on the n different bases, located at xj for j = 1, . . . , n, K : <p × <p → [0, 1] is a

bounded kernel function, and G∗j is a DP random basis measure. Because bases located close

to x are assigned higher weight, expression (2) accommodates spatial dependency.

Although prior (2) has had good performance in several applications, the sample depen-

dence is problematic from a Bayesian perspective and results in some unappealing properties.

For example, the specification lacks reasonable marginalization and updating properties. If

we define a prior of the form (2) based on a particular sample realization X, then we do not

obtain a prior of the same form based on S ⊂ X or S = [X′,Xnew]′, with Xnew denoting

additional samples.

In developing a prior for GX , we would also like to generalize the Dirichlet process

prediction rule, commonly referred to as the Blackwell and MacQueen (1973) Pólya urn

scheme, to incorporate predictors. Assuming φi ∼ G, with G ∼ DP (αG0), one obtains the
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DP prediction rule upon marginalizing over the prior for G:

P (φ1 ∈ ·) = G0(·), P (φi ∈ · |φ1, . . . , φi−1) =
(

α

α+ i− 1

)
G0(·) +

i−1∑
j=1

(
1

α+ i− 1

)
δφj

(·). (3)

The DP prediction rule forms the basis for commonly-used algorithms for efficient posterior

computation in DP mixture models (MacEachern, 1994).

The DP prediction rule induces clustering of the subjects according to a Chinese Restau-

rant Process (CRP) (Aldous, 1985; Pitman, 1996). This clustering behavior is often exploited

as a dimensionality reduction device and a tool for exploring latent structure (Dunson et

al., 2006; Kim et al., 2006; Lau and Green, 2006; Medvedovic et al., 2004). The DP and

related approaches, including product partition models (Barry and Hartigan, 1992; Quintana

and Iglesias, 2003) and species sampling models (Pitman, 1996; Ishwaran and James, 2003),

assume exchangeability. In many applications, it is appealing to relax the exchangeability

assumption to allow predictor-dependent clustering.

Motivated by these issues, this article proposes a class of kernel stick-breaking processes

(KSBP) to be used as a sample-free prior for GX , which induces a covariate-dependent

prediction rule upon marginalization. Section 2 proposes the formulation and considers basic

properties. Section 3 presents the prediction rule. Section 4 develops a retrospective MCMC

algorithm (Papaspiliopoulos and Roberts, 2006) for posterior computation. Section 5 applies

the approach to simulated examples. Section 6 contains an epidemiologic application, and

Section 7 discusses the results. Proofs are included in Appendices.

2. Predictor-Dependent Random Probability Measures

2.1 Formulation and Special Cases

Let GX ∼ P, with P a probability measure on (Ψ, C), where Ψ is the space of uncountable

collections of probability measures on (Ω,F) indexed by x ∈ X and C is a corresponding

σ-algebra. Our focus is on choosing P .
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We first introduce a countable sequence of mutually independent random components,

{Γh, Vh, G∗h, h = 1, . . . ,∞},

where Γh
iid∼ H is a location, Vh

ind∼ beta(ah, bh) is a probability weight, and G∗h
iid∼ Q is

a probability measure. Here, H is a probability measure on (L,A), where A is a Borel

σ-algebra of subsets of L, and L is a Lesbesgue measurable subset of <p that may or may

not correspond to X . In addition, Q is a probability measure on the space of probability

measures on (Ω,F). For example, Q may correspond to a Dirac measure at a random

location, a Dirichlet process, or a species sampling model (Pitman, 1996; Ishwaran and

James, 2003).

Using these components, the kernel stick-breaking process (KSBP) is defined as follows:

Gx =
∞∑
h=1

W (x;Vh,Γh)
∏
l<h

{1−W (x;Vl,Γl)}G∗h,

W (x;Vh,Γh) = VhK(x,Γh), ∀x ∈ X , (4)

where K : <p × <p → [0, 1] is a bounded kernel function, which is initially assumed to

be known. Note that (4) formulates Gx as a predictor-dependent mixture over an infinite

sequence of basis probability measures, with G∗h located at Γh, for h = 1, . . . ,∞. Bases

located close to x and having a smaller index, h, will tend to receive higher probability

weight. In this manner, the KSBP accommodates dependency between Gx and Gx′ .

Let πh(x;Vh,Γh) = W (x;Vh,Γh)
∏
l<h {1 −W (x;Vl,Γl)}, for h = 1, . . . ,∞, with Vh =

(V1, . . . , Vh)
′ and Γh = (Γ1, . . . ,Γh)

′. Then, the following Lemma must hold in order for Gx

to be a well defined probability measure for all x ∈ X :

Lemma 1.
∑∞
h=1 πh(x;Vh,Γh) = 1 a.s. for all x ∈ X if

∞∑
h=1

E[ log {1− VhK(x,Γh)}] = −∞, for all x ∈ X .

For example, when Vh
iid∼ beta(a, b), E[ log {1 − VhK(x,Γh)}] = C(x), where C(x) < 0 is a

constant strictly less than 0, which implies that the conditional of Lemma 1 holds.
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To motivate the form chosen in (4), it is useful to first consider the special case in which

K(x,Γ) = 1 for all (x,Γ) ∈ X ⊗L and G∗h ∼ DP (αG0). In this case, Gx = G, with G

assigned a stick-breaking mixture of Dirichlet processes. Specifically, letting φi ∼ G, φi is

drawn from G∗1 with probability V1, from G∗2 with probability V2(1− V1), and from G∗h with

probability Vh
∏
l<h(1−Vl), for h = 3, . . . ,∞. Here,

∏
l<h(1−Vl) of the unit probability stick

remains to be allocated after assigning probabilities to the first h− 1 basis locations, and Vh

is the proportion of this remaining piece allocated to location Γh.

By choosing a kernel, such as K(x,Γ) = exp(−ψ||x − Γ||) for ψ > 0, we allow these

stick-breaking probabilities to depend on predictors. In particular, φi is drawn from G∗1

with probability V1K(x,Γ1), which decreases monotonically from V1 to 0 as the distance

between x and Γ1 increases. Hence, if x is far from Γ1, the location of the first basis, then

more of the stick will remain to be allocated to other basis locations. The resulting kernel

stick breaking process represents a fundamentally different approach than the order-based

approach of Griffin and Steel (2006) or the multivariate idea of Duan et al. (2006).

Although the kernel stick-breaking formulation is new, a number of previously proposed

formulations arise as special cases when K(x,Γ) = 1 for all (x,Γ) ∈ X ⊗L. When G∗h =

δθh
, θh

iid∼ G0, for h = 1, . . . ,∞, we obtain Gx ≡ G, with G having a stick-breaking prior

in the class considered by Ishwaran and James (2001). In the further special case in which

ah = 1−a and bh = b+h a, we obtain a Pitman-Yor (1997) process for G, with G ∼ DP (λG0)

when a = 0 and b = λ. If we instead let G∗h ∼ DP (αG0), ah = 1, bh = λ, G is assigned a DP

mixture of DPs, which is a two parameter generalization of the Dirichlet process. The DP

mixture of DPs reduces to a DP in the limiting case as either λ→ 0 or α→ 0.

2.2 Conditional Properties

Returning to the general case, we first derive moments of Gx conditionally on the ran-

dom weights V and random locations Γ, but marginalizing out the random basis measures,
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{G∗h, h = 1, . . . ,∞}. Letting G0(B) = EQ{G∗h(B)}, for all B ∈ F , we obtain

E{Gx(B) |V,Γ} =
∞∑
h=1

πh(x;Vh,Γh)EQ{G∗h(B)} = G0(B), ∀B ∈ F . (5)

Due to the lack of dependency on V and Γ, we also have EP{Gx(B)} = G0(B), so that the

prior is centered on the base measure G0. In addition,

E{Gx(B)2 |V,Γ} =
[ ∞∑
h=1

πh(x;Vh,Γh)
2EQ{G∗h(B)2}

]

+
[ ∞∑
h=1

∑
l 6=h

πh(x;Vh,Γh)πl(x;Vl,Γl)EQ{G∗h(B)}EQ{G∗l (B)}
]

=
( ∞∑
h=1

πh(x;Vh,Γh)
2
[
EQ{G∗h(B)2} −G0(B)2

])
+G0(B)2

= ||π(x;V,Γ)||2VQ(B) +G0(B)2, (6)

where VQ(B) = VQ{G∗h(B)} and Var{Gx(B) |V,Γ} = ||π(x;V,Γ)||2VQ(B). Following a simi-

lar route, the correlation coefficient is

corr{Gx(B), Gx′(B) |V,Γ} =

∑∞
h=1 πh(x;Vh,Γh)πh(x

′;Vh,Γh){∑∞
h=1 πh(x;Vh,Γh)2

}1/2{∑∞
h=1 πh(x

′;Vh,Γh)2
}1/2

=
< π(x;V,Γ), π(x′;V,Γ) >

||π(x;V,Γ)|| · ||π(x′;V,Γ)||
= ρ(x,x′;V,Γ). (7)

From the Cauchy-Schwarz inequality, ρ(x,x′;V,Γ) ≤ 1, with the value → 1 in the limit as

x → x′, assuming limx→x′ K(x,Γ) = K(x′,Γ), for all Γ ∈ L. This expression is quite intu-

itive, being a simple normed cross product of the weight functions. An appealing property

is that the correlation coefficient is free from the set B, so that a single quantity can be

reported for each x,x′ pair. Interestingly, the correlation coefficient does not depend on the

choice of Q, the probability measure generating the bases at each of the locations.

2.3 Marginal Properties

To obtain additional insight into the properties of the KSBP, it is interesting to marginalize

out the random weights, V, and random locations, Γ. Let Kh(x) ∼ Fx denote the random

variable obtained in the transformation from Γh ∼ H to K(x,Γh). Because the random
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locations are iid, we have Kh(x)
iid∼ Fx, for h = 1, . . . ,∞. In addition, the random variables

Kh(x) and Kh(x
′) are dependent, while Kh(x) and Kl(x

′) are independent, for h 6= l.

Letting Uh(x) = VhKh(x), for h = 1, . . . ,∞, and Ph(x) = Uh(x)
∏
l<h{1 − Ul(x)}, we

obtain the following alternative representation of the KSBP:

Gx =
∞∑
h=1

Ph(x)G∗h, G∗h ∼ Q, (8)

with dependence in the random weights, P(x) = {Ph(x), h = 1, . . . ,∞} and P(x′) =

{Ph(x′), h = 1, . . . ,∞}, arising through dependence between the components Uh(x) and

Uh(x
′), for h = 1, . . . ,∞. In the sequel, we focus on the case in which Vh

iid∼ beta(a, b), for

h = 1, . . . ,∞.

Theorem 1. Let µ(x) = E{Uh(x)} and µ(x,x′) = E{Uh(x)Uh(x
′)}. Then, for

any Borel set B, we have

E{Gx(B)Gx′(B)} =
µ(x,x′)VQ(B)

µ(x) + µ(x′)− µ(x,x′)
+G0(B)2

The derivation is in the Appendix. From this expression, it is straightforward to show

V{Gx(B)} =
µ(2)(x)VQ(B)

2µ(x)− µ(2)(x)
, (9)

where µ(2)(x) = µ(x,x). In addition, the correlation coefficient has the simple form:

corr{Gx(B), Gx′(B)} =
[

µ(x,x′)

µ(x) + µ(x′)− µ(x,x′)

][{2µ(x)− µ(2)(x)}{2µ(x′)− µ(2)(x′)}
µ(2)(x)µ(2)(x′)

]1/2
.(10)

Note that this expression is free of B and only depends on the expectation of Uh(x) and

Uh(x)Uh(x
′). Recalling that Uh(x) = VhKh(x) and focusing on Vh ∼ beta(1, λ), we obtain

the modified expression:

corr{Gx(B), Gx′(B)} =
κ(x,x′)

{
(2 + λ) κ(x)

κ2(x)
− 1

}1/2{
(2 + λ) κ(x

′)
κ2(x′)

− 1
}1/2

(1 + λ/2){κ(x) + κ(x′)} − κ(x,x′)
, (11)

where κ(x) = E{Kh(x)}, κ2(x) = E{Kh(x)2} and κ(x,x′) = E{Kh(x)Kh(x
′)}. This expres-

sion is useful in considering the correlation structure induced for different choices of H and
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K, as well as the impact of the hyperparameter λ. For example, note that when the first

two moments of Uh(x) are free from x, expression (11) reduces to

corr{Gx(B), Gx′(B)} =

[
(2 + λ)κ

κ2

− 1

]/[
(2 + λ)κ

κ(x,x′)
− 1

]
, (12)

dropping the dependency on x in κ and κ2.

For some special cases of H and K, the moments of Uh(x) and Uh(x)Uh(x
′) can be

calculated in closed form, so that the above expressions are also available in closed form.

Theorem 2 focuses on rectangular kernels, with Vh ∼ beta(1, λ) and the predictor space X

assumed to be bounded, focusing on the unit hypercube without loss of generality. Similar

closed form results can be obtained for Gaussian kernels (details available from the authors

upon request).

Theorem 2. Suppose X = [0, 1]p and L =
⊗p

j=1[−ψj, 1 + ψj], with ψj > 0 for

j = 1, . . . , p so that X ⊂ L. Assume H is a uniform probability measure and let

K(x,Γh) = 1
(
|xj − Γhj| < ψj, j = 1, . . . , p

)
. Then, for any x ∈ X

E{Uh(x)m} =
( m∏
l=1

l

λ+ l

) p∏
j=1

(
2ψj

1 + 2ψj

)

E{Uh(x)Uh(x
′)} =

(
1

1 + λ

)(
2

2 + λ

) p∏
j=1

(∆j(xj, x
′
j)

1 + 2ψj

)
,

where ∆j(xj, x
′
j) = max {0,min(xj + ψj, x

′
j + ψj)−max(xj − ψj, x

′
j − ψj)}.

¿From Theorem 2, it is apparent that the moments of Uh(x) are free from x, while the

expectation of Uh(x)Uh(x
′) depends only on the distance between x and x′. Calculating the

variance, we obtain the simple expression

V{Gx(B)} =
VQ(B)

1 + λ
. (13)

In addition, the correlation coefficient takes the form:

ρ(x− x′;λ,ψ) = corr{Gx(B), Gx′(B)} =
1 + λ

(2 + λ)
∏p
j=1

2ψj

∆j(xj ,x′j)
− 1

, (14)
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which is a function of the distance between x and x′. When (x−x′) /∈ Cψ =
⊗p

j=1[−2ψj, 2ψj],

ρ(x−x′;λ,ψ) = 0. In addition, in the limit as x → x′, ∆j(xj, x
′
j) → 2ψj and ρ(x−x′;λ,ψ) →

1. Hence, the correlation coefficient is bounded between 0 and 1, depending on the distance

between the predictor values.

2.4 Truncations

It is often useful to consider finite approximations to infinite stick-breaking processes. For

example, truncation approximations form the basis for commonly-used computational algo-

rithms for DP mixture models. For previous work on truncations of stick-breaking random

measures, refer to Muliere and Tardella (1998) and Ishwaran and James (2001) among others.

Our development follows that of Ishwaran and James (2001).

We focus on the following truncation approximation to (8):

Gx =
N∑
h=1

Ph(x)G∗h +
(
1−

N∑
h=1

Ph(x)
)
G∗0, G∗h ∼ Q, h = 0, . . . , N, (15)

resulting in GX ∼ PN , where limN→∞PN → P , with P a KSBP. Letting P0(x) denote the

probability mass on G∗0, we have
∑N
h=0 Ph(x) = 1 for all x ∈ X .

Theorem 3. Let Ph(x), h = 1, . . . ,∞, denote the infinite sequence of random

weights in expression (8). For each positive integer N ≥ 1 and positive integer

m ≥ 1, let

TN(m,x) =

( ∞∑
h=N

Ph(x)

)m
, WN(m,x) =

∞∑
h=N

Ph(x)m.

It follows that

E{TN(m,x)} = E[{1−U1(x)}m]N−1, E{WN(m,x)} =
E{TN(m,x)}E{U1(x)m}

1− E[{1− U1(x)}m]
.

Refer to the appendix for a proof. Both expectations decrease exponentially fast in N

suggesting that an accurate approximation may be obtained for moderate N .
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To compare this rate to that corresponding to the N -truncation of a Dirichlet process

prior, we recall that Uh(x) = VhKh(x), with Vh ∼ beta(1, λ), the stick-breaking random

weights from a DP (λH) random measure. It is straightforward to show that

E[{1− U1(x)}m] > E{(1− V1)
m}, for any x ∈ X .

It follows that E{TN(m,x)} for a KSBP (α,G0, λ,H) measure is bounded below by the

respective value for a DP (λH) measure. We use the KSPB(α,G0, λ,H) notation to refer

to the KSBP with Vh ∼ beta(1, λ) and G∗h ∼ DP (αG0). The tightness of the bound depends

on the measureH and the kernelK(·). In the case in whichK(x,x′) = exp(−ψ||x−x′||2) it is

straightforward to show that E{TN(m,x)} increases monotonically with increasing precision

ψ. This is intuitive, as high values of ψ imply little borrowing of information across X ,

necessitating a moderate to large number of random basis measures.

3. Clustering and Prediction Rules

As mentioned in Section 1, one of the most appealing and widely utilized properties of the

Dirichlet process is the simple prediction rule shown in expression (3). In this section, we

obtain a predictor-dependent prediction rule derived by marginalizing over the KSBP prior

for GX shown in expression (4). For tractability, we focus on the special case in which

G∗h = δΘh
, with Θh ∼ G0, for h = 1, . . . ,∞. In this case, there is a single atom, Θh, located

at Γh, so that all subjects allocated to a given location will belong to the same cluster.

Consider the following hierarchical model:

(φi |xi)
ind∼ Gxi

, i = 1, . . . , n

GX ∼ P , (16)

where GX = {Gx : x ∈ X}, P is a KSBP characterized in terms of a precision parameter,

λ, a kernel, K, and a base measure, G0, focusing on the case in which Γh
iid∼ beta(1, λ), for
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h = 1, . . . ,∞. Note that (16) can be equivalently expressed as:

(φi |Zi,xi,Θ)
ind∼ δΘZi

, i = 1, . . . , n

(Zi |xi,V,Γ)
ind∼

∞∑
h=1

πh(xi;Vh,Γh)δh

Vh
iid∼ beta(1, λ)

Γh
iid∼ H

Θh
iid∼ G0, (17)

where Zi indexes the (unobserved) location for subject i. It follows that Pr(φi ∈ · |xi) =

G0(·). As a notation to aid in describing marginal properties, we let

µI = E
{∏
i∈I

Uh(xi)
}
, (18)

where X = (x1, . . . ,xn)
′ is an n × p matrix and I ⊂ {1, . . . , n} is a subset of the integers

between 1 and n. In some important special cases, including rectangular and Gaussian ker-

nels, these moments can be calculated in closed form using a straightforward generalization

of Theorem 2.

Lemma 2. The probability that subjects i and j belong to the same cluster

conditionally on the subjects predictor values, but marginalizing out P , is

Pr(φi = φj |xi,xj) =
µij

µi + µj − µij
, ∀i, j ∈ {1, . . . , n},

with µi, µj, µij defined in (18).

Under the conditions of Theorem 2, the expression in Lemma 2 takes the form:

Pr(φi = φj |xi,xj) =

∏p
j=1 ∆j(xj, x

′
j)

(2 + λ)
∏p
j=1(2ψj)−

∏p
j=1 ∆j(xj, x′j)

, (19)

which reduces to 0 if xi − xj /∈ Cψ =
⊗p

j=1[−2ψj, 2ψj], as xi and xj are not in the same

neighborhood in that case. In addition, as xi → xj, Pr(φi = φj |xi,xj) → 1/(1 + λ), which

corresponds to the clustering probability for the DP prediction rule when φi ∼ DP (λG0).
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Theorem 4. Let N (r,s)
i denote the set of possible r-dimensional subsets of

{1, . . . , s} that include i, let N (r,s)
i,j denote the set of possible r-dimensional sub-

sets of {1, . . . , s} including i and j, and let

ωI =
µI∑#I

t=1(−1)t−1
∑
J∈It

µJ
,

where #I is the cardinality of set I and It is the set of length t subsets of I.

Then, the following prediction rule is obtained on marginalizing out P :

P (φi ∈ · |φ1, . . . , φi−1,x1, . . . ,xi−1) =(
1−

i∑
r=2

(−1)r
∑

I∈N (r,i)
i

ωI

)
G0(·) +

i−1∑
j=1

( i∑
r=2

(−1)r
∑

I∈N (r,i)
i,j

ωI
r − 1

)
δφj

(·).

Note that the resulting law of (φ1, . . . , φn) is not dependent on the ordering of the sub-

jects, and one can obtain equivalent expressions to that shown in Theorem 4 for any order-

ing. For example, this allows one to obtain full conditional prior distributions for φi given

φ(i) = {φ1, . . . , φi−1, φi+1, . . . , φn} and X. Updating these conditional priors with the data,

the collapsed Gibbs sampler of MacEachern (1994) can be applied directly for posterior

computation.

Under the conditions of Theorem 2, we obtain the following simple expression for µI :

µI = E
{∏
i∈I

Uh(xi)
}

= E(V #I
h )

∫ ∏
i∈I

p∏
j=1

1(|xij − Γhj| < ψj)dH(Γh)

=
{ #I∏
l=1

l

l + λ

}{ p∏
j=1

∆j(XI)

1 + 2ψj

}
, (20)

where ∆j(XI) = max [0, 2ψj + mini∈I{xij} −maxi∈I{xij}]. From this result, one can show

that the prediction rule from Theorem 4 reduces to the DP prediction rule in the special

case in which xi = x, for i = 1, . . . , i.

4. Posterior Computation

4.1 Background

13



For DP mixture (DPM) models, there are two main strategies that have been used in develop-

ing algorithms for posterior computation: (1) the marginal approach; and (2) the conditional

approach. Letting φi ∼ G, with G ∼ DP (αG0), the marginal approach avoids computa-

tion for the infinite-dimensional G by relying on the Pólya urn scheme, which is obtained

marginalizing over the DP prior. The most widely used marginal algorithm is the generalized

Pólya urn Gibbs sampler of MacEachern (1994) and West, Müller and Escobar (1994). Ish-

waran and James (2001) extend this approach to a general class of stick-breaking measures,

while Ishwaran and James (2003) consider species sampling priors.

The conditional approach avoids marginalizing over the prior, resulting in greater flex-

ibility in computation and inferences (Ishwaran and Zarepour, 2000). Conditional algo-

rithms typically rely on a truncation approximation to the stick-breaking representation in

(1). In particular, to avoid the impossibility of conducting posterior computation for the

infinitely-many parameters in (1), one approximates (1) by letting VN = 1 and discarding

the N + 1, . . . ,∞ terms. Refer to Ishwaran and James (2001) for a formal justification.

Although the approximation can be shown to be highly accurate for DPM models for N

sufficiently large, one must be conservative in choosing N , which may lead to unnecessary

computation. In addition, by using a finite approximation, one is essentially fitting a fi-

nite mixture model. To avoid these problems, Papaspiliopoulos and Roberts (2006) recently

proposed a retrospective MCMC algorithm, which avoids truncation.

In this section, we propose a conditional approach to posterior computation for KSBP

models, relying on a combined MCMC algorithm that utilizes retrospective sampling and

generalized Pólya urn sampling steps.

4.2 MCMC Algorithm

We focus on the general case in which Vh ∼ beta(ah, bh), K and H have arbitrary forms, and

Q corresponds to a species sampling model. Let θ = (θ1, . . . , θk)
′ denote the k ≤ n unique

14



values of φ = (φ1, . . . , φn)
′, let Si = h if φi = θh denote that subject i is allocated to the hth

unique value, with S = (S1, . . . ,Sn)′, and let Ch = j denote that θh is an atom from G∗j , with

C = (C1, . . . , Ck)′. Let φ(i),θ(i), S(i), C(i), and Z(i) correspond to the vectors φ, θ, S, C, and

Z that would have been obtained without subject i’s contribution. The number of subjects

allocated to the jth location is nj =
∑n
i=1 1(Zi = j), with

∑∞
j=1 nj = n. The index set for

locations, I = {1, 2, . . . ,∞}, consists of two mutually exclusive subsets: occupied locations,

Ioc = {j ∈ I : nj > 0}, and vacant locations, Ivc = {j ∈ I : nj = 0}, so that Ch ∈ Ioc, for

h = 1, . . . , k.

Letting Nh = {i : Zi = h, i = 1, 2, . . . ,∞} denote the subset of the positive integers in-

dexing subjects allocated to location h, {φj, j ∈ Nh} is a species sampling sequence (Pitman,

1996). Hence, it follows from Pitman (1996) and Ishwaran and James (2003) that

P (φi ∈ · |Zi = h,S(i),C(i),θ(i),X) = lih0G0(·) +
∑

j∈N (i)
h

lihjδφj
(·), (21)

whereN (i)
h = Nh

⋂{1, . . . , n}\{i} and {lihj} are the probability weights implied by the species

sampling prediction rule. For example, in the DP special case, we have lih0 = α/(α+#N (i)
h )

and lihj = 1/(α+#N (i)
h ). We obtain the following from (21) by marginalizing out Zi, noting

Pr(Zi = h |xi,V,Γ) = πh(xi;Vh,Γh) = πih for h = 1, . . . ,∞, and grouping together the

subjects with the same unique value:

P (φi ∈ · |S(i),C(i),θ(i),X) = wi0G0(·) +
k(i)∑
j=1

wijδθ(i)j
(·) + wi,k(i)+1G0(·), (22)

with k(i) the length of θ(i) and the weights defined as follows:

wi0 =
∑
h∈I(i)

oc

πih lih0, wij = π
i,C(i)

j

∑
g:S(i)

g =j

l
iC(i)

j g
, j = 1, . . . , k(i), wi,k(i)+1 =

∑
h∈I(i)

vc

πih lih0. (23)

Assuming the likelihood contribution for subject i is f(yi |xi, φi), expression (23) can be

updated to obtain a conditional posterior distribution for φi. From this posterior, we obtain

P (Si = j |y,S(i),C(i),θ(i),X) = qij, (24)
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where qij = ciwij f0(yi |xi) for j = 0, k(i) +1, and qij = ciwij f(yi |xi, θ(i)
j ) for j = 1, . . . , k(i),

with f0(yi |xi) =
∫
f(yi |xi, φ) dG0(φ) and ci a normalizing constant. We update Si by

sampling based on (24). Sampling Si = 0 corresponds to assigning subject i to a new

atom at an occupied location, with CSi
∼ ∑

h∈I(i)
oc
π∗ihδh, where π∗ih = πih/

∑
l∈I(i)

oc
πil. When

Si = k(i) + 1, subject i is assigned to an atom at a new location. Because there are infinitely

many possibilities for this new location, we use a retrospective sampling approach, which

follows along similar lines to Papaspiliopoulos and Roberts (2006).

After updating S,C, we update θh, for h = 1, . . . , k from

(θh |y,S,C, k,X) ∝ {
∏

i:Si=h

f(yi|xi, θh)}G0(θh). (25)

Let M (t) correspond to the maximum element of Ioc across the first t iterations of the

sampler. To update Vh, for h = 1, . . . ,M (t), we use a data augmentation approach. Let

Aih
ind∼ Bernoulli(Vh) and Bih

ind∼ Bernoulli(K(xi,Γh)), with Zi = CSi
= min{h : Aih =

Bih = 1}. Then, alternate between (i) sampling (Aih, Bih) from their conditional distribution

given Zi; (ii) updating Vh by sampling from the conditional posterior distribution:

beta
(
ah +

∑
i:Zi≥h

Aih, bh +
∑

i:Zi≥h
(1− Aih)

)
.

Updating of Γh, for h = 1, . . . ,M (t) can proceed by a Metropolis-Hastings step or Gibbs step

if H(·) =
∑T
l=1 alδΓ∗

l
(·), with Γ∗ = (Γ∗1, . . . ,Γ

∗
T )′ a grid of potential locations.

5. Simulation Examples

In this section, we use a KSBP mixture of normal linear regression models for conditional

density estimation. In particular, let f(yi |xi, φi) = (2πτ−1)−1/2 exp{−τ/2(yi − x′iβi)}, with

φi = βi ∼ Gxi
and GX ∼ P, with P a KSBP chosen so that ah = 1, bh = λ, Q is a

DP(αG0) random measure, and G0 follows a Gaussian law with mean β and variance Σβ. In

addition, we let K(x,x′) = exp(−ψ||x − x′||2) and choose priors: π(τ) = gamma(τ ; aτ , bτ ),

π(β) = N(β;β0,Vβ0), π(Σ−1
β ) = W(Σ−1

β ; (ν0Σ0)
−1, ν0), the Wishart density with degrees of
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freedom ν0 and E(Σ−1
β ) = Σ−1

0 , and π(ψ) = log-N(ψ;µψ, σ
2
ψ).

Following Dunson et al., (2006), we simulate data for n = 500 subjects from a mixture

of two normal linear regression models as follows:

f(yi|xi) = e−2xiN(yi;xi, 0.01) + (1− e−2xi)N(yi;x
4
i , 0.04),

where xi = (1, xi)
′, with p = 2 and xi ∼ unifom(0, 1). We let λ = 1 and α = 1 to favor

few occupied basis locations and few clusters per location, µψ = 2.5, σ2
ψ = 0.5, β0 = 0,

Vβ0 = (X′X)−1/n, ν0 = p, Σ−1
0 = Ip×p, and aτ = bτ = 0.1, and choose every point from

0 to 1 with increment of 0.02 as Γ∗, with T = 51 and probability weight al = 1/T . The

MCMC algorithm described in Section 4 was run for 30,000 iterations, with a burn-in of

8,000 iterations discarded. Based on examination of trace plots, convergence and mixing

were good. Figure 1 plots the true density (dotted line) and estimated predictive density

(solid line), along with pointwise 99% credible intervals (dashed lines). An x-y plot of the

data along with the estimated and true mean curve is also provided. Even though the sample

size was only 500 the estimates are good.

6. Epidemiology Application

6.1 Background and Motivation

In epidemiology studies, a common focus is on assessing changes in a response distribution

with a continuous exposure, adjusting for covariates. For example, Longnecker et al. (2001)

studied the relationship between the DDT metabolite DDE and preterm delivery. DDT is

effective against malaria-transmitting mosquitoes, so is widely used in malaria-endemic areas

in spite of growing evidence of health risks. The Longnecker et al. (2001) study measured

DDE in mother’s serum during the third trimester of pregnancy, while also recording the

gestational age at delivery (GAD) and demographic factors, such as age. Data on DDE and

GAD are shown in Figure 2 for the 2313 children in the study, excluding the children having

GAD> 45 weeks, unrealistically high values attributable to measurement error.
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Following standard practice in reproductive epidemiology, Longnecker et al. (2001) di-

chotomized GAD using a 37 week cutoff, so that deliveries occurring prior to 37 weeks of

completed gestation were classified as preterm. Categorizing DDE into quintiles based on

the empirical distribution, they fitted a logistic regression model, reporting evidence of a

highly significant dose response trend. Premature deliveries occurring earlier in the < 37

week interval have greater risk of mortality and morbidity. Hence, from a public health and

clinical perspective, it is of interest to assess how the entire left tail of the GAD distribution

changes with DDE dose, with effects earlier in gestation more important.

6.2 Analysis and Results

We analyzed the Longnecker et al. data using the following semiparametric Bayes model:

f(yi |xi) =
∫
N(yi;x

′
iβi, τ

−1)dGxi
(βi)

GX ∼ P , (26)

where GX = {Gx : x ∈ <p}, yi is the normalized gestational age at delivery, xi = (1, ddei, agei)
′,

ddei is the normalized DDE dose for child i, agei is the normalized age of the mother, and P

is a KSBP, with a Gaussian kernel and Q corresponding to a DP (αG0). Prior specification

and other details are as described in Section 5 for the simulation examples.

As in the simulation examples, convergence was rapid and mixing was good based on

examination of trace plots. Figure 3 shows the trace plots for mean parameters in G0, the

number of occupied locations, the total number of clusters, and the smoothing parameter

ψ. Even though the sample size was 2313, the posterior mean number of occupied locations

was only 5.4, while the posterior mean number of clusters was 28.1.

Figure 4 shows the estimated conditional densities of gestational age at delivery for a

range of DDE values. Based on these plots, there is some suggestion of an increasing left

tail with dose, representing increasing risk of premature delivery at higher exposure values.

At very high exposures, data are sparse and the credible intervals are much wider. To more
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directly assess impact of DDE on the left tail, Figure 5 shows dose response curves for the

probability Y < T for different choices of cutoff T . For early preterm birth at < 33 weeks,

the dose response curve is flat except at high doses where the credible interval is wide. As

the cutoff increases, the dose response becomes more significant. Hence, the Longnecker et

al. (2001) result can be attributed to an increasing risk of late preterm births with dose of

DDE.

Although model (26) is extremely flexible, a potential concern is that the prior structure

may lead to lack of fit. To assess model adequacy, we implemented a recently developed

pivotal statistic-based approach (Johnson, 2006), which showed excellent fit.

7. Discussion

The article proposed a class of kernel stick breaking processes, which should be widely useful

in settings in which there is uncertainty in an uncountable collection of probability measures.

We have focused on a density regression application in which one is interested in studying

how a response density changes with predictors. However, there are many other applications

that can be considered, including predictor-dependent clustering, dynamic modeling and

spatial data analysis.

The KSBP should provide a useful alternative to recently developed generalized stick-

breaking processes, which allow predictors and spatial dependence (Griffin and Steel, 2006;

Duan et al., 2005). An advantage of the KSBP formulation is that many of the tools devel-

oped for exchangeable stick-breaking processes, such as the Dirichlet process, can be applied

with minimal modification. This has allowed us to obtain some insight into theoretical prop-

erties and to develop computational algorithms, which are straightforward to implement.

We also obtained a predictor-dependent urn scheme, which generalizes the Pólya urn scheme

(Blackwell and MacQueen, 1973). In future work, it will be interesting to use this urn scheme

for computation and clustering without need to explicitly consider the random weights and
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locations in the stick-breaking representation.
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Proof of Lemma 1.

Following a related approach to Ishwaran and James (2001), we first note that

1−
N−1∑
h=1

πh(x;Vh,Γh) = {1− V1K(x,Γ1)} · · · {1− VN−1K(x,ΓN−1)}.

Then, taking logs on both sides and N →∞,

∞∑
h=1

πh(x;Vh,Γh) = 1 a.s iff
∞∑
h=1

log {1− VhK(x,Γh)} = −∞ a.s.

The summation on the right is over independent random variables and by the Kolmogorov

three series theorem equals −∞ a.s. iff
∑∞
h=1 E[ log {1− VhK(x,Γh)}] = −∞.

Proof of Theorem 1.

As shorthand notation, we let Qh = G∗h(B) and Q0 = E{G∗h(B)}. Then, we have

E{Gx(B)Gx′(B)}

= E

([ ∞∑
h=1

Uh(x)
{ h−1∏
l=1

(1− Ul(x))
}
Qh

][ ∞∑
h=1

Uh(x
′)
{ h−1∏
l=1

(1− Ul(x
′))
}
Qh

])

= E

( ∞∑
h=1

Uh(x)Uh(x
′)
h−1∏
l=1

{1− Uh(x)}{1− Uh(x
′)}Q2

h

)

+E

( ∞∑
h=1

h−1∑
l=1

Uh(x)
[ l−1∏
r=1

{1− Ur(x)}{1− Ur(x
′)}
][
Ul(x

′)− Ul(x)Ul(x
′)
]

×
[ h−1∏
s=l+1

{1− Us(x)}
]
QhQl

)
+ E

( ∞∑
h=1

∞∑
l=h+1

Ul(x
′)
[ h−1∏
r=1

{1− Ur(x)}{1− Ur(x
′)}
]

×
[
Uh(x)− Uh(x)Uh(x

′)
][ l−1∏

s=h+1

{1− Us(x
′)}
]
QhQl

)
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=
∞∑
h=1

µ(x,x′){1− µ(x)− µ(x′) + µ(x,x′)}h−1E(Q2
h)

+µ(x){µ(x′)− µ(x,x′)}
∞∑
l=1

∞∑
h=l+1

{1− µ(x)− µ(x′) + µ(x,x′)}l−1{1− µ(x)}h−l−1Q2
0

+µ(x′){µ(x)− µ(x,x′)}
∞∑
h=1

∞∑
l=h+1

{1− µ(x)− µ(x′) + µ(x,x′)}h−1{1− µ(x′)}l−h−1Q2
0

=
µ(x,x′)VQ(B)

µ(x) + µ(x′)− µ(x,x′)
+Q2

0,

with linearity of expectation and reordering justified as the series is absolutely convergent.

Proof of Theorem 2.

Under the assumption that Vh ∼ beta(1, λ), we have

E{Uh(x)m} = E(V m
h )E{Kh(x)m} =

( m∏
l=1

l

λ+ l

) ∫
L

p∏
j=1

1(|xj − Γhj| < ψj)dH(Γh)

=
( m∏
l=1

l

λ+ l

) p∏
j=1

∫ 1+ψj

−ψj

1(|xj − Γhj| < ψj)
1

1 + 2ψj
dΓhj

=
( m∏
l=1

l

λ+ l

) p∏
j=1

(
2ψj

1 + 2ψj

)
,

as required. The expression for E{Uh(x)Uh(x
′)} follows trivially using the same approach.

Proof of Theorem 3.

The random measure Gx can be expressed as

Gx(·) = U1(x)G∗1(·) + {1− U1(x)}[Ũ1(x)G̃1(·) + {1− Ũ1(x)}Ũ2(x)G̃2(·) + . . . ],

D
= U1(x)G∗1(·) + {1− U1(x)}G̃x(·),

where G̃x is a KSBP measure, with U1(x), G∗1 and G̃x mutually independent. Using the

same trick, it can be shown that W1(m,x)
D
= U1(x)m + {1 − U1(x)}mW1(m,x), with U1(x)

and W1(m,x) mutually independent. Taking expectations with x fixed,

E{W1(m,x)} =
E{U1(x)m}

1− E[{1− U1(x)}m]
.
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For N ≥ 2, we can obtain the expression

WN(m,x)
D
=
[N−1∏
h=1

{1− Uh(x)}m
]
W1(m,x),

with U1(x), . . . , UN−1(x),W1(m,x) mutually independent, and the term in [·] equal to TN(m,x).

Thus, taking expectations with x fixed

E{WN(m,x)} = E[{1− U1(x)}m]N−1E{W1(m,x)} =
E{TN(m,x)}E{U1(x)m}

1− E[{1− U1(x)}m]
.

Proof of Lemma 2.

Under formulation (17), we have

Pr(φi = φj |xi,xj) =
∫

Pr(Zi = Zj |xi,xj,V,Γ)dπ(V) dπ(Γ)

= E

( ∞∑
h=1

[
Uh(xi)Uh(xj)

∏
l<h

{
1− Ul(xi)

}{
1− Ul(xj)

}])

= µij
∞∑
h=1

∏
l<h

(
1− µi − µj + µij

)

= µij
∞∑
h=0

(
1− µi − µj + µij

)h
=

µij
µi + µj − µij

.

Proof of Theorem 4.

Letting I denote an arbitrary subset of {1, . . . , i} that includes i ∈ I, we have

E
( ∞∑
h=1

∏
j∈I

P (Zj = h)
)

=
∞∑
h=1

E
(∏
j∈I

Uh(xj)
h−1∏
l=1

{1− Ul(xj)}
)

=
∞∑
h=1

E
(∏
j∈I

Uh(xj)
) h−1∏
l=1

E
(∏
j∈I

{1− Ul(xj)}
)

= µI
∞∑
h=1

E
(∏
j∈I

{1− Ul(xj)}
)h−1

=
µI

1−∑#I
t=0(−1)t

∑
J∈It

µJ
=

µI∑#I
t=1(−1)t−1

∑
J∈It

µJ
= ωI ,

where It denotes the set of all possible subsets of I of length t.
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LetK denote a arbitrary subset of {1, . . . , i} that includes i and j, and letK = {1, . . . , i}\

K. Then, letting Zi = Zj for all j ∈ K \ {i} and Zi 6= Zj for all j ∈ K, the probability of

observing K and K in a sample from the prior is:

E

( ∞∑
h=1

∏
k∈K

P (Zk = h)
∏
k∈K

{1− P (Zk = h)}
)

= E

( ∞∑
h=1

∏
k∈K

P (Zk = h)

{ #K∑
s=0

(−1)s
∑
L∈Ks

∏
l∈L

P (Zl = h)

})

=
#K∑
s=0

(−1)s
∑
L∈Ks

E

( ∞∑
h=1

∏
k∈L

⋃
K

P (Zk = h)

)
=

#K∑
s=0

(−1)s
∑
L∈Ks

ωL
⋃
K,

where Ks is the set of subsets of K of length s. The probability of Zi = Zj is then:

i∑
t=2

∑
K∈N (t,i)

i,j

#K∑
s=0

(−1)s
∑
L∈Ks

ωL
⋃
K =

i∑
r=2

(−1)r
∑

I∈N (r,i)
i,j

ωI .

Here, r − 1 indexes the cardinality of the set {j : φi = φj}, and we obtain the expression in

Theorem 4 through normalization.
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Figure 1: Results for the simulation example.
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Figure 2: DDE vs gestational age at delivery in days for 2313 women in the Longnecker et

al. (2001) study. The solid line is the conditional predictive mean, while the dotted lines are

99% pointwise credible intervals. Vertical dashed lines are DDE quintiles.
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Figure 3: Trace plots for mean parameters in G0, the number of unique values over all

loations, the number of occupied locations, and the kernel precision parameter.
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Figure 4: Estimated gestational age at delivery (in days) densities and pointwise 99% credible

intervals conditional on DDE.
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Figure 5: Estimated probability that gestational age at delivery is less than T (33,35,37,40)

weeks versus DDE dose. Solid lines are posterior means, while dashed lines are pointwise

99% credible intervals.
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