
Kernelization via Sampling with Applications to

Finding Matchings and Related Problems in Dynamic Graph Streams

Rajesh Chitnis∗ Graham Cormode† Hossein Esfandiari‡ MohammadTaghi Hajiaghayi‡

Andrew McGregor§ Morteza Monemizadeh¶ Sofya Vorotnikova§

Abstract

In this paper we present a simple but powerful subgraph sampling

primitive that is applicable in a variety of computational models

including dynamic graph streams (where the input graph is defined

by a sequence of edge/hyperedge insertions and deletions) and

distributed systems such as MapReduce. In the case of dynamic

graph streams, we use this primitive to prove the following results:

• Matching: Our main result for matchings is that there exists an

Õ(k2) space algorithm that returns the edges of a maximum

matching on the assumption the cardinality is at most k. The

best previous algorithm used Õ(kn) space where n is the

number of vertices in the graph and we prove our result is

optimal up to logarithmic factors. Our algorithm has Õ(1)
update time. We also show that there exists an Õ(n2/α3)
space algorithm that returns an α-approximation for matchings

of arbitrary size. In independent work, Assadi et al. (SODA

2016) proved this approximation algorithm is optimal and

provided an alternative algorithm. We generalize our exact

and approximate algorithms to weighted matching. For graphs

with low arboricity such as planar graphs, the space required

for constant approximation can be further reduced. While

there has been a substantial amount of work on approximate

matching in insert-only graph streams, these are the first non-

trivial results in the dynamic setting.

∗The Weizmann Institute of Science, Rehovot, Israel. Sup-

ported by a postdoctoral fellowship from I-CORE ALGO. Email:

rajesh.chitnis@weizmann.ac.il
†Department of Computer Science, University of Warwick, UK. Sup-

ported in part by European Research Council grant ERC-2014-CoG 647557,

the Yahoo Faculty Research and Engagement Program and a Royal Society

Wolfson Research Merit Award. Email: g.cormode@warwick.ac.uk.
‡Department of Computer Science, University of Maryland. Supported

in part by NSF CAREER award 1053605, NSF Grant CCF-1161626, NSF

grant IIS-1546108, ONR YIP award N000141110662, DARPA/AFOSR

grant FA9550-12-1-0423, and a Google Faculty Research award. Email:

{hossein, hajiagha}@cs.umd.edu
§University of Massachusetts Amherst. Supported by NSF CAREER

Award CCF-0953754 and CCF-1320719 and a Google Faculty Research

Award. Email: {mcgregor,svorotni}@cs.umass.edu
¶Computer Science Institute of Charles University, Faculty of Math-

ematics and Physics, Prague, Czech Republic. Partially supported by

the project 14-10003S of GA ČR. Part of this work was done when

the author was at Department of Computer Science, Goethe-Universität

Frankfurt, Germany and supported in part by MO 2200/1-1. Email:

monemi@iuuk.mff.cuni.cz

• Vertex Cover and Hitting Set: There exists an Õ(kd) space

algorithm that solves the minimum hitting set problem where

d is the cardinality of the input sets and k is an upper bound on

the size of the minimum hitting set. We prove this is optimal

up to logarithmic factors. Our algorithm has Õ(1) update time.

The case d = 2 corresponds to minimum vertex cover.

Finally, we consider a larger family of parameterized problems

(including b-matching, disjoint paths, vertex coloring among others)

for which our subgraph sampling primitive yields fast, small-space

dynamic graph stream algorithms. We then show lower bounds for

natural problems outside this family.

1 Introduction

Over the last decade, a growing body of work has considered

solving graph problems in the data stream model. Most

of the early work considered the insert-only variant of the

model where the stream consists of edges being added to

the graph and the goal is to compute properties of the graph

using limited memory. Recently, however, there has been a

significant amount of interest in being able to process dynamic

graph streams where edges are both added and deleted from

the graph [3, 6–8, 10, 27, 28, 33, 34, 40]. These algorithms are

all based on the surprising efficacy of using random linear

projections, aka linear sketching, for solving combinatorial

problems. Results include testing edge connectivity [6] and

vertex connectivity [28], constructing sparsifiers [7, 8, 33],

approximating the densest subgraph [10, 20, 43], correlation

clustering [3], and estimating the number of triangles [40].

For a recent survey of the area, see [42].

The concept of parameterized stream algorithms was

explored by Chitnis et al. [13] and Fafianie and Kratsch [22].

Their work investigated a natural connection between data

streams and parameterized complexity. In parameterized

complexity, the time cost of a problem is analyzed in terms of

not only the input size but also other parameters of the input.

For example, while the classic vertex cover problem is NP

complete, it can be solved via a simple branching algorithm

in time 2k · poly(n) where k is the size of the optimal vertex

cover. An important concept in parameterized complexity

is kernelization in which the goal is to efficiently transform

an instance of a problem into a smaller instance such that

the smaller instance is a “yes” instance (e.g., has a solution

of at least a certain size) iff the original instance was also

a “yes” instance. For more background on parameterized

complexity and kernelization, see [16, 24]. Parameterizing

the space complexity of a problem in terms of the size of

the output is a particularly appealing notion in the context of

data stream computation. In particular, the space used by any

algorithm that returns an actual solution (as opposed to an

estimate of the size of the solution) is necessarily at least the

size of the solution.

Our Results and Related Work. In this paper we present

a simple but powerful subgraph sampling primitive that is

applicable in a variety of computational models including

dynamic graph streams (where the input graph is defined

by a sequence of edge/hyperedge insertions and deletions)

and distributed systems such as MapReduce. This primitive

will be useful for both those parameterized problems whose

output has bounded size and for those where the optimal

solution need not be bounded. In the case where the output has

bounded size, our results can be thought of as kernelization

via sampling, i.e., we sample a relatively small set of edges

according to a simple (but not uniform) sampling procedure

and can show that the resulting graph has a solution of size at

most k iff the original graph has an optimal solution of size

at most k. We present the subgraph sampling primitive and

implementation details in Section 2.

Graph Matchings. Finding a large matching is the most

well-studied graph problem in the data stream model [4, 5, 15,

18, 23, 26, 31, 32, 37, 38, 41, 48]. However, all of the existing

single-pass stream algorithms are restricted to the insert-only

case, i.e., edges may be inserted but will never be deleted.

This restriction is significant: for example, the simple greedy

algorithm using Õ(n) space returns a 2-approximation if

there are no deletions. In contrast, prior to this paper no

o(n)-approximation was known in the dynamic case when

there are both insertions and deletions. Finding an algorithm

for the dynamic case of this fundamental graph problem was

posed as an open problem in the Bertinoro Data Streams Open

Problem List [1, Problem 64].

We prove the following results for computing a matching

in the dynamic model. Our first result is an Õ(k2) space algo-

rithm that returns the edges of a maximum matching on the

assumption that its cardinality is at most k. Our algorithm has

Õ(1) update time. The best previous algorithm [13] collects

min(deg(u), 2k) edges incident to each vertex u and finds

the optimal matching amongst these edges. This algorithm

can be implemented in Õ(kn) space where n is the number

of vertices in the graph. Indeed obtaining an algorithm with

f(k) space, for any function f , in the dynamic graph stream

case was left as an important open problem [13]. We can also

extend our approach to maximum weighted matching. Our

second result is an optimal Õ(n2/α3) space algorithm that

returns an α-approximation for matchings of arbitrary size.

For example, this implies an n1/3 approximation using Õ(n)
space, commonly known as the semi-streaming space restric-

tion [23, 44]. We present our second result and an algorithm

for graphs with bounded arboricity, along with a discussion

of very recent related work [9, 11, 36], in Section 4.

Vertex Cover and Hitting Set. We next consider the prob-

lem of finding the minimum vertex cover and its generaliza-

tion, minimum hitting set. The hitting set problem can be

defined in terms of hypergraphs: given a set of hyperedges,

select the minimum set of vertices such that every hyperedge

contains at least one of the selected vertices. If all hyperedges

have cardinality two, this is the vertex cover problem.

There is a growing body of work analyzing hypergraphs

in the data stream model [17, 28, 35, 45–47]. For example,

Emek and Rosén [17] studied the following set-cover problem

which is closely related to the hitting set problem: given a

stream of hyperedges (without deletions), find the minimum

subset of these hyperedges such that every vertex is included

in at least one of the hyperedges. They present an O(
√
n)

approximation streaming algorithm using Õ(n) space along

with results for covering all but a small fraction of the

vertices. Another related problem is independent set since the

minimum vertex cover is the complement of the maximum

independent set. Halldórsson et al. [29] presented streaming

algorithms for finding large independent sets but these do

not imply a result for vertex cover in either the insert-only or

dynamic setting.

In Section 3.2, we present a Õ(kd) space algorithm that

finds the minimum hitting set where d is the cardinality of the

input sets and k is an upper bound on the cardinality of the

minimum hitting set. We prove the space use is optimal and

matches the space used by previous algorithms in the insert-

only model [13,22]. Our algorithms can be implemented with

Õ(1) update time. The only previous results in the dynamic

model were by Chitnis et al. [13] and included a Õ(kn) space

algorithm for the vertex cover problem. They also provide

a Õ(k2) space algorithm under a much stronger “promise”

that the vertex cover of the graph defined by any prefix of the

stream may never exceed k. Relaxing this promise remained

as the main open problem of Chitnis et al. [13]. In Section 3.2,

we also generalize our exact matching result to hypergraphs.

In Section 6, we show our result is also optimal.

General Family of Results. We consider a larger family of

parameterized problems for which our subgraph sampling

primitive yields fast, small-space dynamic graph stream

algorithms. This result is presented in Section 5, while lower

bounds for various problems outside this family are proved in

Section 6.

2 Basic Subgraph Sampling Technique

Basic Approach and Intuition. The inspiration for our sub-

graph sampling primitive is the following simple procedure

for edge sampling. Given a graph G = (V,E) and probability

p ∈ [0, 1], let µG,p be the distribution over E ∪ {⊥} defined

by the following process:

1. Sample each vertex independently with probability p
and let V ′ denote the set of sampled vertices.

2. Return an edge chosen uniformly at random from the

edges in the induced graph on V ′. If no such edge exists,

return ⊥.

The distribution µG,p has some surprisingly useful

properties. For example, suppose that the optimal matching

in a graph G has size at most k. It is possible to show that

this matching has the same size as the optimal matching in

the graph formed by taking O(k2) independent samples from

µG,1/k. It is not hard to show that such a result would not

hold if the edges were sampled uniformly at random.1 The

intuition is that when we sample from µG,p we are less likely

to sample an edge incident to a high degree vertex than if

we sampled uniformly at random from the edge set. For

a large family of problems including matching, it will be

advantageous to avoid bias towards edges whose endpoints

have high degree.

Our subgraph sampling primitive essentially parallelizes

the process of sampling from µG,p. This will lead to more

efficient algorithms in the dynamic graph stream model. The

basic idea is rather than select a subset of vertices V ′, we

randomly partition V into V1 ∪ V2 ∪ . . . ∪ V1/p. Selecting

a random edge from the induced graph on any Vi results in

an edge distributed as in µG,p. Sampling an edge on each

Vi results in 1/p samples from µG,p although note that the

samples are no longer independent. This lack of independence

will not be an issue and will sometimes be to our advantage.

In many applications it will make sense to parallelize the

sampling further and select a random edge between each

pair, Vi and Vj , of vertex subsets. For applications involving

hypergraphs we select random edges between larger subsets

of {V1, V2, . . . , V1/p}.
Sampling Data Structure: We now present the subgraph

sampling primitive formally. Given an unweighted (hy-

per)graph G = (V,E), consider a “coloring” defined by

a function c : V → [b]. It will be convenient to introduce the

notation: for each i ∈ [b]

Vi = {v ∈ V : c(v) = i}
and say that every vertex in Vi has color i. For a (hyper)edge

e ∈ E, we define c(e) = {c(v) : v ∈ e}, i.e., c(e) is exactly

1To see this, consider a layered graph on vertices L1∪L2∪L3∪L4 with

edges forming a complete bipartite graph on L1 × L2, a complete bipartite

matching on L2×L3, and a perfect matching on L3×L4. If |L1| = n ≫ k

and |L2| = |L3| = |L4| = k/2 then the maximum matching has size k and

every matching includes all edges in the perfect matching on L3×L4. Since

there are Ω(nk) edges in this graph we would need Ω(nk) edges sampled

uniformly before we find the matching on L3 × L4.

the set of colors seen on the vertices of e. For S ⊆ [b], we say

that an (hyper)edge e of G is S-colored if c(e) = S, i.e., each

color from S is used to color the vertices in e and no other

colors are used. Given a constant q ≥ 1 which denotes the

“size restriction", for each S ⊆ [b] of cardinality at most q,

ES contains a single edge chosen uniformly at random from

the set of all S-colored edges. If there are no S-colored edges,

then ES = ∅. The union of these sets defines the random

graph G′ = (V,E′), i.e.,

E′ =
⋃

S⊆[b],|S|≤q

ES .

For example, given a simple graph, if we have q = 1 then for

each color i ∈ [b] we choose an edge whose endpoints are

both colored i. If q = 2, then for every 1 ≤ i ≤ j ≤ b we

choose an edge whose one endpoint has color i and the other

endpoint has color j: note that this includes the possibility

that i = j. In the case of a weighted graph, for each distinct

weight w we choose a single edge ES,w uniformly at random

from the set of S-colored edges with weight w.

DEFINITION 2.1. We define Sampleb,q,1 to be the distribu-

tion over subgraphs generated as above where c is chosen

uniformly at random from a family of pairwise independent

hash functions. Sampleb,q,r is the distribution over graphs

formed by taking the union of r independent graphs sampled

from Sampleb,q,1. Algorithm 1 gives pseudocode for sampling

from Sampleb,q,r.

Motivating Application. As a first application to motivate

the subgraph sampling primitive we again consider the

problem of estimating matchings. We will use the following

simple lemma that will also be useful in subsequent sections.

LEMMA 2.1. Let U ⊆ V be an arbitrary subset of |U | = r
vertices and let c : V → [4rǫ−1] be a pairwise independent

hash function. Then with probability at least 3/4, at least

(1 − ǫ)r of the vertices in U are hashed to distinct values.

Setting ǫ < 1/r ensures all vertices are hashed to distinct

values with this probability.

Proof. Let b = 4ǫ−1r. For a vertex u ∈ U , let Iu be

the indicator random variable that equals one if there exists

u′ ∈ U \ {u} such that c(u) = c(u′). Since c is pairwise

independent,

P [Iu] ≤
∑

u′∈U\{u}

P [c(u) = c(u′)]

=
∑

u′∈U\{u}

1/b < r/b = ǫ/4 .

Let I =
∑

u∈U Iu and note that E [I] ≤ ǫr/4. Then

Markov’s inequality implies P [I ≥ ǫr] ≤ 1/4. �

Algorithm 1 Algorithm for Sampling Subgraphs According to Sampleb,q,r

Input: A (hyper)graph G = (V,E) and natural numbers b, q, r.

Output: A subgraph G′ = (V,E′) where E′ ⊆ E

1: Choose c1, . . . , cr u.a.r. from a family of pairwise independent hash functions mapping V to [b]
2: Set E′ = ∅
3: for 1 ≤ j ≤ r do

4: for each S ⊆ [b] such that |S| ≤ q do

5: Select an edge Ej
S u.a.r. from the set of S-colored edges {e ∈ E : ∪v∈ecj(v) = S} if this set is non-empty.

Otherwise let Ej
S = ∅.

6: E′ ← E′ ∪ Ej
S

7: Report the graph G′ = (V,E′).

Suppose G is a graph with a matching M = {e1, . . . , ek}
of size k. Let G′ ∼ Sampleb,2,1. By the above lemma, there

exists b = O(k2), such that all the 2k endpoints of edges in

M are colored differently with constant probability. Suppose

the endpoints of edge ei received the colors ai and bi. Then

G′ contains an edge in E{ai,bi} for each i ∈ [k]. Assuming

all endpoints receive different colors, no edge in E{ai,bi}

shares an endpoint with an edge in E{aj ,bj} for j 6= i. Hence,

we can conclude that G′ also has a matching of size k. In

Section 5, we show that a similar approach can be generalized

to a range of problems. Using a similar argument there exists

b = O(k) such that G′ contains a constant approximation

to the optimum matching. However, in Section 3, we show

that there exists b = O(k) such that with high probability

graphs sampled from Sampleb,2,O(log k) preserve the size of

the optimal matching exactly.

2.1 Application to Data Streams and MapReduce

We now describe how the subgraph sampling primitive can

be implemented in various computational models.

Dynamic Graph Streams. Let S be a stream of insertions

and deletions of edges of an underlying graph G(V,E). We

assume that vertex set V = {1, 2, . . . , n}. We assume that the

length of the stream is polynomially related to n and hence

O(log |S|) = O(log n). We denote an undirected edge in E
with two endpoints u, v ∈ V by uv. For weighted graphs, we

assume that the weight of an edge is specified when the edge

is inserted and deleted and that the weight never changes. The

following theorem establishes that the sampling primitive can

be efficiently implemented in dynamic graph streams.

THEOREM 2.1. Suppose G is a graph with w0 distinct

weights. It is possible to sample from Sampleb,q,r with

probability at least 1− δ in the dynamic graph stream model

using Õ(bqrw0) space and Õ(r) update time.

Proof. To sample a graph from Sampleb,q,r we simply

sample r graphs from Sampleb,q,1 in parallel. To draw a

sample from Sampleb,q,1, we employ one instance of an ℓ0-

sampling primitive for each of the O(bq) edge colorings [14,

30]. Given a dynamic graph stream, the behavior of an ℓ0-

sampler algorithm is defined as follows: It returns FAIL

with probability at most δ and otherwise, it returns an edge

chosen uniformly at random amongst the edges that have

been inserted and not deleted. If there are no such edges,

the ℓ0-sampler returns NULL. The ℓ0-sampling primitive can

be implemented using O(log2 n log δ−1) bits of space and

O(polylog n) update time. In some cases, we can make use

of simpler deterministic data structures. For Theorem 3.1, we

can replace the ℓ0 sampler with a counter and the exclusive-or

of all the edge identifiers, since we only require to recover

edges when they are unique within their color class. For

Theorem 5.1, we only require a counter. In both cases, the

space cost is reduced to O(log n).

At the start of the stream we choose a pairwise indepen-

dent hash function c : V → [b]. For each weight w and subset

S ⊆ [b] of size q, this hash function defines a sub-stream

corresponding to the S-colored edges of weight w. We then

use ℓ0-sampling on each sub-stream to select a random edge

to be used as ES . �

MapReduce and Distributed Models. The sampling dis-

tribution is naturally parallel, making it straightforward to

implement in a variety of popular models. In MapReduce,

the r hash functions can be shared state among all machines,

allowing Map function to output each edge keyed by its color

under each hash function. Then, these can be sampled from

on the Reduce side to generate the graph G′. Optimizations

can do some data reduction on the Map side, so that only one

edge per color class is emitted, reducing the communication

cost. A similar outline holds for other parallel graph models

such as Pregel.

3 Parameterized Matching, Vertex Cover, and Hitting

Set

3.1 Finding Maximum Matchings and Minimum Ver-

tex Covers Exactly

In this section, we present results on finding edges in a

maximum matching and the vertices in a minimum vertex

cover of a graph G. We use match(G) to denote the size

of the maximum (weighted or unweighted as appropriate)

matching in G and use vc(G) to denote the size of minimum

vertex cover. The main theorem we prove in this section is

that a maximum matching (or minimum vertex cover) in the

sampled graph is also a maximum matching (or minimum

vertex cover) in the original graph.

THEOREM 3.1. (FINDING EXACT SOLUTIONS) Suppose

match(G) ≤ k. Then, with probability 1− 1/ poly(k),

match(G′) = match(G) and vc(G′) = vc(G) ,

where G′ = (V,E′) ∼ Sample1000k,2,Θ(log k).

Intuition and Preliminaries. To argue that G′ has a

matching of the optimal size, it suffices to show that for

every edge uv ∈ G that is not in G′, there is a large number

of edges incident to one or both of u and v that are in G′. If

this is the case, then it will still be possible to match at least

one of these vertices in G′.

To make this precise, let U be the subset of vertices with

degree at least 10k. Let F be the set of edges in the induced

subgraph on V \U , i.e., the set of edges whose endpoints both

have small degree. We will prove that with high probability,

(3.1) (F ⊆ E′) and (∀u ∈ U , degG′(u) ≥ 5k) ,

where E′ is the set of edges in G′. Note that any sampled

graph G′ that satisfies (3.1) has the property that for all edges

uv ∈ G that are not in G′ we have degG′(u) ≥ 5k or

degG′(v) ≥ 5k.

Analysis. The first lemma establishes that it is sufficient to

prove that (3.1) holds with high probability.

LEMMA 3.1. If match(G) ≤ k then (3.1) implies

match(G′) = match(G) and vc(G′) = vc(G).

Proof. We first argue that vc(G′) = vc(G). Since the vertex

cover of G is of size at most 2k, every vertex in U must be

in the vertex cover of both G and G′ since the degrees of

such vertices in both graphs are strictly greater than 2k. This

follows because if a vertex in U was not in the minimum

vertex cover then all its neighbors need to be in the vertex

cover. To complete the vertex cover requires consideration of

only those edges not incident on U . This is exactly the set of

edges F , which by the assumption are present in G′, leading

to the same vertex cover.

We next argue that match(G′) = match(G). If

property (3.1) is satisfied then G′ contains a matching of

size match(F) + |U | ≥ match(G) since we may choose the

optimum matching in F and then still be able to match every

vertex in U . This follows because the optimum matching

in F “consumes” at most 2k potential endpoints, since

match(G) ≤ k. Hence, each of the (at most 2k) vertices

in U can still be matched to 3k possible vertices. �

The next lemma establishes that (3.1) holds with the

required probability.

LEMMA 3.2. Property (3.1) holds with probability at least

1− 1/ poly(k).

Proof. Let VC(G) be a minimum vertex cover of G. Recall

that match(G) ≤ k implies that vc(G) = |VC(G)| ≤ 2k
because the endpoints of the edges in a maximum matching

form a vertex cover. Next consider H ∼ Sample1000k,2,1.

We will show that for any e ∈ F and u ∈ U ,

P [e ∈ H] > 1/2 and P [degH(u) ≥ 5k] ≥ 1/2 .

It follows that if r = Θ(log k) and G′ ∼ Sample1000k,2,r
then

P [e ∈ G′ and degG′(u) ≥ 5k] ≥ 1− 1/ poly(k) .

We then take the union bound over the O(k2) edges in F
and the O(k) vertices in U . The fact that |F | = O(k2) and

|U | = O(k) follows from the promises match(G) ≤ k and

vc(G) ≤ 2k. In particular, the induced graph on V \ U has

a matching of size Ω(|F |/k) since the maximum degree is

O(k) and this size is at most k. Since all vertices in U must

be in the minimum vertex cover, |U | ≤ 2k.

To prove P [e ∈ H|e ∈ F] ≥ 1/2. Let the endpoints of

e be x and y. We define a set of vertices A such that e is

the unique edge that remains if all vertices in A are removed

from the graph:

A = (VC(G) ∪ Γ(x) ∪ Γ(y)) \ {x, y}

where Γ(·) denotes the set of neighbors of a vertex. The

removal of VC(G) \ {x, y} ensures all remaining edges

are incident to either x or y. The subsequent removal of

(Γ(x) ∪ Γ(y)) \ {x, y} ensures the unique remaining edge is

xy as claimed.

Consider the hash function c : [n] → [b] that defined

H where b = 1000k. Observe that if all the vertices in A
receive colors that are different than c(x) and c(y), then xy is

the unique {c(x), c(y)}-colored edge and hence is definitely

sampled. Since b = 1000k and |A| ≤ 2k+10k+10k = 22k,

P [xy ∈ H]

≥ 1− P [∃a ∈ A : c(a) = c(x)]− P [∃a ∈ A : c(a) = c(y)]

≥ 1− 2|A|/b > 1/2 .

To prove P [deg
H
(u) ≥ 5k|u ∈ U] ≥ 1/2. Let Nu be

an arbitrary set of 10k neighbors of u and A = VC(G) \ {u}.
If c(u) 6∈ c(A) and there exist different colors c1, . . . , c5k
such that each ci ∈ c(Nu) \ c(A) then the algorithm returns

at least 5k edges incident to u in H . This follows since every

edge not incident to u has at least one vertex in A. Hence,

every {ci, c(u)}-colored edge is incident to u and is distinct

from every {cj , c(u)}-colored edge.

Observe that P [c(u) ∈ c(A)] ≤ 2k/b. By appealing

to Lemma 2.1, with probability at least 3/4, there are at

least 6k colors used to color the vertices Nu. Of these

colors, at least 5k are colored differently from vertices in

A. Hence we find 5k edges incident to u with probability at

least 3/4− 2k/b ≥ 1/2. �

Extension to Weighted Matching. We now extend the result

of the previous section to the weighted case. The following

lemma shows that it is possible to remove an edge uv from a

graph without changing the weight of the maximum weighted

matching, if u and v satisfy certain properties.

LEMMA 3.3. Let G = (V,E) be a weighted graph and let

G′ = (V,E′) be a subgraph with the property:

∀uv ∈ E \E′ , deg
w(uv)
G′ (u) ≥ 5k or deg

w(uv)
G′ (v) ≥ 5k ,

where degwG(u) is the number of edges incident to u in G with

weight w. Then, match(G) = match(G′).

Proof. Let E \ E′ = {e1, e2, . . . et} and let G′
i be the graph

formed by removing {e1, . . . , ei} from G. So G′
0 = G

and G′
t = G′. For the sake of contradiction, suppose

match(G) > match(G′) and let r be the minimal value

such that match(G) > match(G′
r).

By the minimality of r, match(G) = match(G′
r−1).

Consider the maximum weight matching M in G′
r−1. If

er 6∈ M then match(G) = match(G′
r−1) = match(G′

r)
and we have a contradiction. If er ∈ M , let u, v be the

endpoints of er and the weight of er be w. Without loss of

generality degwG′

r
(u) ≥ dwG′(u) ≥ 5k. Hence, there exists

edge ux of weight w in G′
r where x is not an endpoint

in M . Therefore, the matching (M \ {er}) ∪ {ux} is

contained in G′
r and has the same weight as M . Hence,

match(G) = match(G′
r−1) = match(G′

r) and we again

have a contradiction. �

Consider a weighted graph G and let G′ ∼
Sample1000k,2,Θ(log k). For each weight w, let Gw and G′

w

denote the subgraphs consisting of edges with weight exactly

w. By applying the analysis of the previous section to Gw

and G′
w we may conclude that G′ satisfies the properties of

the above lemma. Hence, match(G) = match(G′). To re-

duce the dependence on the number of distinct weights in

Theorem 2.1, we may first round each weight to the nearest

power of (1 + ǫ) at the cost of incurring a (1 + ǫ) factor error.

If W is the ratio of the max weight to min weight, there are

O(ǫ−1 logW) distinct weights after the rounding.

3.2 Finding Minimum Hitting Set Exactly

In this section, we present exact results for computing hitting

sets and hypergraph matchings. Throughout the section, let

G be a hypergraph with hs(G) ≤ k where hs(G) denotes the

cardinality of the minimum hitting set of G. We assume that

each edge has size exactly d where d is a constant.

Intuition and Preliminaries. Given that the hitting set

problem is a generalization of the vertex cover problem,

naturally some of the ideas in this section build upon ideas

from the previous section. However, the combinatorial

structure we need to analyze for our sampling result goes

beyond what is typically needed when extending vertex cover

kernelization results to hitting sets. We first need to review a

basic definition and result about “sunflower” set systems.

LEMMA 3.4. (SUNFLOWER LEMMA [19]) Let F be a col-

lection of subsets of [n]. Then A1, . . . , As ∈ F is an s-

sunflower if Ai ∩ Aj = C for all 1 ≤ i < j ≤ s. We refer

to C as the core of the sunflower and Ai \ C as the petals.

If each set in F has size at most d and |F| > d!kd, then F
contains a (k + 1)-sunflower.

Let sG(C) denote the number of petals in a maximum

sunflower in the graph G with core C. We say a core is large

if sG(C) > ak for some large constant a and significant if

sG(C) > k. Define the sets:

• U = {C ⊆ V | sG(C) > ak} is the set of large cores.

• F = {D ∈ E | ∀C ∈ U,C 6⊆ D} is the set of edges

that do not include a large core.

• U ′ = {C ∈ U | ∀C ′ ⊂ C, sG(C
′) ≤ k} is the set of

large cores that do not contain significant cores.

LEMMA 3.5. |F | = O(kd) and |U ′| = O(kd−1)

Proof. For the sake of contradiction assume |F | > d!(ak)d.

Then, by the Sunflower Lemma, F contains a (ak + 1)-
sunflower. If the core of this sunflower is empty, F has a

matching of size (ak + 1) and therefore cannot have a hitting

set of size at most k. If the sunflower has a non-empty core

C, then some edge D ∈ F contains C, which contradicts the

definition of F . Therefore, |F | ≤ d!(ak)d.

To prove |U ′| ≤ (d−1)!kd−1, first note that |C ′| ≤ d−1
for all C ′ ∈ U ′. For the sake of contradiction assume that

|U ′| > (d− 1)!kd−1. Then, by the Sunflower Lemma again,

U ′ contains a (k + 1)-sunflower. Note that it is a sunflower

of cores, not hypergraph edges. Let C1, C2, . . . , Ck+1 be the

sets in the sunflower. Each of these sets has to contain at

least one vertex of the minimum hitting set. Therefore, if

C1, C2, . . . , Ck+1 are disjoint (i.e., the core of the sunflower

is empty), U ′ has a matching of size (k + 1) and cannot

have a hitting set of size at most k. If the sunflower

has a non-empty core C∗, we will show that union of the

maximum sunflowers with cores C1, C2, . . . , Ck+1 contains

a sunflower with k + 1 edges with core C∗ ⊂ C1 ∈ U ′.

This contradicts the definition of U ′ and therefore |U ′| ≤

D'1

D'2

D'3

D

C

Figure 1: Given sets D′
1, D

′
2, D

′
3 that intersect set D exactly

at C then MC,D consists of the shaded subsets of D′
1, D

′
2, and

D′
3. Assuming C is non-empty, {D′

1, D
′
2, D

′
3} has a hitting

set of size 1 since any vertex in C hits all sets. Lemma 3.6

bounds the size of the minimum hitting set of {D′
1, D

′
2, D

′
3}

that may not include any vertices in C.

(d− 1)!kd−1 = O(kd−1). To construct the sunflower on C∗,

for i = 1, . . . , k + 1, we pick an edge Di in the maximum

sunflower with core Ci such that Di∩Cj = C∗ for j 6= i and

Di ∩Dj = C∗ for j < i. This is possible if a is sufficiently

large. �

The sets U and F play a similar role to the sets of

the same name in the previous section. For example, if

d = 2, then a large core corresponds to a high degree vertex.

However, the set U ′ has no corresponding notion when d = 2
because a high degree vertex cannot contain another high

degree vertex. The following (rather technical) lemma will

play a crucial role when dealing with cores that are subsets

of other cores in U ′ or of edges in F . It shows that if a core

C is contained in a set D, then the set of edges that intersect

D at C has a hitting set that a) does not include vertices in C
and b) has small size assuming sG(C) is small.

LEMMA 3.6. For any two sets of vertices C,D, where C ⊆
D, define

MC,D = {D′ \ C | D′ ∈ E,D ∩D′ = C} .

Then hs(MC,D) ≤ sG(C)d. See Figure 1 for an example.

Proof. Consider the size of minimum hitting set of MC,D.

If hs(MC,D) > sG(C)d, then MC,D has a matching of size

greater than sG(C). This matching together with the set C
forms a sunflower with core C and over sG(C) petals, which

contradicts the assumption. Therefore, hs(MC,D) ≤ sG(C)d
as claimed. �

Hitting Set. For the rest of this section we let G′ =
(V,E′) ∼ Sampleb,d,r(G) where b = O(k), d is the

cardinality of the hyperedges, and r = O(log k). It will also

be convenient to use the notation HS(S) to denote a minimum

hitting set of a collection of sets S , i.e., hs(S) = |HS(S)|.

THEOREM 3.2. Suppose hs(G) ≤ k. With probability

1− 1/ poly(k), hs(G′) = hs(G).

Proof. For each significant core C there has to be at least

one vertex from the hitting set in C. Since all large cores

are significant, hs(G) = hs(U ∪ F). If C ∈ U has a subset

C ′ such that sG(C
′) > k, then there is at least one vertex

from the hitting set in C ′ and this vertex also hits C. Thus,

hs(G) = hs(U ′ ∪ F). By Lemma 3.7, the set of significant

cores in G′ is a superset of U ′ with high probability. By

Lemma 3.8, every edge in F is in G′ with high probability. �

LEMMA 3.7. P [∀ C ∈ U ′, sG′(C) > k] ≥ 1− 1/ poly(k).

Proof. Fix an arbitrary core C ∈ U ′. Consider H ∼
Sampleb,d,1 and let c : [n] → [b] be the coloring that

defined H . We need to identify k + 1 sets of colors

S1, S2, . . . Sk+1 ⊂ [b] each of size d, such that any set of

edges D1, D2, . . . , Dk+1 where Di is Si-colored forms a

sunflower of size k + 1 on core C. In order for this to hold,

the color sets have to satisfy the following three properties:

1. All edges that are Si-colored contain C.

2. There is at least one Si-colored edge.

3. If D is Si-colored and D′ is Sj-colored then (D \ C) ∩
(D′ \ C) = ∅.

In what follows, we first define a set F = {S1, S2, . . .} that

satisfies the above properties. We then argue that |F| ≥ k+1
with probability at least 1/2. By repeating the process

O(log k) times will ensure that such a family exists with

high probability. The lemma follows by taking the union

bound over all C ∈ U ′ since |U ′| = O(kd−1) by Lemma 3.5.

Property 1. We first define a set of vertices A such that any

edge that does not intersect A must include C. Then, for

any S ⊂ [b] that is disjoint from c(A), we may infer that all

S-colored edges contain C. This follows since if S = c(D)
for some edge D, then c(D) ∩ c(A) = ∅ which implies that

D ∩A = ∅, and so C ⊆ D. Let

A = (HS(G) \ C) ∪
(

⋃

C′⊂C HS(MC′,C)

)

.

All edges that do not intersect HS(G) \C must intersect with

C. But all edges that intersect with only a subset of C, say C ′,

must intersect with HS(MC′,C). Hence A has the claimed

property. We will say that C is a good core if c(C)∩c(A) = ∅
and |c(C)| = |C|.

Property 2. Next, let P be a set of petals in a sunflower with

core C that do not intersect with A. We may choose a set of

|P| = ak − |A| such petals. For each P ∈ P , define the set:

AP = A ∪ C ∪
(

⋃

Q∈P\PQ

)

.

If C is a good core, let P ′ contain all P ∈ P such that

c(P)∩ c(AP) = ∅ and |c(P)| = |P |. If C is not a good core,

let P ′ = ∅. Then the family F = {c(P ∪ C)}P∈P′ satisfies

Properties 1 and 2. Note that no two petals in P ′ share the

same color and hence |F| = |P ′| assuming C is a good core.

Property 3. Assume C is a good core since otherwise F = ∅
and Property 3 is trivially satisified. Let S1, S2 ∈ F and

suppose S1 = c(C ∪ P1) and S2 = c(C ∪ P2) for some

P1, P2 ∈ P ′. Suppose edges C ∪ Q1 and C ∪ Q2 are S1-

colored and S2-colored respectively. Then c(Q1) = c(P1)
and c(Q2) = c(P2) because |c(C)| = |C|, |c(P1)| = |P1|,
|c(P2)| = |P2|, and all edges have the same cardinality.

But c(P1) ∩ c(P2) = ∅ implies c(Q1) ∩ c(Q2) = ∅ and

so Q1 ∩Q2 = ∅ as required.

Size of F . We need to show that |P ′| ≥ (k + 1) with

probability 1/2. Recall that c : V → [b] is chosen randomly

from a family of pairwise independent hash functions and

suppose b = 8max(d|A| + d2, d|AP | + d2). Note that

b = O(k) since, by appealing to Lemma 3.6,

|A| ≤ |AP | ≤ |A|+ |C|+ d|P|
≤ hs(G) +

∑

C′⊂C

hs(MC,C′) + |C|+ d|P|

≤ k + 2ddk + d+ dak = O(k) .

Then,

P [C is not a good core]

= P [c(C) ∩ c(A) 6= ∅ or |c(C)| 6= |C|]
≤ (d|A|+ d2)/b ≤ 1/8 .

For each P ∈ P , let XP = 1 if P 6∈ P ′ or C is not a good

core. Let XP = 0 otherwise. Then

E

[

∑

XP

]

≤ |P|
(

d|AP |+ d2)/b+ 1/8
)

≤ |P|/4 ,

and so

P

[

∑

XP ≥ |P|/2
]

≤ 1/2

by the Markov inequality. Hence,

|P ′| = |P| −
∑

XP ≥ |P|/2 = ak/2− |A|/2 ≥ k + 1

for sufficiently large a with probability at least 1/2.

�

LEMMA 3.8. P [F ⊆ E′] ≥ 1− 1/ poly(k).

Proof. Pick an arbitrary edge D ∈ F . Consider H ∼
Sampleb,d,1 and let c : [n]→ [b] be the coloring that defined

H . It suffices to show that there is a unique edge that is

c(D)-colored since then D is necessarily an edge in H . It

suffices to show that this is the case with probability at least

1/2 because repeating the process O(log k) times will ensure

that such a family exists with high probability. The result

then follows by taking the union bound over all D ∈ F since

|F | = O(kd) by Lemma 3.5.

Let S = c(D). We first define a set A of vertices such

that the only edge that is disjoint from A is D. It follows that

D is the unique S-colored edge if S ∩ c(A) = ∅, since every

other edge intersects A and hence must share a color with it.

We define A as follows:

A = (HS(G) \D) ∪
(
⋃

C⊂D HS(MC,D)
)

.

Note D itself is disjoint from A since each HS(MC,D) does

not include vertices from D. If an edge is disjoint from

(HS(G) \D) then it must intersect D. Suppose there exists

an edge D′ such that D ∩D′ = C 6= D, then D′ intersects

HS(MC,D). Hence, the only edge that is disjoint from

A includes the vertices in D and so is equal to D on the

assumption that all edges have the same number of vertices.

It remains to show that S ∩ c(A) = ∅ with probability at

least 1/2. If b ≥ 2d|A| then we have

P [S ∩ c(A) = ∅] ≥ 1− d|A|/b ≥ 1/2 .

Finally, note that b = O(k) since |A| ≤ hs(G) +
∑

C⊂D hs(MC,D) ≤ k + 2dakd = O(k) by appealing to

Lemma 3.6 and using the fact that sG(C) ≤ ak for all C ⊂ D
since D ∈ F . �

A result for hypergraph matching follows along similar

lines.

THEOREM 3.3. Suppose match(G) ≤ k′ = k/d. With

probability 1− 1/ poly(k), match(G′) = match(G).

Proof. hs(G) ≤ dk′ = k. Let M be the matching. F ∩M is

preserved in G′. Consider an edge D ∈M such that C ⊆ D
for some C ∈ U . Then in G′ we can find (by Lemma 3.7)

at least k + 1 petals in a sunflower with core either C itself

or some C ′ ⊂ C. At most k of those intersect M \ {D}.
Therefore, there is still at least one edge we can pick for the

matching. �

4 Approximating Large Matchings

The problem of approximating large matchings in the dy-

namic graph stream model has seen a flurry of recent activity.

Four sets of related results were disclosed almost simultane-

ously [9,11,12,36] (including a version of this paper). Assadi

et al. [9] present a different α-approximation algorithm for

maximum matching that uses the same space as our algorithm

(which they show is optimal). Konrad [36] proves slightly

weaker bounds. Bury and Schwiegelshohn [11] present an

algorithm for estimating the size of the maximum matching

in graphs of bounded arboricity. Our second algorithm in this

section is similar (the difference is that we can find the edges

of an exact matching when it is small whereas they approx-

imate the cardinality in this case by guessing and verifying

the rank of a related matrix).

4.1 Approximating Matching in Arbitrary Graphs

Intuition and Preliminaries. Given a hash function c : V →
[b], we say an edge uv is colored i if c(u) = c(v) = i. If the

endpoints have different colors, we say the edge is uncolored.

The basic idea behind our algorithm is to repeatedly sample

a set of colored edges with distinct colors. Note that a set of

colored edges disjoint colors is a matching. We use the edges

in this matching to augment the matching already constructed

from previous rounds. In this section we require the hash

functions to be O(k)-wise independent and, in the context of

dynamic data streams, this will increase the update time by a

O(k) factor.

THEOREM 4.1. Suppose match(G) ≥ k. For any 1 ≤ α ≤√
k and 0 < ǫ ≤ 1, with probability 1− 1/ poly(k),

match(G′) ≥
(

1− ǫ

2α

)

· k ,

where G′ ∼ Sample2k/α,1,r where r = O(kα−2ǫ−2 log k).

Note that if match(G) ≥ 10k, ǫ = 0.1, and α = 3, then

the theorem above implies that we can find a matching of

size strictly greater that k using Õ(k2) space in the dynamic

graph stream model. If match(G) ≤ 10k then if we run

the algorithm used for Theorem 3.1, we can find the exact

matching using Õ(k2) space. Hence, we can distinguish

between the case match(G) ≤ k and match(G) > k using

Õ(k2) space.

Proof. [Proof of Theorem 4.1] Let H1, . . . , Hr ∼
Sample2k/α,1,1 and let G′ be the union of these graphs. Con-

sider the greedy matching Mr where M0 = ∅ and for t ≥ 1,

Mt is the union of Mt−1 and additional edges from Ht. We

will show that if Mt−1 is small, then we can find many edges

in Ht that can be used to augment Mt−1.

Consider Ht and suppose |Mt−1| < 1−ǫ
2α · k. Let

c : V → [b] be the hash-function used to define Ht where

b = 2k
α . Let U be the set of colors that are not used to color

the endpoints of Mt−1, i.e.,

U = {c ∈ [b] : there does not exist a matched vertex

u in Mt−1 with c(u) = c} .

and note that |U | ≥ b−2|Mt−1| ≥ k
α . For each c ∈ U , define

the indicator variable Xc where Xc = 1 if there exists an edge

uv with c(u) = c(v) = c. We will find X =
∑

c∈U Xc edges

to add to the matching.

Since match(G) ≥ k, there exists a set k − 2|Mt−1| >
kǫ vertex disjoint edges that can be added to Mt−1. Let

p = α
2k and observe that E [Xc] ≥ kǫp2 −

(

kǫ
2

)

p4 >

kǫp2/2 = ǫ · α2

8k . Therefore, E [X] ≥ (kα) · ǫ · α
2

8k = ǫα
8 . Since

Xc and Xc′ are negative correlated, P [X ≥ E[X]/2] ≥
1 − exp (−Ω (ǫα)) ≥ Ω(ǫ). Hence, with each repetition

we may increase the size of the matching by at least ǫα/2
with probability Ω(ǫ). After O(kα−2ǫ−2 log k) repetitions

the matching has size at least 1−ǫ
2α · k. �

By applying Theorem 4.1 for all k ∈ {1, 2, 4, 8, 16, . . .}
and appealing to Theorem 2.1, we establish:

COROLLARY 4.1. There exists a O(n polylog n)-space al-

gorithm that returns an O(n1/3)-approximation to the size of

the maximum matching in the dynamic graph stream model.

Proof. For 1 ≤ i ≤ log n, let G′
i ∼ Sampleb,1,r where

r = O(2iα−2 log k) and b = 2i+1/α. These graphs can be

generated in Õ(n2α−3) space. For some i,

2i ≤ match(G) < 2i+1

and hence match(G′
i) = Ω(match(G)/α). �

This result generalizes to the weighted case using the

Crouch-Stubbs technique [15]. They showed that if we can

find a β-approximation to the maximum cardinality matching

amongst all edges of weight greater than (1 + ǫ)i for each i,
then we can find a 2(1 + ǫ)β-approximation to the maximum

weighted matching.

4.2 Matchings in Planar and Bounded-Arboricity

Graphs

In this section, we present an algorithm for estimating the

size of the matching in a graph of bounded arboricity. Recall

that a graph has arboricity ν if its edges can be partitioned

into at most ν forests. In particular, it can be shown that a

planar graph has arboricity at most 3. We will make repeated

use of the fact that the average degree of every subgraph of a

graph with arboricity ν is at most 2ν.

Our algorithm is based on an insertion-only streaming

algorithm due to Esfandiari et al. [21]. They first proved upper

and lower bounds on the size of the maximum matching in a

graph of arboricity ν.

LEMMA 4.1. (ESFANDIARI ET AL. [21]) For any graph G
with arboricity ν, define a vertex to be heavy if its degree is

at least 2ν + 3 and define an edge to be shallow if it is not

incident to a heavy vertex. Then,

max{h, s}
2.5ν + 4.5

≤ match(G) ≤ 2max{h, s} .

where h is the number of heavy vertices and s is the number

of shallow edges.

To estimate max{h, s}, Esfandiari et al. sampled a set of

vertices Z and (a) computed the exact degree of these vertices,

then (b) found the set of all edges in the induced subgraph on

these vertices. The fraction of heavy vertices in Z and shallow

edges in the induced graph are then used to estimate h and s.

By choosing the size of Z appropriately, they showed that the

resulting estimate was sufficiently accurate on the assumption

that max{h, s} is large. In the case where max{h, s} is small,

the maximum matching is also small and hence a maximal

matching could be constructed in small space using a greedy

algorithm.

Algorithm for Dynamic Graph Streams. In the dynamic

graph stream model, it is not possible to construct a maximal

matching. However, we may instead use the algorithm of

Theorem 3.1 to find the exact size of the maximum matching.

Furthermore we can still recover the induced subgraph on

sampled vertices Z via a sparse recovery sketch [25]. This

can be done space-efficiently because the number of edges

is at most 2ν|Z|. Lastly, rather than fixing the size of Z, we

consider sampling each vertex independently with a fixed

probability as this simplifies the analysis significantly. The

resulting algorithm is as follows:

1. Invoke algorithm of Theorem 3.1 for k = 2n2/5 and let

r be the reported matching size.

2. In parallel, sample vertices with probability p =
8ǫ−2n−1/5 and let Z be the set of sampled vertices.

Find the degrees of vertices in Z in G and maintain a

2ν|Z|-sparse recovery sketch of the edges in the induced

graph on Z. Let sZ be the number of shallow edges

in the induced graph on Z and let sZ be the number of

heavy vertices in Z. Return max{r, hZ/p, sZ/p
2}.

Analysis. Our analysis relies on the following lemma that

shows that max{hZ/p, sZ/p
2} is a 1 + ǫ approximation for

max{s, h} on the assumption that max{s, h} ≥ n2/5.

LEMMA 4.2. With probability at least 4/5,

|max{hZ/p, sZ/p
2} −max{s, h}| ≤ ǫ ·max{n2/5, s, h} .

Proof. First we show sZ/p
2 is a sufficiently good estimate

for s. Let S be the set of shallow edges in G and let EZ be

the set of edges in the induced graph on Z. For each shallow

edge e ∈ S, define an indicator random variable Xe where

Xe = 1 iff e ∈ EZ and note that sZ =
∑

e∈S Xe. Then,

E [sZ] = sp2

and

V [sZ] =
∑

e∈S

∑

e′∈S

E [XeXe′]− E [Xe]E [Xe′] .

Note that
∑

e′∈S

E [XeXe′]− E [Xe]E [Xe′]

=











p2 − p4 if e = e′

p3 − p4 if e and e′ share exactly one endpoint

0 if e and e′ share no endpoints

.

and since there are at most 2ν+3 edges that share an endpoint

with a shallow edge,

V [sZ] ≤ s(p2 − p4 + (2ν + 3)p3 − p4) ≤ 2sp2

on the assumption that (2ν + 3) ≤ 1/p. We then use

Chebyshev’s inequality to obtain

P

[

|sZ − sp2| ≤ p2ǫ ·max{n2/5, s}
]

≤ 2sp2

(p2ǫ ·max{n2/5, s})2 ≤ 9/10
.(4.2)

Next we show that hZ/p is a sufficiently good estimate

for h. Let H denote the set of h heavy vertices in G and

define an indicator random variable Yv for each v ∈ H ,

where Yv = 1 iff v ∈ Z. Note that hZ =
∑

v∈H Yv and

E [hZ] = hp. Then, by an application of the Chernoff-

Hoeffding bound,

P

[

|hZ − hp| ≥ ǫpmax{h, n2/5}
]

≤ exp(−ǫ2pn2/5/3) ≤ 9/10
.(4.3)

Therefore, it follows from Eq. 4.2 and 4.3 that with

probability at least 4/5,

|max{hZ/p, sZ/p
2} −max{s, h}| ≤ ǫ ·max{n2/5, s, h} .

�

THEOREM 4.2. There exists a Õ(νǫ−2n4/5 log δ−1)-space

dynamic graph stream algorithm that returns a (5ν + 9)(1 +
ǫ)2 approximation of match(G) with probability at least 1−δ
where ν is the arboricity of G.

Proof. To argue the approximation factor, first suppose

match(G) ≤ 2n2/5. In this case r = match(G) and

max{s, h} ≤ (2.5ν+4.5)match(G) by appealing to Lemma

4.1. Hence,

match(G) ≤ max{r, hZ/p, sZ/p
2} ≤ (2.5ν+4.5)match(G)

Next suppose match(G) ≥ 2n2/5. In this case,

max{s, h} ≥ n2/5 by Lemma 4.1. Therefore, by Lemma

4.2, max{hZ/p, sZ/p
2} = (1± ǫ)max{s, h}, and so

match(G)

2(1 + ǫ)
≤ max{r, hZ/p, sZ/p

2}

≤ (1 + ǫ)max{s, h}
≤ (1 + ǫ)(2.5ν + 4.5)match(G) .

To argue the space bound, recall that the algorithm

used in Theorem 3.1 requires Õ(n4/5) space. Note that

|Z| ≤ 2np = Õ(ǫ−2n4/5) with high probability. Hence, to

sample the vertices Z and maintain a 2ν|Z|-sparse recovery

data structure requires Õ(n4/5ν) space. �

5 Sampling Kernels for Subgraph Search Problems

We extend our parameterized results to a class of problems

where the objective is to search for a subgraph H of G(V,E)
which satisfies some property P . In the parameterized setting,

we typically search for the largest H which satisfies this

property, subject to the promise that the size of any H
satisfying P is at most k. For concreteness, we assume

the size is captured by the number of vertices in H , and

our objective is to find a maximum cardinality satisfying

subgraph. The sampling primitive Sampleb,2,1 can be used

here when P is preserved under vertex contraction: if G′ is a

vertex contraction of G, then any subgraph H of G′ satisfying

P also satisfies P for G (with vertices suitably remapped).

Here, the vertex contraction of vertices u and v creates a new

vertex whose neighbors are Γ(u) ∪ Γ(v). Many well-studied

problems possess the required structure, including:

— b-matching, finding a maximum cardinality subgraph H of

G such that the degree of each vertex in H is at most b. Hence,

the standard notion of matching in Section 2 is equivalent to

1-matching.

— k-colorable subgraph, finding a subgraph H that is k-

colorable. The maximum cardinality 2-colorable subgraph

forms a max-cut, and more generally the maximum cardinal-

ity k-colorable subgraph is a max k-cut.

— other maximum subgraph problems, such as finding the

largest subgraph that is a forest, has at least c connected

components, or is a collection of vertex disjoint paths.

THEOREM 5.1. Let P be a graph property preserved under

vertex contraction. Suppose that the number of vertices in

some optimum solution opt(G) is at most k. Let G′ ∼
Sample4k2,2,1(G). With constant probability, we can compute

a solution H for P from G′ that achieves |H| = | opt(G)|.

Proof. We construct a contracted graph G′′ from G′ based on

the color classes used in the Sample operator: we contract all

vertices that are assigned the same color by the hash function

c(). Fix an optimum solution opt(G) with at most k vertices.

Lemma 2.1 shows that for b = 4k2, all vertices involved

in opt(G) are hashed into distinct color values. Hence,

the subgraph opt(G) is a subgraph of G′′: for any edge

e = (u, v) ∈ opt(G), the edge itself was sampled from

the data structure, or else a different edge with the same color

values was sampled, and so can be used interchangeably in

G′′. Hence, (the remapped form of) opt(G) persists in G′′.

By the vertex contraction property of P , this means that a

maximum cardinality solution for P in G′′ is a maximum

cardinality solution in G.

Note that for this application of the subgraph sampling

primitive, it suffices to implement the sampling data structure

with a counter for each pair of colors: any non-zero count

corresponds to an edge in G′′. �

Note that the generality of the result comes at the cost

of increasing the number of colors, and hence the space

of the stream algorithms. To generalize the result to the

weighted case (e.g., where the objective is to find the subgraph

satisfying P with the greatest total weight), we take the

approach used in Section 3.1. We perform the sampling

in parallel for each distinct weight value, and then round each

edge weight to the closest power of (1 + ǫ) to reduce the

number of weight classes to O(ǫ−1 logW), with a loss factor

of (1 + ǫ).

6 Lower Bounds

6.1 Matching and Hitting Set Lower Bounds

The following theorem establishes that the space-use of

our matching, vertex cover, hitting set, and hyper matching

algorithms is optimal up to logarithmic factors.

THEOREM 6.1. Any (randomized) parameterized stream-

ing algorithm for the minimum d-hitting set or maximum

(hyper)matching problem with parameter k requires Ω(kd)
space.

Proof. We reduce from the MEMBERSHIP problem in com-

munication complexity:

MEMBERSHIP

Input: Alice has a set X ⊆ [n], and Bob has an element

1 ≤ x ≤ n.

Question: Bob wants to check whether x ∈ X .

There is a lower bound of Ω(n) bits of communication

from Alice to Bob, even allowing randomization [2].

Let S = s1s2...sn be the characteristic string of X , i.e.

a binary string such that si = 1 iff i ∈ X . Let k = d
√
n. Fix

a canonical mapping h : [n]→ [k]d. This way we can view

an n bit string as an adjacency matrix of a d-partite graph.

Construct the following graph G with d vertex partitions

V1, V2, ..., Vd:

• Each partition Vi has dk vertices: for each j ∈ [k] create

vertices v∗i,j , v1i,j , v2i,j ,..., vd−1
i,j .

• Alice inserts a hyperedge (v∗1,j1 , v
∗
2,j2

, ..., v∗d,jd) iff the

corresponding bit in the string S is 1, i.e., sa = 1 where

h(a) = (j1, j2, ..., jd).

• Let h(x) = (J1, J2, ..., Jd). Bob inserts edge

(v∗i,j , v
1
i,j , v

2
i,j , ..., v

d−1
i,j) iff j 6= Ji.

Alice runs the (assumed) hitting set algorithm on the edges

she is inserting using space f(k). Then she sends the memory

contents of the algorithm to Bob, who finishes running the

algorithm on his edges.

The minimum hitting set should include vertices v∗i,j
such that j 6= Ji. If edge (v∗1,J1

, v∗2,J2
, ..., v∗d,Jd

) is in the

graph, we also need to include one of its vertices. Therefore,

x ∈ X ⇐⇒ sx = 1

⇐⇒ (v∗1,J1
, v∗2,J2

, ..., v∗d,Jd
) is in G

⇐⇒ hs(G) = dk − d+ 1 .

On the other hand,

x 6∈ X ⇐⇒ sx = 0

⇐⇒ (v∗1,J1
, v∗2,J2

, ..., v∗d,Jd
) is not in G

⇐⇒ hs(G) = dk − d .

Alice only sends f(k) bits to Bob. Therefore, f(k) =
Ω(n) = Ω(kd).

For the lower bound on matching we use the same

construction. For each vertex v∗i,j such that j 6= Ji maximum

matching should include (v∗i,j , v
1
i,j , v

2
i,j , ..., v

d−1
i,j). If edge

(v∗1,J1
, v∗2,J2

, ..., v∗d,Jd
) is in the graph, we include it in the

matching as well. Therefore,

x ∈ X ⇐⇒ sx = 1

⇐⇒ (v∗1,J1
, v∗2,J2

, ..., v∗d,Jd
) is in G

⇐⇒ match(G) = dk − d+ 1 .

And

x 6∈ X ⇐⇒ sx = 0

⇐⇒ (v∗1,J1
, v∗2,J2

, ..., v∗d,Jd
) is not in G

⇐⇒ match(G) = dk − d .

�

6.2 Lower Bounds for Problems considered by Fafianie

and Kratsch [22]

Comparison with Lower Bounds for Streaming Kernels:

Fafianie and Kratsch [22] introduced the notion of kerneliza-

tion in the streaming setting as follows:

DEFINITION 6.1. A 1-pass streaming kernelization algo-

rithm receives an input (x, k) and returns a kernel, with the

restriction that the space usage of the algorithm is bounded

by p(k) · log |x| for some polynomial p.

Fafianie and Kratsch [22] gave deterministic lower

bounds for several parameterized problems. In particular,

they showed that:

• Any 1-pass kernel for EDGE DOMINATING SET(k)
requires Ω(m) bits, where m is the number of edges.

However, there is a 2-pass kernel which uses O(k3 ·
log n) bits of local memory and O(k2) time in each step

and returns an equivalent instance of size O(k3 · log k).

• The lower bound of Ω(m) bits for any 1-pass kernel

also holds for several other problems such as CLUS-

TER EDITING(k), CLUSTER DELETION(k), CLUSTER

VERTEX DELETION(k), COGRAPH VERTEX DELE-

TION(k), MINIMUM FILL-IN(k), EDGE BIPARTIZA-

TION(k), FEEDBACK VERTEX SET(k), ODD CYCLE

TRANSVERSAL(k), TRIANGLE EDGE DELETION(k),
TRIANGLE VERTEX DELETION(k), TRIANGLE PACK-

ING(k), s-STAR PACKING(k), BIPARTITE COLORFUL

NEIGHBORHOOD(k).

• Any t-pass kernel for CLUSTER EDITING(k) and MINI-

MUM FILL-IN(k) requires Ω(n/t) space.

In this section, we give Ω(n) randomized lower bounds

for the space complexity of all the problems considered by

Fafianie and Kratsch. In addition, we also consider some

other problems such as PATH(k) which were not considered

by Fafianie and Kratsch. A simple observation shows that

any lower bound for parameterized streaming kernels also

transfers for the parameterized streaming algorithms. Thus

the results of Fafiane and Kratsch [22] also give lower

bounds for the parameterized streaming algorithms for these

problems. However, our lower bounds have the following

advantage over the results of [22]:

• All our lower bounds also hold for randomized algo-

rithms, whereas the kernel lower bounds were for deter-

ministic algorithms.

• With the exception of EDGE DOMINATING SET(k), all

our lower bounds also hold for any constant number of

passes.

6.2.1 Lower Bound for EDGE DOMINATING SET

We now show a lower bound for the EDGE DOMINATING

SET(k) problem.

DEFINITION 6.2. Given a graph G = (V,E) we say that a

set of edges X ⊆ E is an edge dominating set if every edge

in E \X is incident on some edge of X .

EDGE DOMINATING SET(k) Parameter: k
Input: An undirected graphs G and an integer k
Question: Does there exist an edge dominating set X ⊆ E
of size at most k?

THEOREM 6.2. For the EDGE DOMINATING SET(k) prob-

lem, any (randomized) streaming algorithm needs Ω(n)
space.

Proof. Given an instance of MEMBERSHIP, we create a graph

G on n+ 2 vertices as follows. For each i ∈ [n] we create a

vertex vi. Also add two special vertices a and b. For every

y ∈ X , add the edge (a, y). Finally add the edge (b, x).
Now we will show that G has an edge dominating set of

size 1 iff MEMBERSHIP answers YES. In the first direction

suppose that G has an edge dominating set of size 1. Then it

must be the case that x ∈ X: otherwise for a minimum edge

dominating set we need one extra edge to dominate the star

incident on a, in addition to the edge (b, x) dominating itself.

Hence MEMBERSHIP answers YES. In reverse direction,

suppose that MEMBERSHIP answers YES. Then the edge

(a, x) is clearly an edge dominating set of size 1.

Therefore, any (randomized) streaming algorithm that

can determine whether a graph has an edge dominating set

of size at most k = 1 gives a communication protocol for

MEMBERSHIP, and hence requires Ω(n) space. �

6.2.2 Lower Bound for G-FREE DELETION

DEFINITION 6.3. Let G be a set of graphs such that each

graph in G is connected. We say that G is bad if there is graph

H ∈ G such that

• H is a minimal element of G under the operation of

taking subgraphs, i.e., no proper subgraph of H is in G
• H has at least two distinct edges

Note that G = {P2} is not bad (where P2 is the path on

two vertices) since the only minimal graph in G is P2 which

does not have two edges. On the other hand, the class of

graphs G = {P3, P4, P5, . . .} is bad since P3 is a minimal

graph (under operation of taking subgraphs) of G and P3

contains two edges.

For any bad set of graphs G, we now show a lower bound

for the following general problem:

G-FREE DELETION(k) Parameter: k
Input: A bad set of graphs G, an undirected graph G =
(V,E) and an integer k
Question: Does there exist a set X ⊆ V such that G \X
contains no graph from G?

We reduce from the DISJOINTNESS problem in commu-

nication complexity.

DISJOINTNESS

Input: Alice has a string x ∈ {0, 1}n given by x1x2 . . . xn.

Bob has a string y ∈ {0, 1}n given by y1y2 . . . yn.

Question: Bob wants to check if ∃ i ∈ [n] such that

xi = yi = 1.

There is a lower bound of Ω(n/p) bits of communication

between Alice and Bob, allowing p-rounds and randomiza-

tion [39].

THEOREM 6.3. For a bad set of graphs G, any p-pass (ran-

domized) streaming algorithm for the G-FREE DELETION

problem needs Ω(n/p) space .

Proof. Since G is a bad set of graphs, there is a minimal graph

H ∈ G which has at least two distinct edges, say e1 and e2.

Let H ′ := H \{e1, e2}. Given an instance of DISJOINTNESS,

we create a graph G which consists of n disjoint copies say

G1, G2, . . . , Gn of H ′. For each i ∈ [n], to the copy Gi of

H ′ we add the edge e1 iff xi = 1 and the edge e2 iff yi = 1.

We now show that the resulting graph G contains a copy of

H if and only if it is a YES instance of DISJOINTNESS.

Suppose that it is a YES instance of DISJOINTNESS. So

there is a j ∈ [n] such that xj = 1 = yj . Therefore, to

the copy Gj of H ′ we would have added the edges e1 and

e2 which would produce an instance of H . So G contains

a copy of H . In other direction, suppose that G contains a

copy of H . Note that since we add n disjoint copies of H ′

and add at most two edges (e1 and e2) to each copy, it follows

that each connected component of G is in fact a subgraph of

H = H ′ ∪ (e1 + e2). Since H is connected and G contains a

copy of H , some connected component of G must exactly be

the graph H , i.e, to some copy Gi of H ′ we must have added

both the edges e1 and e2. This implies xi = 1 = yi, and so

DISJOINTNESS answers YES.

Since each connected component of G is a subgraph

of H , the minimality of H implies that G contains a graph

from G iff G contains a copy of H , which in turn is true

iff DISJOINTNESS answers YES. Therefore, any p-pass

(randomized) streaming algorithm that can determine whether

a graph is G-free (i.e., answers the question with k = 0) gives

a communication protocol for DISJOINTNESS, and hence

requires Ω(n/p) space. �

This implies lower bounds for the following set of

problems:

THEOREM 6.4. For each of the following problems,

any p-pass (randomized) algorithm requires Ω(n/p)
space: FEEDBACK VERTEX SET(k), ODD CYCLE

TRANSVERSAL(k), EVEN CYCLE TRANSVERSAL(k) and

TRIANGLE DELETION(k).

Proof. We first define the problems below:

FEEDBACK VERTEX SET(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X has no cycles?

ODD CYCLE TRANSVERSAL(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X has no odd cycles?

EVEN CYCLE TRANSVERSAL(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X has no even cycles?

TRIANGLE DELETION(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X has no triangles?

Now we show how each of these problems can be viewed

as a G-FREE DELETION problem for an appropriate choice

of bad G.

• FEEDBACK VERTEX SET(k): Take G =
{C3, C4, C5, . . .} and H = C3

• ODD CYCLE TRANSVERSAL(k): Take G =
{C3, C5, C7, . . .} and H = C3

• EVEN CYCLE TRANSVERSAL(k): Take G =
{C4, C6, C8, . . .} and H = C4

• TRIANGLE DELETION(k): Take G = {C3} and H =
C3

We verify the conditions for FEEDBACK VERTEX SET(k);
the proofs for other problems are similar. Note that the choice

of G = {C3, C4, C5, . . .} and H = C3 implies that G is bad

since each graph in G is connected, the graph H belongs to G,

has at least two distinct edges and is a minimal element of G
(under operation of taking subgraphs). Finally, finding a set

X such that the graph G \X is G-free implies that it has no

cycles, i.e., X is a feedback vertex set for G. �

It is easy to see that the same proofs also work for

the edge deletion versions of the ODD CYCLE TRANSVER-

SAL(k), EVEN CYCLE TRANSVERSAL(k) and the TRIAN-

GLE DELETION(k) problems.

6.2.3 G-EDITING

DEFINITION 6.4. We say that a set of graphs G is good if

there is graph H ∈ G such that

• H is a minimal element of G under the operation of

taking subgraphs, i.e., no proper subgraph of H is in G
• H is connected and has at least two distinct edges

Definition 6.4 looks very similar to Definition 6.3:

however there is a subtle difference. Each graph in a bad

set of graphs must be connected while only a minimal graph

in a good set of graphs is required to be connected. This

difference is used crucially in the proofs of Theorem 6.3 and

Theorem 6.5.

For any good set of graphs G, we now show a lower

bound for the following general problem:

G-EDITING(k) Parameter: k
Input: A graph class G, an undirected graph G = (V,E)
and an integer k
Question: Does there exist a set X of k edges such that

(V,E ∪X) contains a graph from G?

THEOREM 6.5. For a good set of graphs G, any p-pass

(randomized) streaming algorithm for the G-EDITING(k)
problem needs Ω(n/p) space.

Proof. We reduce from the DISJOINTNESS problem in com-

munication complexity. Since G is a good set of graphs,

there is a minimal graph H ∈ G such that H is connected

and has at least two distinct edges, say e1 and e2. Let

H ′ := H \ {e1, e2}. Given an instance of DISJOINTNESS,

we create a graph G which consists of n disjoint copies say

G1, G2, . . . , Gn of H ′. By minimality of H , it follows that

H ′ /∈ G. For each i ∈ [n] we add to Gi the edge e1 iff xi = 1
and the edge e2 iff yi = 1. Let the resulting graph be G.

We now show that G contains a copy of H if and only

if DISJOINTNESS answers YES. Suppose that G contains

a copy of H . Note that since we add n disjoint copies of

H ′ and add at most two edges (e1 and e2) to each copy, it

follows that each connected component of G is in fact a

subgraph of H = H ′ ∪ (e1 + e2). Since H is connected

and G contains a copy of H , some connected component of

G must exactly be the graph H , i.e, to some copy Gi of H ′

we must have added both the edges e1 and e2. This implies

xi = 1 = yi, and so DISJOINTNESS answers YES. Now

suppose that DISJOINTNESS answers YES, i.e., there exists

j ∈ [n] such that xj = 1 = yj . Therefore, to the copy Gj of

H ′ we would have added the edges e1 and e2 which would

complete it into H . So G contains a copy of H .

Otherwise, due to minimality of H , the graph G does

not contain any graph from G. Therefore, any p-pass

(randomized) streaming algorithm that can determine whether

a graph G contains a graph from G (i.e., answers the

question with k = 0) gives a communication protocol for

DISJOINTNESS, and hence requires Ω(n/p) space. �

This implies lower bounds for the following set of

problems:

THEOREM 6.6. For each of the following problems, any p-

pass (randomized) algorithm requires Ω(n/p) space: TRI-

ANGLE PACKING(k), s-STAR PACKING(k) and PATH(k).

Proof. We first define the problems below:

TRIANGLE PACKING(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Do there exist at least k vertex disjoint triangles

in G?

s-STAR PACKING(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Do there exist at least k vertex disjoint instances

of K1,s in G (where s ≥ 3)?

PATH(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a path in G of length ≥ k?

Now we show how each of these problems can be viewed as

a G-EDITING problem for an appropriate choice of good G.

• TRIANGLE PACKING(k) with k = 1: Take G = {C3}
and H = C3

• s-STAR PACKING(k) with k = 1: Take G = {K1,s}
and H = K1,s

• PATH(k) with k = 3: Take G = {P3, P4, P5, . . .} and

H = P3

We verify the conditions for TRIANGLE PACKING(k) with

k = 1; the proofs for other problems are similar. Note that

the choice of G = {C3} and H = C3 implies that G is good

since G only contains one graph H which is connected and

has at least two distinct edges. Finally, finding a set of edges

X such that the graph (V,E ∪X) contains a graph from G
implies that it has at least one C3, i.e., X is a solution for

TRIANGLE PACKING(k) with k = 1. �

6.2.4 Lower Bound for CLUSTER VERTEX DELETION

We now show a lower bound for the CLUSTER VERTEX

DELETION(k) problem.

DEFINITION 6.5. We say that G is a cluster graph if each

connected component of G is a clique.

CLUSTER VERTEX DELETION(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X is a cluster graph?

THEOREM 6.7. For the CLUSTER VERTEX DELETION(k)
problem, any p-pass (randomized) streaming algorithm needs

Ω(n/p) space .

Proof. Given an instance of DISJOINTNESS, we create a

graph G on 3n vertices as follows. For each i ∈ [n] we create

three vertices ai, bi, ci. Insert the edge (ai, ci) iff xi = 1 and

the edge (bi, ci) iff yi = 1 This is illustrated in Figure 2.

Now we will show that each connected component of

G is a clique iff DISJOINTNESS answers NO. In the first

direction suppose that each connected component of G is a

clique. Then there cannot exist i ∈ [n] such that xi = 1 = yi

because then the vertices ai, bi, ci will form a connected

component which is a P3; this contradicts the assumption

that each connected component of G is a clique. In reverse

direction, suppose that DISJOINTNESS answers NO. Then it

is easy to see that each connected component of G is either

P1 or P2, both of which are cliques.

Therefore, any p-pass (randomized) streaming algorithm

that can determine whether a graph is a cluster graph (i.e.,

answers the question with k = 0) gives a communication

protocol for DISJOINTNESS, and hence requires Ω(n/p)
space. 2

�

6.2.5 Lower Bound for MINIMUM FILL-IN We now

show a lower bound for the MINIMUM FILL-IN(k) problem.

DEFINITION 6.6. We say that G is a chordal graph if it does

not contain an induced cycle of length ≥ 4.

MINIMUM FILL-IN(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X of at most k edges such

that (V,E ∪X) is a chordal graph?

THEOREM 6.8. For the MINIMUM FILL-IN(k) problem,

any p-pass (randomized) streaming algorithm needs Ω(n/p)
space .

Proof. We reduce from the DISJOINTNESS problem in com-

munication complexity. Given an instance of DISJOINTNESS,

we create a graph G on 4n vertices as follows. For each

i ∈ [n] we create vertices ai, bi, ci, di and insert edges (ai, bi)
and (ci, di). Insert the edge (ai, ci) iff xi = 1 and the edge

(bi, di) iff yi = 1. This is illustrated in Figure 3.

Now we will show that G is chordal iff DISJOINTNESS

answers NO. In the first direction suppose that G is chordal.

Then there cannot exist i ∈ [n] such that xi = 1 = yi
because then the vertices ai, bi, ci, di will form an induced

C4; contradicting the assumption that G is chordal. In reverse

direction, suppose that DISJOINTNESS answers NO. Then it

is easy to see that each connected component of G is either

P2 or P3. Hence, G cannot have an induced cycle of length

≥ 4, i.e., G is chordal.

Therefore, any p-pass (randomized) streaming algorithm

that can determine whether a graph is a chordal graph (i.e.,

answers the question with k = 0) gives a communication

protocol for DISJOINTNESS, and hence requires Ω(n/p)
space. �

2It is easy to see that the same proof also works for the problems of

CLUSTER EDGE DELETION(k) where we can delete at most k edges and

CLUSTER EDITING(k) where we can delete/add at most k edges

𝑎𝑖 𝑏𝑖 𝑏𝑖
𝑐𝑖

𝑎𝑖 𝑎𝑖 𝑏𝑖 𝑏𝑖𝑎𝑖
𝑐𝑖𝑐𝑖 𝑐𝑖

0 0 0 01 1 1 1

Figure 2: Gadget for reduction from DISJOINTNESS to CLUSTER VERTEX DELETION

𝑎𝑖 𝑏𝑖 𝑏𝑖
𝑐𝑖

𝑎𝑖 𝑎𝑖 𝑏𝑖 𝑏𝑖𝑎𝑖
𝑐𝑖𝑐𝑖 𝑐𝑖

0 0 0 01 1 1 1

𝑑𝑖 𝑑𝑖 𝑑𝑖 𝑑𝑖

Figure 3: Gadget for reduction from DISJOINTNESS to MINIMUM FILL-IN

6.2.6 Lower Bound for COGRAPH VERTEX DELETION

We now show a lower bound for the COGRAPH VERTEX

DELETION(k) problem.

DEFINITION 6.7. We say that G is a cograph if it does not

contain an induced P4.

COGRAPH VERTEX DELETION(k) Parameter: k
Input: An undirected graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V of size at most k
such that G \X is a cograph?

THEOREM 6.9. For the COGRAPH VERTEX DELETION(k)
problem, any p-pass (randomized) streaming algorithm needs

Ω(n/p) space.

Proof. We reduce from the DISJOINTNESS problem in com-

munication complexity. Given an instance of DISJOINTNESS,

we create a graph G on 4n vertices as follows. For each

i ∈ [n] we create vertices ai, bi, ci, di and insert edges (ai, bi).
Insert the edge (ai, ci) iff xi = 1 and the edge (bi, di) iff

yi = 1. This is illustrated in Figure 4.

Now we will show that G has an induced P4 if and only

if DISJOINTNESS answers YES. In the first direction suppose

that G has an induced P4. Since each connected component

of G can have at most 4 vertices, it follows that the P4 is

indeed given by the path ci − ai − bi − di for some i ∈ [n].
By construction of G, this implies that xi = 1 = yi, i.e.,

DISJOINTNESS answers YES. In reverse direction, suppose

that DISJOINTNESS answers YES. Then there exists j ∈ [n]
such that the edges (aj , cj) and (bj , dj) belong to G. Then G
has the following induced P4 given by cj − aj − bj − dj .

Therefore, any p-pass (randomized) streaming algorithm

that can determine whether a graph is a cograph (i.e., answers

the question with k = 0) gives a communication protocol for

DISJOINTNESS, and hence requires Ω(n/p) space. �

6.2.7 BIPARTITE COLORFUL NEIGHBORHOOD We

now show a lower bound for the BIPARTITE COLORFUL

NEIGHBORHOOD(k) problem.

BIPARTITE COLORFUL NEIGHBORHOOD(k)
Parameter: k
Input: A bipartite graph G = (A,B,E) and an integer k
Question: Is there a 2-coloring of B such that there exists

a set S ⊆ A of size at least k such that each element of S
has at least one neighbor in B of either color?

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑏𝑏𝑖𝑖
𝑐𝑐𝑖𝑖

𝑎𝑎𝑖𝑖 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑏𝑏𝑖𝑖𝑎𝑎𝑖𝑖
𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖 𝑐𝑐𝑖𝑖

0 0 0 01 1 1 1

𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖 𝑑𝑑𝑖𝑖

Figure 4: Gadget for reduction from DISJOINTNESS to COGRAPH VERTEX DELETION

𝑏 𝑏
𝑣𝑖

𝑏 𝑏
0

0

0

01

1 1

1

𝑎 𝑎 𝑎 𝑎
𝑣𝑖𝑣𝑖𝑣𝑖

Figure 5: Gadget for reduction from DISJOINTNESS to BIPARTITE COLORFUL NEIGHBORHOOD

THEOREM 6.10. For the BIPARTITE COLORFUL

NEIGHBORHOOD(k) problem, any p-pass (randomized)

streaming algorithm needs Ω(n/p) space.

Proof. We reduce from the DISJOINTNESS problem in com-

munication complexity. Given an instance of DISJOINTNESS,

we create a graph G on n + 2 vertices as follows. For

each i ∈ [n] we create a vertex vi. In addition, we have

two special vertices a and b. For each i ∈ [n], insert the

edge (a, vi) iff xi = 1 and the edge (b, vi) iff yi = 1. Let

A = {v1, v2, . . . , vn} and B = {a, b}. This is illustrated in

Figure 5.

Now we will show that G answers YES for BIPARTITE

COLORFUL NEIGHBORHOOD(k) with k = 1 iff DISJOINT-

NESS answers YES. In the first direction suppose that G an-

swers YES for BIPARTITE COLORFUL NEIGHBORHOOD(k)
with k = 1. Let vi be the element in A which has at least one

neighbor in B of either color. Since |B| = 2, this means that

vi is adjacent to both a and b, i.e., xi = 1 = yi and hence

DISJOINTNESS answers YES. In reverse direction, suppose

that DISJOINTNESS answers YES. Hence, there exists j ∈ [n]
such that xj = 1 = yj . This implies that vj is adjacent to

both a and b. Consider the 2-coloring of B by giving different

colors to a and b. Then S = {vj} satisfies the condition of

having a neighbor of each color in B, and hence G answers

YES for BIPARTITE COLORFUL NEIGHBORHOOD(k) with

k = 1.

Therefore, any p-pass (randomized) streaming algorithm

that can solve BIPARTITE COLORFUL NEIGHBORHOOD(k)
with k = 1 gives a communication protocol for DISJOINT-

NESS, and hence requires Ω(n/p) space. �

References

[1] List of open problems in sublinear algorithms: Problem 64.

http://sublinear.info/64.

[2] F. M. Ablayev. Lower bounds for one-way probabilistic

communication complexity and their application to space

complexity. Theor. Comput. Sci., 157(2):139–159, 1996.

[3] K. J. Ahn, G. Cormode, S. Guha, A. McGregor, and A. Wirth.

Correlation clustering in data streams. In Proceedings of the

32nd International Conference on Machine Learning, ICML

2015, Lille, France, 6-11 July 2015, pages 2237–2246, 2015.

[4] K. J. Ahn and S. Guha. Laminar families and metric

embeddings: Non-bipartite maximum matching problem

in the semi-streaming model. Manuscript, available at

http://arxiv.org/abs/1104.4058, 2011.

[5] K. J. Ahn and S. Guha. Linear programming in the semi-

streaming model with application to the maximum matching

http://sublinear.info/64

problem. In ICALP (2), pages 526–538, 2011.

[6] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph

structure via linear measurements. In Twenty-Third Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,

pages 459–467, 2012.

[7] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: spar-

sification, spanners, and subgraphs. In 31st ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Sys-

tems, pages 5–14, 2012.

[8] K. J. Ahn, S. Guha, and A. McGregor. Spectral sparsification

in dynamic graph streams. In APPROX, pages 1–10, 2013.

[9] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev. Tight bounds

for linear sketches of approximate matchings. (To appear at

SODA 2016) CoRR, abs/1505.01467, 2015.

[10] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. E.

Tsourakakis. Space and time-efficient algorithm for main-

taining dense subgraphs on one-pass dynamic streams. In

STOC, 2015.

[11] M. Bury and C. Schwiegelshohn. Sublinear estimation of

weighted matchings in dynamic data streams. (To appear at

ESA 2015) CoRR, abs/1505.02019, 2015.

[12] R. H. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi,

A. McGregor, M. Monemizadeh, and S. Vorotnikova. Ker-

nelization via sampling with applications to dynamic graph

streams. CoRR, abs/1505.01731, 2015.

[13] R. H. Chitnis, G. Cormode, M. T. Hajiaghayi, and M. Mone-

mizadeh. Parameterized streaming: Maximal matching and

vertex cover. In Proceedings of the Twenty-Sixth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2015, San

Diego, CA, USA, January 4-6, 2015, pages 1234–1251, 2015.

[14] G. Cormode and D. Firmani. A unifying framework for ℓ0-

sampling algorithms. Distributed and Parallel Databases,

32(3):315–335, 2014.

[15] M. Crouch and D. S. Stubbs. Improved streaming algorithms

for weighted matching, via unweighted matching. In Approxi-

mation, Randomization, and Combinatorial Optimization. Al-

gorithms and Techniques, APPROX/RANDOM 2014, Septem-

ber 4-6, 2014, Barcelona, Spain, pages 96–104, 2014.

[16] R. G. Downey and M. R. Fellows. Parameterized Complexity.

Springer, New York, 1999.

[17] Y. Emek and A. Rosén. Semi-Streaming Set Cover - (Extended

Abstract). In ICALP, pages 453–464, 2014.

[18] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved

approximation guarantees for weighted matching in the semi-

streaming model. SIAM J. Discrete Math., 25(3):1251–1265,

2011.

[19] P. Erdos and R. Rado. Intersection theorems for systems of

sets. J. London Math. Soc., 35:85–90, 1960.

[20] H. Esfandiari, M. Hajiaghayi, and D. P. Woodruff. Appli-

cations of uniform sampling: Densest subgraph and beyond.

CoRR, abs/1506.04505, 2015.

[21] H. Esfandiari, M. T. Hajiaghayi, V. Liaghat, M. Monemizadeh,

and K. Onak. Streaming algorithms for estimating the

matching size in planar graphs and beyond. In Proceedings of

the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,

2015, pages 1217–1233, 2015.

[22] S. Fafianie and S. Kratsch. Streaming kernelization. In

Mathematical Foundations of Computer Science 2014 - 39th

International Symposium, MFCS 2014, Budapest, Hungary,

August 25-29, 2014. Proceedings, Part II, pages 275–286,

2014.

[23] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang.

On graph problems in a semi-streaming model. Theor. Comput.

Sci., 348(2):207–216, 2005.

[24] J. Flum and M. Grohe. Parameterized Complexity Theory.

Springer, 2006.

[25] A. C. Gilbert and P. Indyk. Sparse recovery using sparse

matrices. Proceedings of the IEEE, 98(6):937–947, 2010.

[26] A. Goel, M. Kapralov, and S. Khanna. On the communication

and streaming complexity of maximum bipartite matching.

In Proceedings of the Twenty-Third Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2012, Kyoto, Japan,

January 17-19, 2012, pages 468–485, 2012.

[27] A. Goel, M. Kapralov, and I. Post. Single pass sparsifi-

cation in the streaming model with edge deletions. CoRR,

abs/1203.4900, 2012.

[28] S. Guha, A. McGregor, and D. Tench. Vertex and hypergraph

connectivity in dynamic graph streams. In PODS, 2015.

[29] B. V. Halldórsson, M. M. Halldórsson, E. Losievskaja, and

M. Szegedy. Streaming algorithms for independent sets. In

Automata, Languages and Programming, 37th International

Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010,

Proceedings, Part I, pages 641–652, 2010.

[30] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds for Lp

samplers, finding duplicates in streams, and related problems.

In Proceedings of the 17th ACM SIGMOD Symposium on

Principles of Database Systems (PODS), pages 49–58, 2011.

[31] M. Kapralov. Better bounds for matchings in the streaming

model. In Proceedings of the Twenty-Fourth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2013, New

Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–

1697, 2013.

[32] M. Kapralov, S. Khanna, and M. Sudan. Approximating

matching size from random streams. In Proceedings of

the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,

2014, pages 734–751, 2014.

[33] M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford.

Single pass spectral sparsification in dynamic streams. In

55th IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,

2014, pages 561–570, 2014.

[34] M. Kapralov and D. P. Woodruff. Spanners and sparsifiers

in dynamic streams. In ACM Symposium on Principles of

Distributed Computing, PODC ’14, Paris, France, July 15-18,

2014, pages 272–281, 2014.

[35] D. Kogan and R. Krauthgamer. Sketching cuts in graphs

and hypergraphs. In Proceedings of the 2015 Conference

on Innovations in Theoretical Computer Science, ITCS 2015,

Rehovot, Israel, January 11-13, 2015, pages 367–376, 2015.

[36] C. Konrad. Maximum matching in turnstile streams. (To

appear at ESA 2015) CoRR, abs/1505.01460, 2015.

[37] C. Konrad, F. Magniez, and C. Mathieu. Maximum match-

ing in semi-streaming with few passes. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms

and Techniques - 15th International Workshop, APPROX 2012,

and 16th International Workshop, RANDOM 2012, Cambridge,

MA, USA, August 15-17, 2012. Proceedings, pages 231–242,

2012.

[38] C. Konrad and A. Rosén. Approximating semi-matchings

in streaming and in two-party communication. In Automata,

Languages, and Programming - 40th International Colloquium,

ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part

I, pages 637–649, 2013.

[39] E. Kushilevitz and N. Nisam. Commmunication Complexity.

Cambridge University Press, 1997.

[40] K. Kutzkov and R. Pagh. Triangle counting in dynamic graph

streams. In Algorithm Theory - SWAT 2014 - 14th Scandina-

vian Symposium and Workshops, Copenhagen, Denmark, July

2-4, 2014. Proceedings, pages 306–318, 2014.

[41] A. McGregor. Finding graph matchings in data streams.

APPROX-RANDOM, pages 170–181, 2005.

[42] A. McGregor. Graph stream algorithms: a survey. SIGMOD

Record, 43(1):9–20, 2014.

[43] A. McGregor, D. Tench, S. Vorotnikova, and H. Vu. Dens-

est subgraph in dynamic graph streams. In Mathematical

Foundations of Computer Science 2015 - 40th International

Symposium, MFCS 2015, Milano, Italy, August 24-28, 2015.

Proceedings, Part I, 2015.

[44] S. Muthukrishnan. Data Streams: Algorithms and Applica-

tions. Now Publishers, 2006.

[45] J. Radhakrishnan and S. Shannigrahi. Streaming algorithms

for 2-coloring uniform hypergraphs. In Algorithms and Data

Structures - 12th International Symposium, WADS 2011, New

York, NY, USA, August 15-17, 2011. Proceedings, pages 667–

678, 2011.

[46] B. Saha and L. Getoor. On maximum coverage in the

streaming model & application to multi-topic blog-watch. In

SIAM International Conference on Data Mining, SDM 2009,

April 30 - May 2, 2009, Sparks, Nevada, USA, pages 697–708,

2009.

[47] H. Sun. Counting hypergraphs in data streams. CoRR,

abs/1304.7456, 2013.

[48] M. Zelke. Weighted matching in the semi-streaming model.

Algorithmica, 62(1-2):1–20, 2012.

	Introduction
	Basic Subgraph Sampling Technique
	Application to Data Streams and MapReduce

	Parameterized Matching, Vertex Cover, and Hitting Set
	Finding Maximum Matchings and Minimum Vertex Covers Exactly
	Finding Minimum Hitting Set Exactly

	Approximating Large Matchings
	Approximating Matching in Arbitrary Graphs
	Matchings in Planar and Bounded-Arboricity Graphs

	Sampling Kernels for Subgraph Search Problems
	Lower Bounds
	Matching and Hitting Set Lower Bounds
	Lower Bounds for Problems considered by Fafianie and Kratsch kratsch
	Lower Bound for Edge Dominating Set
	Lower Bound for G-Free Deletion
	G-Editing
	Lower Bound for Cluster Vertex Deletion
	Lower Bound for Minimum Fill-In
	Lower Bound for Cograph Vertex Deletion
	Bipartite Colorful Neighborhood

