
Open access to the Proceedings of the

2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Kernel-Supported Cost-Effective Audit Logging
for Causality Tracking

Shiqing Ma, Purdue University; Juan Zhai, Nanjing University;

Yonghwi Kwon, Purdue University; Kyu Hyung Lee, University of Georgia;

Xiangyu Zhang, Purdue University; Gabriela Ciocarlie, Ashish Gehani,

and Vinod Yegneswaran, SRI International; Dongyan Xu, Purdue University;

Somesh Jha, University of Wisconsin-Madison

https://www.usenix.org/conference/atc18/presentation/ma-shiqing

This paper is included in the Proceedings of the

2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

https://www.usenix.org/conference/atc18/presentation/ma-shiqing

Kernel-Supported Cost-Effective Audit Logging for Causality Tracking

Shiqing Ma$, Juan Zhai§, Yonghwi Kwon$, Kyu Hyung Lee∗, Xiangyu Zhang$,

Gabriela Ciocarlie†, Ashish Gehani†, Vinod Yegneswaran†, Dongyan Xu$, Somesh Jha‡

$Purdue University, §Nanjing University, ∗University of Georgia,
†SRI International, ‡University of Wisconsin-Madison

Abstract

The Linux Audit system is widely used as a causality

tracking system in real-world deployments for problem

diagnosis and forensic analysis. However, it has poor

performance. We perform a comprehensive analysis on

the Linux Audit system and find that it suffers from high

runtime and storage overheads due to the large volume

of redundant events. To address these shortcomings, we

propose an in-kernel cache-based online log-reduction

system to enable high-performance audit logging. It fea-

tures a multi-layer caching scheme distributed in various

kernel data structures, and uses the caches to detect and

suppress redundant events. Our technique is designed to

reduce the runtime overhead caused by transferring, pro-

cessing, and writing logs, as well as the space overhead

caused by storing them on disk. Compared to existing

log reduction techniques that first generate the huge raw

logs before reduction, our technique avoids generating re-

dundant events at the first place. Our experimental results

of the prototype KCAL (Kernel-supported Cost-effective

Audit Logging) on one-month real-world workloads show

that KCAL can reduce the runtime overhead from 40+%

to 15-%, and reduce space consumption by 90% on aver-

age. KCAL achieves such a large reduction with 4% CPU

consumption on average, whereas a state-of-the-art user

space log-reduction technique has to occupy a processor

with 95+% CPU consumption all the time.

1 Introduction

Understanding system provenance is an important and

challenging task, especially in forensic analysis and prob-

lem diagnosis. A common approach is to perform operat-

ing system-level audit logging, which is one of the core

functionalities required in enterprise-level infrastructures.

The Linux Audit system is the most widely used audit

system. It resides in the kernel, collects information for

predefined kernel events, and records them in log files.

Following incidents, investigators use automated tools

(e.g., ausearch) to analyze audit logs to search for sus-

picious system objects (e.g., files, sockets) and subjects

(e.g., processes), and identify causal dependencies among

them. Such information is critical to locating root causes

and assessing damages. Then they use such information

to hunt for suspicious activities such as policy violations.

In practice, the Linux Audit system has been known to

have poor performance, and other researchers have been

working on improving the Linux Audit system for a long

time. Many works [8, 9, 22, 24, 31, 41, 42] proposed en-

hancement or alternative designs to provide fast logging

infrastructures or highly compressed logs. However, ex-

isting solutions do not fundamentally solve the high space

and runtime overhead problems. And this motivates us to

deeply analyze and understand the overhead problems in

the Linux Audit framework.

In this paper, we first describe a comprehensive analy-

sis on the Linux Audit system, and show that the runtime

and the storage overheads are essentially caused by trans-

ferring and processing huge raw logs that contain substan-

tial redundancies. Previous research failed to solve the

problems because methods required first generating the

redundant logs. Our key idea is to remove redundancies

inside the kernel so that we can prevent the huge raw logs

from being generated at the first place. Inspired by hard-

ware/software cache system designs, we propose KCAL,

a kernel-level, cost-effective, memory-cache-based audit

logging system. It caches important dependencies and

events, and detects redundancy on the fly using the caches.

If redundant events indicated by cache hits are detected,

they are immediately discarded. Only events that intro-

duce new system objects/subjects or new dependencies

are retained. Dependency caches and event caches are dis-

tributed in individual kernel data structures. The caches

are carefully designed such that the kernel memory con-

sumption is kept reasonably low, avoiding perturbation

of normal kernel functionality. In summary, in this paper,

we make the following contributions:

USENIX Association 2018 USENIX Annual Technical Conference 241

• We describe a comprehensive analysis on the Linux

Audit system, which revealed that the root cause of

its high runtime and storage overheads is the need

to transfer, process, and store the huge raw log, and

identify this can be solved by removing the redun-

dant events.

• We propose a kernel-level, cache-based, log-

reduction system. The key idea is to prevent the

kernel from generating redundant raw logs in the first

place. The design features a multi-layered and dis-

tributed cache scheme that leverages the autonomous

execution sub-structures (i.e., units) in individual

processes (e.g., sub-executions serving individual

requests in Apache), and indexes largely scattered

syscall events belonging to the same object.

• We built a prototype KCAL based on the Linux

Audit system. Our experimental results showed

that KCAL is capable of reducing the runtime over-

head from 40+% to 15-%, log files by 90+%, and it

does not introduce significant memory pressure on

the existing kernel. The comparison with the state-

of-the-art, user-space log-reduction technique Pro-

Tracer [24] shows that ProTracer fully occupies an

idle processor with 95% constant CPU consumption

whereas KCAL only requires 4% CPU consumption

on average.

2 Motivation and Related Works

2.1 Audit Logging Systems

There are many existing audit logging systems [2, 5, 7, 24,

28, 31] from commercial companies and research com-

munities. Prior works [13, 14, 16, 35, 37, 43] proposed

many different general logging infrastructures. Some of

them [11, 27, 28, 34] monitor the whole file system at

the inode level, while others [31, 36] leverage the Linux

Security Module (LSM) to monitor operations on kernel

data structures. Many of the techniques [12,17,18,19,20]

use record-and-replay techniques to record system wide

events for system replay. They require logging of syscalls

including the concrete values such as the content of files

or packets. Hence, they tend to be expensive and are

mostly used in single application execution. Bates et al.

provide a general and secure framework for writing a

provenance system at the operating system level. Among

these provenance systems, the Linux Audit framework [2]

is the most practical and widely used. The framework

provides a general logging infrastructure that allows the

integration of plugins to enhance the system. As such,

it is widely used and has been adopted by many other

research projects and real-world products [3, 4, 6].

Linux Audit Architecture. Figure 1 shows the archi-

Figure 1: The audit framework architecture

tecture of the Linux Audit framework. It contains a few

user-space utilities (brown boxes) and a kernel component.

The kernel component contains a number of filters (blue

circles). Based on the execution order, i.e., before/dur-

ing/after the syscall processing logic, the filters are named

User/Task/Exit, respectively. The Exclude filter de-

fines exceptions to the filtering rules; namely, any syscall

that falls into the Exclude category will not be filtered.

The auditctl program helps administrators manage fil-

ters. If these filters determine that a syscall needs to be

recorded, the kernel component sends the information

to the user-space daemon program auditd through the

Netlink device. Auditd collects syscall records and

writes them to the log file.

State-of-the-Art Causality Analysis. An important fea-

ture of an audit logging system is the dependency analysis

support. As demonstrated by previous researchers [21,23],

the Linux Audit system suffers from the dependency ex-

plosion problem because of the large number of fan-outs

in process-level analysis. Process execution partitioning

techniques [21, 23] were proposed to enable fine-grained

dependency analysis in audit logging, and to help remove

redundant log information. They partition process ex-

ecutions into execution units. Each execution unit is a

part of the whole process execution serving a specific

task. MPI [23] partitions process execution based on user-

defined tasks, e.g., individual tabs in Firefox. BEEP [21]

partitions process execution based on event-handling loop,

namely, and an execution unit is essentially an iteration of

the event handling loop. Execution units are considered

largely autonomous. Therefore, an output syscall event in

a unit is considered only dependent on the preceding input

events within the same unit unless there are dependencies

across units (e.g., through in-memory data structures).

In contrast, Linux Audit considers that an output event

depends on all the preceding events in the same process,

causing numerous bogus dependencies [14,18,20,21]. An

execution unit is delimited by a special UnitEnter event

indicating the start of the unit, and a UnitExit event

denoting the end in these systems. An execution unit may

depend on another through variable reads/writes. Such

variables/data-structures are treated as Inter-Process Com-

munication (IPC) objects, and exposed to the audit system

via the MemWrite and MemRead syscall events [21, 23].

Figure 2 shows an example of using Firefox to open

webpages and download a file (File-N). It also shows the

simplified log events. In each line, we show the events

242 2018 USENIX Annual Technical Conference USENIX Association

Firefox

x.x.x.x

File-P

a.a.a.a c.c.c.c

File-M

Firefox-U9

File-N

c.c.c.cFirefox-U8

Firefox-U0

x.x.x.x

File-M

Queue

User Actions: Open a few web pages, Download a file File-N

System Events:

U0: [UnitEnter] [Socket x: x.x.x.x] [Open(File-M)] [Read(x)] [Read(x)] [Write(File-M)] [UnitExit]
……

U8: [UnitEnter] [MemWrite Queue] [UnitExit]

U9: [UnitEnter] [MemRead Queue] [Socket c] [Open(File-N)] [Read(c)] [Write(File-N)] [UnitExit]

File-N

(A) Process level provenance (B) Download action provenance (C) U0 Provenace

Figure 2: Comparison of different dependency granularity

that belong to a unit marked with the unit ID. Without unit

information, we will get a graph shown in (A). The file

object File-M (transitively) depends on all the socket read

by Firefox before the write to the file, which introduces

many bogus dependencies. With partitioning, the events

are properly grouped. For example, the first unit, U0

represents a unit for opening a web page. It creates a

socket, fetches a page, stores it, and then renders it on

screen. The dependency relationship is shown in (C). The

multiple page loading tasks are separated to units, and the

resulting provenance graph is accurate. Downloading in

Firefox causes explicit dependencies between units (U8,

U9). U8 first inserts the download request to a queue, and

then U9 fetches it from the queue and downloads the file.

These units are connected through MemWrite/MemRead

events as shown in (B).

2.2 Linux Audit System Performance

To motivate our technique, we perform a few experiments

to measure the overhead of Linux Audit and explain the

limitations of existing overhead reduction techniques. We

run 20 virtual machines with Ubuntu 14.04 as the guest

OS on the Kernel-based virtual Machine (KVM) plat-

form, and each virtual machine has two cores and 4 GB

main memory. The machines are classified into two cat-

egories: servers running server programs (e.g., HTTP

server Apache, FTP server ProFTPd), and clients run-

ning client programs (e.g., Firefox and Vim) for daily use.

Each group has 10 virtual machines.

Figure 3 shows the log size growth along time. We

configure the audit system to only record 60 provenance-

Figure 3: The audit framework log sizes growth in 30 days

Figure 4: The audit framework runtime overhead

related syscalls [24, 31]. These system calls are related

to process creation/termination, file/socket creation/read-

/write/deletion and IPCs and so on. Observe that in the

worst case, a machine generates 1100+GB log in 30 days.

Even in the best case, 60 GB log is generated within 30

days. On average, a server machine can generate about

130GB data per day, whereas a client machine generates

about 5GB data per day. The data is also consistent with

previous research [22, 41]. Such a large volume of data

causes many problems. First, it is expensive to store or

transmit log files. By default, the audit log is stored on the

local disk and consumes substantial storage space. It can

be sent to external servers for storage and inspection, but

this incurs runtime overhead, network traffic, and mainte-

nance efforts on servers. Second, processing such large

files can be extremely challenging. It may take hours to

days to answer a provenance query as it requires searching

through log files in the size of GBs to TBs. The situation

becomes worse in the enterprise environment, where there

are hundreds to thousands of inter-connected machines,

which increases the problems associated with storing, cor-

relating, and processing audit logs. Compressing the log

is one way to reduce the storage overhead, but causes

more runtime overhead for compressing/decompressing

the logs to investigate an attack. Zhang et al. [41] also

demonstrated that in an enterprise environment, using

databases to store the logs is also very challenging in such

scenarios.

Figure 4 shows the runtime overhead (caused by Linux

Audit) for a few programs including both server programs

like Apache and client programs like Vim. We leverage

existing workloads to test the performance if possible. For

programs that support batch mode (e.g., Vim), we write

scripts to test the performance. Some of the programs

generate frequent system calls (e.g., Apache), and natu-

rally cause higher runtime overhead. As we can see, the

overhead for some programs like Vim is tolerable. But

for I/O intensive programs such as browsers and server

programs, the overhead can be rather high.

Understanding the Overheads. The Linux Audit frame-

work has three parts: the kernel part (filtering rules etc.),

the Netlink data transmission channel, and the user

space logger (i.e., auditd). Figure 5 shows the runtime

overhead of each component. Similar observations are

made on both Hard Disk Drives (HDDs) and Solid State

USENIX Association 2018 USENIX Annual Technical Conference 243

Figure 5: Audit framework runtime overhead

Drives (SDDs). The graph tells us the kernel filters are

relatively lightweight, and the other two parts, Netlink

and auditd, are the dominant factors of the overhead.

Netlink provides a socket-like channel for transmitting

data, and auditd is responsible for writing the log data to

disk. The major factor that affects the time spent on these

two components is the size of log data that needs to be

processed (transferred/written). Considering the amount

of data we need to handle (Figure 3), it is understandable

these two parts dominate the overhead. As such, we can

say the root cause of both runtime and storage overheads

is the large amount of data generated by the Linux Audit

framework.

2.3 Log Redundancy

Previous works addressed the storage overhead problem

by shrinking the log size. Most of them [10, 15, 25, 29, 30,

32, 33, 38, 39, 40] generated the dependency graph first,

and then used various graph visualization or compression

algorithms to help causality analysis. These techniques

ignore the importance of reducing the redundancy of audit

logs, and cannot solve the runtime overhead problem

caused by such redundancy.

Existing Linux Audit generates highly redundant logs.

Based on our analysis (see §4), over 89% log entries

are redundant. Previous research [22, 24, 41] has also

presented similar observations. Thus pruning the log

could improve the performance of the Linux Audit sys-

tem. Some existing works [8, 41] suggest removing re-

dundancy by various analysis techniques, e.g., rule-based

filtering. However, this requires human effort to create

and maintain the rules. ProTracer [24] leverages execu-

tion partitioning for log reduction. It has a kernel module,

which simply receives syscall events, filters them, and

then sends the remaining event records including unit-

related events to the user-space daemon, which consists

of multiple processes. These processes run in parallel to

remove redundant events. The ProTracer views system

objects as taints and monitor their propagation during ex-

ecution by performing syscall level taint analysis while

processing the log. Each unit/object is associated with a

taint set denoting the set of data sources that it depends

on. The causalities denoted by the taint sets (instead of

individual events) are emitted to the log. Therefore events

leading to the same taint set are essentially reduced.

All these techniques first generate the full-fledged log

and then reduce it. It is the huge raw log that causes the

substantial overhead. These techniques cannot be applied

in the kernel space because it has rather limited resources

that prevents loading and processing huge raw logs. For

instance, the parallel (tainting-based) processing required

by ProTracer cannot be ported to the kernel space due

to its high CPU consumption (See data in §4). An ideal

solution is to prevent redundant log entries from being

generated by the kernel in the first place. This is the

motivation behind KCAL, a kernel-supported log cache

and reduction system.

3 Design

3.1 Overview

We propose a cache-based, cost-effective audit logging

system inside the kernel called KCAL. It leverages ex-

ecution partitioning and is orthogonal to the underlying

partitioning scheme. Any partitioning scheme [21, 23]

that generates unit boundary syscalls and cross-unit mem-

ory dependency events can be seamlessly integrated with

KCAL, and we use BEEP. Upon a new syscall event,

KCAL determines if there is a cache hit, which means

the new event reveals the same causal information as

some event(s) that have been recorded before and hence

can be safely discarded. Since the cache is positioned

at the kernel, redundant log events are prevented from

being generated in the first place, leading to highly suc-

cinct raw logs without any information loss. KCAL is

not a monolithic caching system like traditional memory

caches because different subjects/objects have diverse life

times and various numbers of associated syscall events

distributed in their life spans. Due to the nature of audit

logging, we cannot be certain if events belonging to a sub-

ject/object are redundant before it is closed or terminated.

A monolithic cache design would require complex data

structure support for indexing and removing sparse and

highly distributed log events. Therefore, we propose a

distributed cache design so each process/object (e.g., a

file) has its own cache storing associated events, and these

caches are encapsulated as part of the kernel data struc-

tures. Figure 6 shows the overall architecture of KCAL.

Figure 6: Overview of KCAL architecture

244 2018 USENIX Annual Technical Conference USENIX Association

Process (struct task_struct)

Fields: pid, state, eid, uid

Filters
+

Emitter

Syscalls: TS32-Read(B), TS33-Write(A), TS34-UnitExit
 … TS70-Delete(D)

Shared Memory

Log Files

1

Current Unit Dependency
Cache

current_unit_id

ReadSet: {B, …}
A B

File List
File B

(struct file)
Fields: f_mod,

f_inode, f_owner

Cached Events
U0TS02: Open
U0TS13: Read

Process Dependency Cache

A B

D A

Create

Delete

Start No tmp

UNCERTAIN

Tmp File

Open

File editing/closing

Persistent/
Shared

2

3

4

5

67 10

PB1 PA1

PA2

PD1

File A

Fields: f_mod,
f_inode, f_owner

Cached Events
U0TS00: Open
U0TS15: Write

Automata

9

8

Automata

File D
Fields: f_mod

Cached Events
U1TS16: Create
U1TS17: Write
U1TS19: Read
U1TS20: Close

Automata

PP

PB0

PA0

PF0

System Call Event Data Flow PX Pointers Zoom In Event State Transition for EventDependency

Figure 7: Overview of KCAL

Figure 8: Performance of 3 data channels (kernel to user-space)

First, we enhance the Linux Audit module with an online

cache-based log-reduction algorithm, and modify the ker-

nel data structures for processes and objects (e.g., files

and sockets) to insert caches. Second, we use shared

memory instead of Netlink as the transfer channel.

In-kernel Architecture and Workflow. Figure 7 shows

a simplified view of the kernel part of KCAL. The first

modification is in the task_struct data structure (1),

which stores process specific information such as the pid.

We add more pointer fields. The first one is a pointer to a

unit dependency cache (box 2). The cache uses a Read-

Set to store the objects that have been read by the current

unit (box 4), and also maintains the detected dependen-

cies in the current unit (e.g., A → B shown inside 2).

Each object in the cache also has a pointer (e.g., PA0 and

PB0) to the corresponding kernel data structure instance

such as a File structure. The second pointer points to a

process-level dependency cache (box 3), which stores

the dependencies detected in this process (box 5) by ag-

gregating the unique dependencies from individual units.

The unit cache is needed for in-unit redundancy and the

process cache is for cross-unit redundancy.

We also enhance the kernel data structures representing

objects (resources). For example, we enhance the File

data structure that contains file-specific information, such

as its inode, by adding two pointers. The first one points

to a cache that stores the syscall events operating on the

object with timestamps (box 8). Redundant events are

removed at the unit/process level before being added to

the object cache. We do not directly send these events

to the user space but rather cache them because all the

events in the object cache may be deemed redundant if

the resource is determined as temporary. More details

will be discussed in §3.3. The second pointer points to an

automaton used to detect if the resource is temporary (box

9). Box 10 shows the states and the transitions. De-

tails will be discussed in §3.3. KCAL does not cause any

compatibility issues as it does not change the meanings

of existing fields in these data structures. More impor-

tantly, our method is general, and one could easily use

stand-alone hash tables that map a process/object to its

auxiliary data structures and avoid touching any kernel

data structures. As we will show in §4, although KCAL

is mainly kernel based, its perturbation to the normal ker-

nel functionalities is negligible due to its small memory

footprint and limited instrumentation inside the kernel.

The Linux Audit module is enhanced with an on-the-

fly reduction algorithm that interacts with the caches to

determine if an event is redundant. When a syscall event

occurs, it first goes through the filters. Non-provenance

related syscalls like time-related system calls are filtered

out. The remaining syscalls (i.e., reads/writes) are passed

to the reduction component. This component checks if

there is a cache hit for the dependency represented by

the event. Note the caches are accessible through the

current variable, which points to the task_struct of

the current process that contains direct or transitive point-

ers to multiple layers of caches. If hit, the event is safely

discarded. Otherwise the dependence is inserted to the

dependence cache, and the event is inserted to the event

cache of the object that is being operated on. Eventually,

non-redundant events will be emitted to the shared mem-

ory and saved to the disk by the user-space component.

Transfer Channels. Netlink provides a socket-like

communication method between the kernel space and

USENIX Association 2018 USENIX Annual Technical Conference 245

the user space and was widely adopted by SELinux as

it provides a simpler interface and better performance as

compared with its competitors (printk, ioctl etc.). We com-

pare three general ways of transferring bulk data from the

kernel space to the user space: Netlink, message queues,

and shared memory. Figure 8 shows the performance

comparison of these channels. The X-axis represents the

size of each message. We use four configurations: 512,

1024, 2048, and 4096 bytes. For each message size, we

generate 10,000 random messages and perform the exper-

iments 10 times. The Y-axis is the performance measured

by the average time (CPU cycles) used to transfer one

message. Shared memory has the best performance. In

the past, due to the memory size limits made it practical to

use shared memory as the transfer channel as it requires

reserving a memory pool, but this is no longer a problem

in modern computers.

3.2 Redundancy in the Linux Audit Log

Our definition of redundancy is with respect to the attack

investigation, which is based on a causal graph according

to the latest Open Provenance Model (OPM) [26]. OPM

standardizes the forensic analysis procedure and is the

most widely adopted provenance model. A causal graph

is generated by first starting from a given subject or object

(e.g., a suspicious file) and then performing forward/back-

ward traversal along dependencies to find all the reachable

subjects and objects. Backward traversal is used when

the inspector wants to trace back the root cause of an

attack starting from some observed symptom. In contrast,

forward traversal is used when the inspector has already

identified the root cause and now wants to understand

the damage caused by the attack. It starts with the root

cause and finds all the affected subjects/objects. In this

context, we consider an event redundant if the derived

causal graph contains the same dependency information

with and without the event. That is, we can reach the same

set of objects and subjects with and without the event. As

such, an event is redundant if it leads to some dependency

that was induced in a previous unit. This is because the

previously recorded events and the entailed dependence

render the same reachability. Events denoting the same

dependency may be in the same or different execution

units, and they are referred as in-unit redundancy and

cross-unit redundancy, respectively.

Another type of redundancy is what we call temporary

files. We define the term temporary file from the prove-

nance analysis perspective. A temporary file is a file that

is created, edited, and deleted by the same owner and

during its whole life cycle; the file is not “shared” with

any other process. These files only temporarily exist in

the system and are used internally by applications. For

example, editors with auto-saving features often use a

temporary file to keep the newly edited contents to sup-

port recovery. These files are deleted when the user saves

the file explicitly. Another example is that browsers like

Firefox use a large number of temporary files to store

downloaded web elements. The browser regularly re-

moves such files to save space. Temporary files do not

lead to useful forensic information as they do not have

interactions with other system objects or subjects and can

be removed. Many programs use temporary files because

they need to save a large amount of contents locally, and

memory is not sufficient for them to do so. From the

provenance point of view, the temporary files are a part of

the program execution just like the runtime variables in

memory. As all the information source and sink points are

the same, it can be viewed part of the program execution.

Our definition of temporal files is different from that of

traditional temporary files that usually refers to the files in

the tmp file system. Many of these files can interact with

other processes and generate new provenance informa-

tion, and thus the corresponding events are not redundant

according to our design. For example, Firefox has one

open with option for many types of files such as torrent

files in its download dialog. It will first download the

selected file (e.g., one torrent file), and then open the file

using the system default program for this file type. In this

case, the downloaded file is stored in the tmp file system,

but it will be kept in our design as it is read by another

process, which is new provenance information.

Therefore, KCAL guarantees the information com-

pleteness from the provenance graph point of view.

Namely, the log files before and after reduction will out-

put the same provenance graph for the same provenance

query. As a provenance tracking system, it does not guar-

antee information completeness for other audit purposes

such as the total number of syscalls in a time range.

3.3 Redundancy Reduction

In this section, we explain the details of the KCAL design.

There are three important design choices: a two-layer

dependency cache (the unit layer and the process layer)

for a process, a distributed event cache for objects, and

methods for handling cross-unit memory dependencies.

Two-layer Dependency Cache For Process. As shown

in Figure 7, we cache two-layer dependencies for a pro-

cess, the dependencies detected in the current unit (box

2) and those in the whole process (box 3). The former

is to remove in-unit redundancy, and the latter is to reduce

cross-unit redundancy.

• In-unit Redundancy. Read/write syscalls use buffers

with limited sizes to transfer data. To load/edit a file larger

than the buffers, an application has to issue a sequence of

read/write syscalls. For example, Vim reads a file piece

by piece and adds the pieces to the in-memory content

246 2018 USENIX Annual Technical Conference USENIX Association

tree. This produces a sequence of events in the audit log

(without reduction) containing tens to hundreds of read

syscalls on the target file in the same execution unit. These

syscalls denote the same dependency and are redundant.

Such redundancy is detected by the unit cache in KCAL.

KCAL only keeps one instance of them. At the first read

event, the object is added to the ReadSet. If it is already

in the ReadSet, the event is simply discarded. When a

write event happens, it is considered dependent on all

the objects in the ReadSet as the information from these

objects can affect the content it writes. KCAL checks

if these dependencies are present in the unit-dependency

cache. If not, it adds the write event and the read events

of objects in the unit cache to the event caches of the

corresponding objects. Otherwise, the event is discarded.

• Cross-unit Redundancy. Processes usually perform re-

peated actions on the same system objects. Some of them

are because of repeated user actions. For example, editors

usually work on a few files for a long time with repeated

editing operations. And some of them are due to built-in

application functionalities. For example, Firefox writes to

the recovery.js file every 15 seconds (through a unit)

to support purpose. As a result, the same dependency

can appear in the log file across different units repeatedly,

leading to cross-unit redundancy.

An example in Figure 9 on the left-hand-side, (A)

shows the simplified log entries. There are three

units. Unit 0 (U0) reads File-A, File-B, and writes

File-S; U1 reads File-B and writes File-T; and U3 reads

File-A and writes File-S. The blue entries are the

UnitEnter/UnitExit events. The yellow entries are the

in-unit redundant events. In particular, U0 keeps loading

contents from File-A. Events U0TS03 to U0TS05 all rep-

resent the same action, and are redundant. The red entries

are the cross-unit redundant events. In this case, the causal

dependency between File-A and File-S in U3 is already

detected in U0, and hence is redundant. The graphs in

(B) show the generated backward analysis graphs starting

from File-S and File-T (in gray), and the graphs in (C) rep-

resent the generated forward analysis graphs starting from

File-A and File-B (in gray). Events U3TS01 and U3TS02

do not induce any new dependencies and removing them

does not affect the reachable objects and subjects in both

forward and backward analyses. Without the execution

partitioning, File-T would depend on File-A because the

process loads File-A before writing to File-T. As shown

later in §4, our reduced logs generate the same casual

graphs as using the original BEEP logs (with redundancy

reduction).

Distributed-event Cache. In KCAL, dependencies are

cached in processes and syscall events are cached in ob-

jects. KCAL features a distributed-event cache mecha-

nism in which each object caches the syscall events that

operate on the object. They are not transferred to the user

U0TS00: UnitEnter
U0TS01: Read A
U0TS02: Read B
U0TS03: Read A
U0TS04: Read A
U0TS05: Read A
U0TS06: Write S
U0TS07: UnitExit

U

A

S

(A) Log
(B) Backward Analysis

from S/T

U1TS00: UnitEnter
U1TS01: Read B
U1TS02: Write T
U1TS03: UnitExit
U3TS00: UnitEnter
U3TS01: Read A
U3TS02: Write S
U3TS03: UnitExit

B

U

T

B

U

A

S

U

T

(C) Forward Analysis
from A/B

B

S

Figure 9: In-unit and cross-unit redundancy removal example

U0TS00: UnitEnter
U0TS01: Read A
U0TS02: MemW M
U0TS03: UnitExit
U1TS04: UnitEnter
U1TS05: MemR M
U1TS06: MemW N
U1TS07: UnitExit
U2TS08: UnitEnter
U2TS09: MemR N
U2TS10: Write B
U2TS11: UnitExit

U0A M

U1

(A) Log (B) Dependencies (edges label: timestamp)

01 02

B
06

05

U7TS70: UnitEnter
U7TS71: Read C
U7TS72: MemW M
U7TS73: UnitExit
U8TS74: UnitEnter
U8TS75: MemR M
U8TS76: MemW N
U8TS77: UnitExit
U9TS78: UnitEnter
U9TS79: MemR N
U9TS80: Write D
U9TS81: UnitExit

NU2 0910

U7C M

U8

71 72

D
76

75

NU9 7980

Figure 10: Cross-unit memory causality example

space for storage until the object is no longer needed or

the process terminates. This is to handle the substantial

redundancy caused by temporary files (defined in §3.2).

We detect temporary files using the automaton shown in

box 10 in Figure 7. Each File data structure maintains

its own state. At first, when a file is opened by the owner

process, KCAL checks the creator of the file. If the file

exists and was created by another process, it is marked as

a non-temporary file. Otherwise, it can potentially be a

temporary file (i.e., the UNCERTAIN state). Normal file

editing operations by the owner such as read/write/close

do not change the state of the file. Any operation from

a different process indicates that information propagates

beyond the current process through the file, and hence

the file must not be temporary. If the file is deleted by its

owner without being read/edited by other processes, it is

temporary. If the file is not deleted by its owner process

(and hence is persistent), it is not temporary.

As KCAL cannot be certain if a file is temporary or

not until the file is deleted, edited by other processes, or

the owner process terminates, it buffers all the events for

a file it created (after redundancy reduction) in the cache

associated with the file until either condition is satisfied.

Then, KCAL discards all the events in the cache or emits

them to the user space. The emission order of events may

be different from the temporal order due to the distributed

caching. It is not problematic, however, as all events have

global time stamps.

Cross-unit Memory Causality. As mentioned earlier,

there may be dependencies across units caused by vari-

ables or data structures. For example, in Vim’s built-in

clipboard, a piece of memory (known as registers) is used

to support copy/cut-and-paste operation across units.

Existing execution partitioning schemes generate spe-

cial syscalls MemWrite/MemRead to denote the write/read

operations on cross-unit, dependency-inducing variables,

respectively. The nature of these memory operations is

USENIX Association 2018 USENIX Annual Technical Conference 247

very similar to file reads and writes. Hence, KCAL mod-

els these events in a similar way. Particularly, each unique

memory location is considered as a separate object. The

difference is we do not remove events that cause the same

memory dependencies across units. Instead, KCAL treats

the memory object as a new object each time it is rede-

fined. This is because each memory write to a location

is considered as a complete redefinition of the memory

object, which is different from a file write. For such an

object, each read only depends on the latest write.

For example, in the syscall sequence in Figure 10, unit

U1 receives a request through the memory queue from

U0 at location M and then forwards another request to U2

through a different memory location N. KCAL detects a

dependency from N to M. Later, the same procedure hap-

pens again and hence the same dependence is detected

inside unit U8. The same memory locations are observed

due to memory reuse, and we cannot unify the multiple in-

stances of the memory locations and throw away the mem-

ory events in U8. Otherwise, bogus dependencies would

be introduced. In the shown example, D only depends on

C. If the dependency introduced by U8 is removed and

the two M nodes are unified, D would depend on {C,A}.

In KCAL, the variables M, N associated with U8 and the

ones associated with U1 are treated as a new set of system

objects even though they are using the same memory ad-

dresses. KCAL leverages existing execution partitioning

techniques and existing execution partitioning techniques

only instrument a very small number of memory opera-

tions through sophisticated analysis [21, 23]; and hence,

the number of memory events generated at run time is

small.

3.4 Implementation and Discussion

KCAL is implemented on the long-supported Linux ker-

nel 3.19 and the Linux Audit framework 2.3. By default,

each system object cache size is 32 events. The number

of dependencies a process can cache is capped at 256,

and the number of dependencies a unit can cache is 8.

These values are configurable in KCAL. If the cache is

full, and we use the Least Recently Used (LRU) cache

replacement policy to evict entries. It is important to note

the consequence of cache eviction is merely that some

redundancy cannot be removed. It does not affect infor-

mation completeness. The study of the effect of various

cache sizes can be found in §4.

KCAL is a provenance tracking system built on top

of the Linux Audit framework. The audit log message

format is still the same. This makes it compatible with

existing audit log processing tools such as aureport and

ausearch. On the other side, the generated messages

are for provenance tracking only, and the number of such

messages is significantly reduced. This will affect audit

Figure 11: The space overhead of KCAL in a month

tools that calculate the sysall frequencies or concretely an-

alyze individual syscalls such as aureport. Also, KCAL

modifies the Linux kernel source code including many

data structures. As a result, porting it to other kernel

versions requires extra human effort. We also port our

prototype from Linux kernel 3.19 to kernel 3.2, and most

of the patches can be directly applied. The new modifi-

cation is less than 10 lines. We expect that the porting

efforts will be limited as long as the kernel data structure

change is not significant. KCAL also depends on exist-

ing execution partitioning techniques such as BEEP [21]

or MPI [23]. Without the execution partitioning support,

cross-unit redundancies cannot be removed, which affects

the reduction effectiveness (see §4).

4 Evaluation

We evaluate our prototype to answer the following re-

search questions (RQ):

RQ1: How efficient is KCAL? (§4.1)

RQ2: Can KCAL remove the redundancy while keeping

the accuracy of the forensic analysis? (§4.2, §4.3)

RQ3: What are the rationales of our design choices, and

what are the benefits? (§4.4)

4.1 KCAL Performance

Space Overhead. The space overhead is shown in Fig-

ure 11. The experimental environments and workloads

are the same with the ones in §2. The orange shows the

growth of log size for the machine that has the maximum

size. In our case, the log file is less than 120GB after

30 days, while the old log size was almost 1TB without

our technique (Figure 3). The gray line represents the

average log size for the server machines, and the yellow

line shows the average log size for the client machines.

Compared with the original audit log (Figure 4), the log

size is less than 10%. The workloads also include many

applications that do not have the execution partitioning in-

strumentation, and thus do not benefit from log reduction.

The blue lines show the log size of the machine that has

the minimal log size. The log now is only about 6GB for

30 days. This shows that KCAL generates much smaller

log files than the Linux Audit system.

248 2018 USENIX Annual Technical Conference USENIX Association

Figure 12: The KCAL runtime overhead analysis

Runtime Overhead. We used the same configuration

and the same set of applications with the experiments

used in §2 to measure the runtime overhead. Figure 12

shows the results. The bottom bars show the runtime over-

head caused by the instrumentation, and the upper bars

show the overhead caused by KCAL. For most client

programs, the overhead caused by KCAL is less than 1%.

The overhead for server programs is about 5% to 10%.

This is because a server program needs to serve many

clients at the same time, causing a large number of depen-

dencies. Firefox has the most significant overhead, about

15%. This is because Firefox dynamically creates and ter-

minates hundreds of threads, and uses many sockets and

files for DNS queries, browsing history, cache, page pref-

erences, and so on. It generates more events within the

same duration compared with other applications, leading

to higher overhead.

4.2 KCAL Log Reduction Effects

Table 1 summarizes the effects of using our log-reduction

algorithm. The first two columns show the experimen-

tal environment. The third column shows the number of

raw audit logs. We also present the number of log events

and the corresponding percentage of in-unit redundancy

(columns 4-5), cross-unit redundancy (columns 6-7), and

temporary files (columns 8-9). The last two columns show

the number of log entries and the percentages after reduc-

tion. We first ran the system on five machines for one

month, collected the numbers (rows 3-7), and calculated

the average (row 8, in gray). For different settings and

runs, the reduction effects are different. Some of them

have substantial in-unit redundancy (machines 1,2) while

others have more cross-unit dependency (machines 4,5).

Overall, KCAL keeps only 8% to 14% of the original

logs, and on average the number is 11%. We also collected

the reduction effects for some representative applications.

The results are shown in rows 9-20 in Table 1. For differ-

ent programs, the effects of the algorithm are significantly

different. For example, most server programs do not have

temporary files. On the contrary, browsers like Firefox

use temporary files a lot. Server programs, especially FTP

servers, need to read large files, and generate a huge num-

ber of in-unit redundant events, while this is not true for

most client programs. For many programs like Vim, the

dependency relationships are simple because they work

on a limited number of system objects, and we can reduce

the events to a very small number. For other programs

like Bash, most of their events are related to process ma-

nipulations, which cannot be reduced. Thus, most of the

logged events are kept. These process-related events will

not be cached as they cannot be reduced, and they will not

flood the cache. KCAL directly generates such reduced

logs from the kernel, leading to substantial savings in

raw log transfer from the kernel to the user space and in

log processing compared to existing user-space reduction

techniques [22, 24, 41].

4.3 Support for forensic analysis

We also performed a few experiments to verify the cor-

rectness of our log-reduction algorithm and the benefit

for forensic analysis. We reproduced the attack cases

used by previous research works [21, 23] and compared

the generated graphs and the analysis time. In another

set of experiments, we randomly selected 100 objects,

and performed backward analysis to identify all of its

dependencies. The results are summarized in Table 2. We

show the number of nodes and edges in the graphs, the

size of the log file, and the analysis time spent using the

Linux Audit log, BEEP log, and KCAL log measured

by log size. Note that BEEP logs are usually 10-30%

larger than the Linux Audit logs due to the additional

unit-related events. The last row shows the average num-

ber of nodes and edges, the average size of the log files,

and the average analysis time for the randomly selected

objects. We manually inspected and compared the graphs.

The results show that all generated graphs contain the

needed and complete information. The graphs generated

by the Linux Audit framework usually contain redundant

nodes/edges (representing wrong dependencies), whereas

graphs generated by the other two methods generated

the same graphs. This shows our reduction algorithm is

lossless. Because of the complex dependency relation-

ships, it takes far longer time to perform the analysis on

the Audit log. BEEP benefits from simpler dependency

relationships, but it spends more time inspecting the large

number of log entries and checking and updating the de-

pendency sets for each event including many redundant

operations. The KCAL log provides simplified and ac-

curate provenance information, enabling faster forensic

analysis.

4.4 Understanding KCAL

Cache Behavior. Table 3 shows summarized data for

cache behaviors. It shows the name of applications

(column-1), the average/maximum number of dependen-

cies in unit cache (column-2), the average/maximum num-

USENIX Association 2018 USENIX Annual Technical Conference 249

Table 1: KCAL log reduction effects

In-Unit Redundancy Cross-Unit Redundancy Temporary Files KCAL

Scenario Audit (#logs)
#logs (%) #logs (%) #logs (%) #logs (%)

Machine 1 62,384,284 42,887,843 69% 4,594,385 7% 9,827,394 16% 5,074,662 8%
Machine 2 137,121,400 97,384,284 71% 13,428,384 10% 12,398,283 9% 13,910,449 10%
Machine 3 152,385,284 85,727,385 56% 15,228,384 10% 32,299,384 21% 19,130,131 13%
Machine 4 87,837,384 18,395,394 21% 40,293,293 46% 20,923,283 24% 8,225,414 9%
Machine 5 93,284,284 27,485,743 29% 40,293,842 43% 12,238,482 13% 13,266,217 14%

Monthly
Execution

Average 106,602,527 54,376,130 51% 22,767,658 21% 17,537,365 16% 11,921,375 11%

Firefox 6,284,385 1,128,384 18% 3,238,478 52% 1,248,284 20% 669,239 11%
Apache 8,942,845 4,829,423 54% 2,684,284 30% 0 0% 1,429,138 16%

Sendmail 63,284 32,493 51% 12,284 19% 16,293 26% 2,214 3%
Vim 123,485 36,827 30% 52,284 42% 33,235 27% 1,139 1%
MC 83,495 16,283 20% 21,384 26% 2,942 4% 42,886 51%
Bash 20,495 2,342 11% 0 0% 0 0% 18,153 89%
Pine 10,294 1,023 10% 8,348 81% 494 5% 429 4%

ProFTPd 3,485,924 3,128,385 90% 100,242 3% 0 0% 257,297 7%
Yafc 924,395 801,384 87% 39,274 4% 0 0% 83,737 9%

Transmission 88,384 5,394 6% 80,283 91% 1,482 2% 1,225 1%
W3M 2,485,395 423,242 17% 1,024,385 41% 743,284 30% 294,484 12%

Apps

MiniHTTP 98,285 78,283 80% 12,384 13% 0 0% 7,618 8%

Table 2: Forensic analysis cases

Cases
Audit BEEP KCAL

#Node #Edge Size(MB) Time(s) #Node #Edge Size(MB) Time(s) #Node #Edge Size(MB) Time(s)

Phishing 317 354 1905 2234 18 23 2096 142 18 23 168 16
Intrusion 860 2135 1626 30864 5 4 1888 162 5 4 226 18
InfoTheft 51 51 1148 823 7 6 1286 92 7 6 154 10
Random 412 683 2345 3349 14 32 1532 122 14 32 169 14

Table 3: KCAL cache summary (avg/max)

Application #Deps/Unit #Deps/Pr #Events/Obj

Firefox 0.8/4 123/256 7.4/18
Apache 1.8/4 52/69 8.6/12

Sendmail 0.6/3 7/12 8.2/16
Vim 0.2/2 5/13 6.9/14
MC 0.2/2 6/11 7.2/11
Bash 1/1 4/7 3/6
Pine 0.3/3 8/16 9.3/16

ProFTPd 0.9/2 21/63 7.8/18
Yafc 0.8/2 42/66 8.2/14

Transmission 1.2/5 64/172 12.4/18
W3M 0.7/4 134/199 8.7/15

MiniHTTP 1.4/2 46/88 9.2/14

ber of dependencies in process cache (column-3), and the

average/maximum number of events cached in a system

object (column-4). From the table, it is clear that the num-

ber of dependencies in the unit cache is quite small thanks

to execution partitioning. The number of dependencies

in the process caches varies for different applications. In

most cases, the number of dependencies is less than 200.

Firefox is the only one that reaches the size limit (256)

and triggers the cache replacement. For the cache in each

object, the average number is less than 10 events for most

programs. Even for the maximum values, the average

number is still less than 32 (the cache size).

To understand the behaviors of the caches, we ran

Apache and Firefox, and counted the number of depen-

dencies they cached over time. We set the process cache

bound to a large number to observe the cache pressure.

Figure 13 shows the results. For Apache, we used the

ab benchmark [1] with 10 concurrent clients to generate

the workload. For Apache, the number of dependencies

varies in a small range and remains < 70. This is because

each request has just a few read/write operations on the

requested file and the socket (with the client), and cached

dependencies are discarded when the corresponding files

and sockets are closed. For Firefox, we performed two dif-

ferent experiments. The first one was a normal browsing.

The blue line shows the result of this experiment. Fire-

fox uses many system objects when it loads pages. After

loading the page, many dependencies can be discarded as

sockets are closed and temporary files are deleted. In our

test scenario, the number of dependencies (in the process

dependency cache) is around 150. The other experiment

used a script to open a new web page in a new tab every

second. The gray line shows the results. At the begin-

ning, each new page caused a peak, and the script opened

pages more frequently than the normal user. The number

of dependencies is hence larger. After 10 minutes with

500+ pages opened, Firefox reached its capacity. The

number of dependencies in the cache becomes flat. Even

in this extreme situation, the number of dependencies is

still reasonable due to the elimination of redundant and

bogus dependencies.

Kernel Memory Consumption. Figure 14 shows the

maximum kernel memory footprint caused by KCAL

for each application. Since our cache sizes are fixed,

250 2018 USENIX Annual Technical Conference USENIX Association

Figure 13: Number of dependencies in process dep. cache

Figure 14: Max memory usage for individual applications

the memory overhead for each process including all its

opened system resources (e.g., files/sockets) is fixed at

4224 bytes. In comparison, the original task struct

itself is 3520 bytes and it has a lot of pointers for opened

system resources. One of its pointer fields mm pointing

to a mm struct is 952 bytes. Depending on the total

number of system objects accessed to a process, the total

memory footprint may vary a lot. However, since the

number of events cached in an object tends to be small

(Table 3), the kernel memory consumption is reasonably

small, which ensures that KCAL does not perturb normal

kernel functionalities.

Cache Size vs. Reduction Rate. The dependency cache

sizes affect the reduction rate because evicting caches

can result in keeping some redundant events. Previous

experimental results indicate a small cache size is suffi-

cient for many programs. In this experiment, we chose

Firefox, whose dependency caches, especially the process

cache, vary a lot over time, and we tested the effects of

using different cache sizes. The results are presented in

Figure 15. Even when the cache size is small, KCAL

can still reduce many redundant events such as in-unit

redundancies. With larger cache sizes, KCAL is able to

detect and remove more cross-unit dependencies. If the

cache is large enough (e.g., 1200 entries), all redundant

dependencies are detected and the reduction rate is flat.

Comparison with State-of-the-Art ProTracer Pro-

Tracer can achieve a high reduction rate with a low run-

time overhead (7% according to [24]). However, since

ProTracer demands first generating the raw log before

reduction, it requires parallel user-space processes to load

and reduce the raw log. As a result, although its runtime

overhead is low, the CPU consumption is substantial, be-

cause tainting on the large raw log files. Here we use the

ab benchmark as an example to compare the CPU con-

sumption of the two systems. Figure 16 shows the results.

Figure 15: KCAL reduction results with different cache sizes

Figure 16: CPU consumption of ProTracer and KCAL

As seen in the graph, ProTracer uses the CPU consistently,

and consumes almost all the cycles. In contrast, KCAL

uses the CPU periodically. The average consumption is

4%. Even for the peaks, the CPU usage is about 40%,

much less than ProTracer. This is because KCAL avoids

generating the huge raw log in the first place and hence

examines far fewer events for the same workload. In

fact, ProTracer has to be pinned to a CPU to achieve the

low runtime overhead. In contrast, KCAL’s user-space

processes just run as normal processes.

5 Conclusion

We analyzed the Linux Audit system and found the root

cause of its high runtime and space overheads is its re-

dundancy events. To solve this problem, we propose

KCAL, a kernel-supported, cost-effective audit logging

system for causality tracking. It caches dependencies and

system events in the kernel and performs online log redun-

dancy reduction. KCAL removes the overhead caused

by transferring, processing, writing, and storing the re-

dundant events. Our evaluation shows that KCAL can

significantly reduce the log sizes and speed up the system.

6 Acknowledgements

We thank the anonymous reviewers for the valuable com-

ments. In particular, we thank our shepherd, Howie

Huang, for the constructive suggestions. This research

was supported, in part, bythe United States Air Force

and DARPA under contract FA8650-15-C-7562, NSF un-

der awards1748764,1409668, and1320444, ONR under

contracts N000141410468 and N000141712947, and San-

dia National Lab under award1701331. Any opinions,

findings and conclusionsor recommendations expressed

in this materialare those of theauthors and do not neces-

sarily reflect the views oftheUnited States Air Force and

DARPA or othersponsors.

USENIX Association 2018 USENIX Annual Technical Conference 251

References

[1] Apache benchmark. https://httpd.apache.org/docs/2.2/

programs/ab.html.

[2] Linux audit. https://people.redhat.com/sgrubb/audit/.

[3] Mozilla audit-go. https://github.com/mozilla/audit-go.

[4] Orchids. http://projects.lsv.ens-cachan.fr/

orchidsdoc/.

[5] osquery. https://osquery.io/.

[6] Prelude siem. https://www.prelude-siem.org/.

[7] Sisdig. https://www.sysdig.org/.

[8] BATES, A., BUTLER, K. R., AND MOYER, T. Take only what

you need: Leveraging mandatory access control policy to reduce

provenance storage costs. In 7th USENIX Workshop on the The-

ory and Practice of Provenance (TaPP 15) (Edinburgh, Scotland,

2015), USENIX Association.

[9] BATES, A. M., TIAN, D., BUTLER, K. R. B., AND MOYER, T.

Trustworthy whole-system provenance for the Linux kernel. In

24th USENIX Security Symposium, USENIX Security 15, Washing-

ton, D.C., USA, August 12-14, 2015. (2015), J. Jung and T. Holz,

Eds., USENIX Association, pp. 319–334.

[10] BORKIN, M. A., YEH, C. S., BOYD, M., MACKO, P., GAJOS,

K. Z., SELTZER, M., AND PFISTER, H. Evaluation of filesystem

provenance visualization tools. IEEE Transactions on Visualiza-

tion and Computer Graphics 19, 12 (Dec. 2013), 2476–2485.

[11] BRAUN, U., GARFINKEL, S. L., HOLLAND, D. A.,

MUNISWAMY-REDDY, K., AND SELTZER, M. I. Issues in auto-

matic provenance collection. In Provenance and Annotation of

Data, International Provenance and Annotation Workshop, IPAW

2006, Chicago, IL, USA, May 3-5, 2006, Revised Selected Papers,

L. Moreau and I. T. Foster, Eds., vol. 4145 of Lecture Notes in

Computer Science. Springer, 2006, pp. 171–183.

[12] DEVECSERY, D., CHOW, M., DOU, X., FLINN, J., AND CHEN,

P. M. Eidetic systems. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation

(Berkeley, CA, USA, 2014), OSDI’14, USENIX Association,

pp. 525–540.

[13] GEHANI, A., AND TARIQ, D. Spade: support for provenance

auditing in distributed environments. In Proceedings of the 13th

International Middleware Conference (2012), Springer-Verlag

New York, Inc., pp. 101–120.

[14] GOEL, A., PO, K., FARHADI, K., LI, Z., AND DE LARA, E. The

taser intrusion recovery system. In Proceedings of the Twentieth

ACM Symposium on Operating Systems Principles (New York,

NY, USA, 2005), SOSP ’05, ACM, pp. 163–176.

[15] GUO, Z., ZHOU, D., LIN, H., YANG, M., LONG, F., DENG,

C., LIU, C., AND ZHOU, L. G2: A graph processing system

for diagnosing distributed systems. In Proceedings of the 2011

USENIX Conference on USENIX Annual Technical Conference

(Berkeley, CA, USA, 2011), USENIXATC’11, USENIX Associa-

tion, pp. 27–27.

[16] JAKOBSSON, M., AND JUELS, A. Server-side detection of mal-

ware infection. In Proceedings of the 2009 Workshop on New Se-

curity Paradigms Workshop (New York, NY, USA, 2009), NSPW

’09, ACM, pp. 11–22.

[17] JI, Y., LEE, S., DOWNING, E., WANG, W., FAZZINI, M., KIM,

T., ORSO, A., AND LEE, W. Rain: Refinable attack investigation

with on-demand inter-process information flow tracking. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (New York, NY, USA, 2017), CCS ’17,

ACM, pp. 377–390.

[18] KIM, T., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.

Intrusion recovery using selective re-execution. In Proceedings

of the 9th USENIX Conference on Operating Systems Design and

Implementation (Berkeley, CA, USA, 2010), OSDI’10, USENIX

Association, pp. 89–104.

[19] KING, S. T., AND CHEN, P. M. Backtracking intrusions. In

Proceedings of the Nineteenth ACM Symposium on Operating

Systems Principles (New York, NY, USA, 2003), SOSP ’03, ACM,

pp. 223–236.

[20] KING, S. T., MAO, Z. M., LUCCHETTI, D. G., AND CHEN,

P. M. Enriching intrusion alerts through multi-host causality.

In Proceedings of the Network and Distributed System Security

Symposium, NDSS 2005, San Diego, California, USA (2005), The

Internet Society.

[21] LEE, K. H., ZHANG, X., AND XU, D. High accuracy attack

provenance via binary-based execution partition. In 20th Annual

Network and Distributed System Security Symposium, NDSS 2013,

San Diego, California, USA, February 24-27, 2013 (2013), The

Internet Society.

[22] LEE, K. H., ZHANG, X., AND XU, D. Loggc: garbage collecting

audit log. In 2013 ACM SIGSAC Conference on Computer and

Communications Security, CCS’13, Berlin, Germany, November

4-8, 2013 (2013), A. Sadeghi, V. D. Gligor, and M. Yung, Eds.,

ACM, pp. 1005–1016.

[23] MA, S., ZHAI, J., WANG, F., LEE, K. H., ZHANG, X., AND XU,

D. MPI: Multiple perspective attack investigation with semantic

aware execution partitioning. In 26th USENIX Security Sympo-

sium (USENIX Security 17) (Vancouver, BC, 2017), USENIX

Association.

[24] MA, S., ZHANG, X., AND XU, D. Protracer: Towards practical

provenance tracing by alternating between logging and tainting. In

23nd Annual Network and Distributed System Security Symposium,

NDSS 2016, San Diego, California, USA, February 21-24, 2016

(2016), The Internet Society.

[25] MEHTA, V., BARTZIS, C., ZHU, H., CLARKE, E., AND WING, J.

Ranking Attack Graphs. 9th International Symposium on Recent

Advances in Intrusion Detection (RAID’06) 4219 (2006), 127–144.

[26] MOREAU, L., CLIFFORD, B., FREIRE, J., FUTRELLE, J., GIL,

Y., GROTH, P., KWASNIKOWSKA, N., MILES, S., MISSIER, P.,

MYERS, J., PLALE, B., SIMMHAN, Y., STEPHAN, E., AND DEN

BUSSCHE, J. V. The open provenance model core specification

(v1.1). Future Gener. Comput. Syst. 27, 6 (June 2011), 743–756.

[27] MUNISWAMY-REDDY, K.-K., BRAUN, U., HOLLAND, D. A.,

MACKO, P., MACLEAN, D., MARGO, D., SELTZER, M., AND

SMOGOR, R. Layering in provenance systems. In Proceedings

of the 2009 Conference on USENIX Annual Technical Conference

(Berkeley, CA, USA, 2009), USENIX’09, USENIX Association,

pp. 10–10.

[28] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,

AND SELTZER, M. Provenance-aware storage systems. In Pro-

ceedings of the Annual Conference on USENIX ’06 Annual Techni-

cal Conference (Berkeley, CA, USA, 2006), ATEC ’06, USENIX

Association, pp. 4–4.

[29] OU, X., BOYER, W. F., AND MCQUEEN, M. A. A scalable

approach to attack graph generation. In Proceedings of the 13th

ACM conference on Computer and communications security - CCS

’06 (2006), p. 336.

[30] OU, X., GOVINDAVAJHALA, S., AND APPEL, A. W. Mulval: A

logic-based network security analyzer. 8–8.

[31] POHLY, D. J., MCLAUGHLIN, S., MCDANIEL, P., AND BUTLER,

K. Hi-fi: Collecting high-fidelity whole-system provenance. In

Proceedings of the 28th Annual Computer Security Applications

Conference (New York, NY, USA, 2012), ACSAC ’12, ACM,

pp. 259–268.

252 2018 USENIX Annual Technical Conference USENIX Association

[32] SAWILLA, R. E., AND OU, X. Identifying critical attack assets in

dependency attack graphs. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) (2008), vol. 5283 LNCS, pp. 18–

34.

[33] SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., AND WING,

J. M. Automated generation and analysis of attack graphs. In

Proceedings - IEEE Symposium on Security and Privacy (2002),

vol. 2002-January, pp. 273–284.

[34] SITARAMAN, S., AND VENKATESAN, S. Forensic analysis of file

system intrusions using improved backtracking. In Third IEEE

International Workshop on Information Assurance (IWIA’05)

(March 2005), pp. 154–163.

[35] SUNDARARAMAN, S., SIVATHANU, G., AND ZADOK, E. Selec-

tive versioning in a secure disk system. In Proceedings of the 17th

Conference on Security Symposium (Berkeley, CA, USA, 2008),

SS’08, USENIX Association, pp. 259–274.

[36] TIAN, D. J., BATES, A., BUTLER, K. R., AND RANGASWAMI,

R. Provusb: Block-level provenance-based data protection for

usb storage devices. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security (New

York, NY, USA, 2016), CCS ’16, ACM, pp. 242–253.

[37] VASUDEVAN, A., QU, N., AND PERRIG, A. Xtrec: Secure

real-time execution trace recording on commodity platforms. In

Proceedings of the 2011 44th Hawaii International Conference

on System Sciences (Washington, DC, USA, 2011), HICSS ’11,

IEEE Computer Society, pp. 1–10.

[38] XIE, Y., FENG, D., TAN, Z., CHEN, L., MUNISWAMY-REDDY,

K.-K., LI, Y., AND LONG, D. D. A hybrid approach for efficient

provenance storage. In Proceedings of the 21st ACM International

Conference on Information and Knowledge Management (New

York, NY, USA, 2012), CIKM ’12, ACM, pp. 1752–1756.

[39] XIE, Y., MUNISWAMY-REDDY, K., LONG, D. D. E., AMER, A.,

FENG, D., AND TAN, Z. Compressing provenance graphs. In 3rd

Workshop on the Theory and Practice of Provenance, TaPP’11,

Heraklion, Crete, Greece, June 20-21, 2011 (2011), P. Buneman

and J. Freire, Eds., USENIX Association.

[40] XIE, Y., MUNISWAMY-REDDY, K.-K., FENG, D., LI, Y., AND

LONG, D. D. E. Evaluation of a hybrid approach for efficient

provenance storage. Trans. Storage 9, 4 (Nov. 2013), 14:1–14:29.

[41] XU, Z., WU, Z., LI, Z., JEE, K., RHEE, J., XIAO, X., XU, F.,

WANG, H., AND JIANG, G. High fidelity data reduction for big

data security dependency analyses. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications

Security (New York, NY, USA, 2016), CCS ’16, ACM, pp. 504–

516.

[42] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND

MAZIÈRES, D. Making information flow explicit in histar. In

Proceedings of the 7th USENIX Symposium on Operating Sys-

tems Design and Implementation - Volume 7 (Berkeley, CA, USA,

2006), OSDI ’06, USENIX Association, pp. 19–19.

[43] ZHU, N., AND CHIUEH, T.-C. Design, implementation, and eval-

uation of repairable file service. In 2003 International Conference

on Dependable Systems and Networks, 2003. Proceedings. (June

2003), pp. 217–226.

USENIX Association 2018 USENIX Annual Technical Conference 253

