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Abstract—Buried object detection by means of microwave-based
sensing techniques is faced in biomedical imaging, mine detection, and
many other practical tasks. Whereas conventional methods used for
such a problem consist in solving nonlinear integral equations, this
article considers a recently proposed learning by examples approach [1]
based on Support Vector Machines, the techniques that proved to be
theoretically justified and effective in real world domains. The article
considers the approach performance for two different kernel functions:
Gaussian and polynomial. The obtained results demonstrate that using
polynomial kernels along with slightly sophisticated model selection
criterion allow to outperform the Gaussian kernels. Simulations have
been carried out for synthetic data generated by Finite Element code
and a PML technique; noisy environments are considered as well. The
results obtained by means of polynomial and Gaussian kernels are
presented and discussed.
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1. INTRODUCTION

In contrast to forward problem, where one seeks a consequence of a
cause, inverse problem requires to restore a cause for an observed
consequence. In particular, the inverse scattering problem requires
the determination of unknown dielectric properties of scatterers from
the scattered field information. The problem’s handling is impeded by
its ill-posedness, that is, a small error of measured data can bring to
significant errors of estimated parameters. Such a problem arises in
various areas, such as biomedical imaging, geophysics, remote sensing,
and non-destructive evaluation, when inner properties of a body are
deduced from its exterior measurements.

The problem is normally formulated in terms of an integral
equation, which is iteratively solved by means of generally nonlinear
minimization techniques. High computational cost of this approach
could lead to its impracticability when real-time performance is
required.

However, there are circumstances when one has (sometimes
restricted) amount of a-priori information about the problem in the
form of cause-consequence pairs. Furthermore, one does not always
need to recover exhaustive electromagnetic properties of an object
under analysis (relative permittivity and conductivity as functions
of spatial coordinates); sometimes only an estimate of some object
properties (e.g. scatterers presence or absence) is required. Recovering
exhaustive properties in this case seems to be redundant. In other
words, when solving a given problem, try to avoid solving a more
general problem as an intermediate step [2].

Such circumstances give opportunity to solve the problem using
learning by examples approaches, in particular such popular techniques
as Artificial Neural Networks (ANNs) and Support Vector Machines
(SVMs). The advantages of the latter are: 1) one has to solve a
constrained quadratic optimization problem (instead of multiextremal
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minimization for ANNs), 2) SVMs are based on Statistical Leaning
Theory that gives the possibility to control the model’s complexity
and, hence, to control its generalization ability [2].

This article considers recently proposed SVM-based approach to
buried objects detection problem [1]. The approach performance
is estimated and compared for two different SVM configurations:
Gaussian kernel SVM and polynomial kernel SVM. The obtained
results demonstrate that using polynomial kernel along with slightly
sophisticated model selection criterion can deliver higher accuracy to
the problem under consideration than the Gaussian kernel.

The initial data for training, model selection, and testing have
been synthetically obtained by means of Finite Element code and a
PML technique. Environments with a number of signal-to-noise ratios
(SNRs) are considered.

The paper is organized as follows: Section 2 describes the
geometry of the problem under consideration and presents its
mathematical and statistical learning statements. Section 3 is devoted
to brief introduction to the SVM regression technique. Section 4
discusses the problem of model selection. Section 5 deals with the
description of simulation steps; the results are presented and discussed
as well. In Section 6 conclusions from the obtained results are drawn,
and future work directions are given.

2. INVERSE SCATTERING PROBLEM POSING

This Section briefly describes the geometry, the physics, and the
statistical learning formulation of the problem under consideration (a
two-dimensional half-space, see Fig. 1).

A homogeneous circular cylindrical scatterer with center coordi-
nates (xact, yact) and radius ρ is buried into the homogeneous soil inside
the square region RC (chained line). Hence, the domain under consid-
eration for the cylinder centers DC is the square located inside RC at
a distance of ρ from its borders (dashed line). The coordinate origin
is associated with the center of DC .

Multiple transmitters/receivers with the coordinates (xtr, ytr), tr =
1, . . . , TR and (xrs, yrs), rs = 1, . . . , RS are located at the height h
above the air-soil interface. The soil’s and the scatterer’s dielectric
properties are given by complex constants τS = (εS − 1) − j σS

2πfε0
and

τB = (εB − 1) − j σB
2πfε0

respectively.
The transmitter with coordinates (xtr, ytr) radiates monochro-

matic electromagnetic field with free-space wavelength λ in microwave
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Figure 1. The geometry of the problem.

range. The electric field collected at the point (xrs, yrs) is

Etot(xrs, yrs|xtr, ytr) = Einc(xrs, yrs|xtr, ytr)

+ k2

∫
RC

ES(x, y|xtr, ytr)

×GS(xrs, yrs;x, y) · τ(x, y)dx dy, (1)

where

τ(x, y) =
{
τB if

√
(x− xact)2 + (y − yact)2 ≤ ρ

τS for the rest of RC .
(2)

Here Einc(xrs, yrs|xtr, ytr) is the electric field collected at the point
(xrs, yrs) in case of absence of the scatterer; ES(x, y|xtr, ytr) is
the electric field inside RC in case of the scatterer’s presence;
GS(xrs, yrs;x, y) is the Sommerfeld-Green function for the half-space
geometry (for details see [1, 3] and references therein).

The values of geometric and physics parameters assumed in this
article are summarized in Table 1.

Inverse scattering problem in this case consists in recovering the
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Table 1. Values of the parameters.

Parameter Value Parameter Value

λ 0.6 m d λ/15
L λ εS 8.0
ρ λ/12 σS 0.025 S/m
h λ/6 εB 5.0
TR 1, in the centre σB 0.0 S/m
RS 16, equally spaced

location of the scatterer’s center on the basis of known values of

Etot(xrs, yrs|xtr, ytr),
rs = 1, . . . , RS
tr = 1, . . . , TR.

(3)

In terms of statistical learning, (3) forms a vector of features
(inputs), while horizon and depth coordinates form a vector of
outcomes (outputs). The learning process consists in building a
prediction model on the basis of the set of available observations
(examples). Example means a known input-output pair, and the set
of such pairs used for building a prediction model is called training set
Γtrain.

Thus, for the inverse scattering problem stated above, feature
vector χ consists of N = 2·TR·RS scalar features (this follows from (3)
after taking into consideration the fact that every Etot(xrs, yrs|xtr, ytr)
consists of real and imaginary parts). The output vector υ is a 2-vector:
υ = (υx, υy), where υx and υy denote horizon and depth coordinates
respectively. Let us denote the number of examples in Γtrain by l. In
this case

Γtrain = {(χi,υi), i = 1, . . . , l} . (4)

3. SVM REGRESSION FORMULATION

Support Vector Machines (SVMs) [2, 4, 5] are learning by examples
techniques introduced by V. Vapnik. Their advantage over other
approaches like ANNs is due to such relevant aspects as 1) reduction
of problem to solving constrained quadratic optimization problem
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(CQP) and 2) the solid Vapnik’s Statistical Learning Theory basement
that results in employment of Structural Risk Minimization (SRM)
principle and Vapnik-Chervonenkis complexity measure [2]. Since
SVMs are kernel methods, they represent input/output relation in form
of linear combination of basis functions (kernels). This Section briefly
introduces SVM regression approach.

SVM regression implies scalar outputs, therefore the inverse
scattering problem stated in Section 2 has been decomposed on
recovering horison and depth coordinates. This means reformulation
of (4) in terms of two training sets

Γυtrain = {(χi, υi), i = 1, . . . , l} ,
υ ∈ {υx, υy} (5)

and training two independent SVMs.
Let us suppose to have a non-linear transformation Φ : R

N → F,
which maps the inputs χ into a new high-dimensional space F. SVM
regression approach searches for the linear function in this new space,
which reflects input/output relation in the best way:

υ̂ = w · Φ(χ) + b . (6)

Such an input transformation is necessary in order to better interpolate
strong non-linearity of the problem under consideration.

The discrepancy between original and predicted outputs is
evaluated by means of ε-insensitive loss function [2]

|υ − υ̂ (χ)|ε = max {0, |υ − υ̂ (χ)| − ε} . (7)

The most intuitive way to fit the model to the available Γυtrain (to
define optimal values of w and b, which we denote by wopt and bopt) is
Empirical Risk Minimization principle (ERM):

(wopt, bopt) = arg min
w,b

l∑
i=1

|υi − υ̂i (χ)|ε . (8)

However, this principle does not take into consideration model’s com-
plexity, which has straightforward relation to model’s generalization
capacity [2]. On the contrary, SVM approach consists in minimizing a
trade-off (tuned by the parameter C) between the model’s complexity
and the error on Γυtrain:

(wopt, bopt) = arg min
w,b

[
1
2
‖w‖2 + C

l∑
i=1

|υi − υ̂i (χ)|ε

]
. (9)
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The expression (9) can be rewritten as follows:

(wopt, bopt) = arg min
w,b,ξi,ξ∗i

[
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )
]

subject to



υi − w · Φ(χi) − b ≤ ε+ ξi
w · Φ(χi) + b− υi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0 .

(10)

The above CQP, which is also called the Primal, is solved by using
the Lagrange multipliers theory [6] in order to obtain the corresponding
Dual:

max
αi,α∗i

−1
2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )Φ(χi) · Φ(χj)

− ε
l∑
i=1

(αi + α∗
i ) +

l∑
i=1

υi(αi − α∗
i )

subject to




0 ≤ αi, α
∗
i ≤ C

l∑
i=1

(αi − α∗
i ) = 0 .

(11)

Each of dual variables αi, α∗
i is a Lagrange multiplier associated with

the corresponding constraint.
Then wopt is calculated as a linear combination of transformed

input vectors from Γυtrain:

wopt =
l∑
i=1

(αopti − α∗ opt
i )Φ(χi) , (12)

αopti and α∗ opt
i being the optimal αi and α∗

i for (11). Thus, the dual
formulation allows to write υ̂ in terms of dual variables:

υ̂(χ) =
l∑
i=1

(αopti − α∗ opt
i )Φ(χi) · Φ(χ) + bopt . (13)

As it follows from (11, 13), transformed input vectors appear only
in the form of dot product. Thus, introducing the function

k(χi,χj) = Φ(χi) · Φ(χj), (14)
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one avoids the explicit handling Φ (so-called kernel trick). The theory
of kernels, that is, the conditions under which equation (14) holds, is
known since the beginning of the last century thanks to the Mercer’s
theorem [2], and has been applied to pattern recognition tasks since
the ’60s [7], but only recently its connection with learning machines has
been well formalized [5]. Since the seminal works on kernel functions,
many kernels that satisfy the Mercer’s theorem have been found; we
recall the linear, the Gaussian and the polynomial kernels:

k(χi,χj) = χi · χj
k(χi,χj) = exp

(
−γ‖χi − χj‖

)
k(χi,χj) =

(
δ + γ · χi · χj

)p
.

(15)

As far as the kernel satisfies the Mercer’s theorem, the CQP (11) can
be efficiently solved [8, 9].

As a final remark, let us note that the parameter b can be
computed by exploiting the Karush–Khun–Tucker (KKT) conditions
[5]. In particular, according to KKT, at the solution point the product
between dual variables and constraints must vanish:

αopti
(
ε+ ξi − υi + wopt · Φ(χi) + bopt

)
= 0

α∗ opt
i

(
ε+ ξ∗i + υi − wopt · Φ(χi) − bopt

)
= 0 .

(16)

This allows one to write (see [5] for details):

bopt = υi − wopt · Φ(χi) − ε, αopti ∈ (0, C)
bopt = υi − wopt · Φ(χi) + ε, α∗ opt

i ∈ (0, C) .
(17)

The approach described so far, the ε-based SVM for regression (ε-
SVMR), is the algorithm to be used when the desired accuracy of
the estimation is known a priori. However, in the case of the inverse
scattering problem discussed here one needs the estimate to be as
accurate as possible, without having to fix a priori a given level of
accuracy. To this aim, one could use a modification of ε-SVMR, called
ν-based SVM for regression (ν–SVMR) [10, 5]. The main concept of
ν-SVMR can be summarized in the following way: for each χi we
accept an error ε; all errors above ε are stored in slack variables ξi or
ξ∗i , which are inserted in the global cost function and penalized by the
constant C; the value of ε, in its turn, is traded-off against the model’s
complexity and slack variables by a parameter ν ≥ 0. The final Primal
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CQP problem is

(wopt, bopt)= arg min
w,b,ξi,ξ∗i ,ε

[
1
2
‖w‖2 + C

(
lνε+

l∑
i=1

(ξi + ξ∗i )

)]

subject to



υi − w · Φ(χi) − b ≤ ε+ ξi
w · Φ(χi) + b− υi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0
ε ≥ 0 .

(18)

After several mathematical steps, the following dual CQP is obtained:

max
αi,α∗i

−1
2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )k(χi,χj) +
l∑
i=1

υi(αi − α∗
i )

subject to




0 ≤ αi, α
∗
i ≤ C

l∑
i=1

(αi − α∗
i ) = 0

l∑
i=1

(αi + α∗
i ) ≤ Clν .

(19)

Thanks to the presence of ν, ν-SVMR automatically computes
ε. It has been shown that ν has several important properties; among
others, the most important is that ν ∈ [0, 1] is an upper bound on the
fraction of training points lying outside the ε-tube.

LIBSVM software [11] has been applied to implement SVM
technique. ν-SVM regression based on Gaussian and polynomial kernel
functions (15) have been considered.

4. PARAMETERS, HYPERPARAMETERS, AND
MODEL SELECTION

One should notice that the procedure described in Section 3 finds
optimal decision function (6) while values of the parameters γ, δ,
p, C, ν are supposed to be already predefined (we will refer to
these parameters as to hyperparameters). This leads to an additional
problem: to find such values of hyperparameters, which would afford
SVM with possibly lower generalization error (actual risk) [2]. To this
end one minimizes the function

G(h1, h2, . . . , hn) (20)
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that evaluates the generalization error of SVM with hyperparameters
(h1, h2, . . . hn), n being the number of the hyperparameters.

There is a number of approaches used for evaluating generalization
error [12, 13]. The one used in this article is the so-called validation
set approach: the generalization error for the SVM that corresponds
to the hyperparameters (h1, h2, . . . hn) is evaluated by means of mean
square error (MSE)

MSE(h1, h2, . . . , hn) (21)

reached on the validation set Γυval. The structure of this set is the same
as the structure of Γυtrain (5):

Γυval =
{
(χi, υi), i = 1, . . . , lval

}
,

υ ∈ {υx, υy}. (22)

However, calculating (21) in some point (h1, h2, . . . , hn) of
hyperparameters’ space means SVM training (i.e. solving CQP)
and testing (on validation set), i.e. has high computational cost.
Nevertheless, one can define a reasonable set of values

SETi, i = 1, 2, . . . , n (23)

for every hyperparameter and minimize (21) on cartesian product of
these sets. The values of hyperparameters obtained in such a way will
be referred to as suboptimal values of hyperparameters.

5. SIMULATION

This Section describes the simulation steps (Sections 5.2), presents the
obtained results for Gaussian and polynomial kernels (Sections 5.3, 5.4
and 5.5), which are then discussed in Section 5.6.

5.1. Datasets

So far, we have already introduced training set Γυtrain (5) and validation
set Γυval (22). The third set used in simulation is test set Γυtest. Its aim
is to provide the data for calculating the prediction error of the model
found by model selection procedure (Section 4). Γυtest has the same
structure as Γυtrain and Γυval:

Γυtest =
{
(χi, υi), i = 1, . . . , ltest

}
,

υ ∈ {υx, υy}. (24)
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Noise distortion of the scattered signals received by antennas has
been considered and modeled as well (additive Gaussian noise). Thus,
ultima analysi for each of horizon and depth recovery problems 7
triplets of datasets have been generated:

(Γυ,SNRtrain , Γυ,SNRval , Γυ,SNRtest )
υ ∈ {υx, υy}
SNR ∈ {5 dB, 10 dB, 20 dB, 35 dB,

50 dB, 100 dB, noiseless}.

(25)

To this end, Finite Element code and a PML technique have been
applied for the problem stated in Section 2.

The cylinder’s center positions used to form Γυ,SNRtrain , Γυ,SNRval , and
Γυ,SNRtest are indicated in Fig. 2. Γυ,SNRtrain consists of l = 676 input-output
pairs, whereas each of Γυ,SNRval and Γυ,SNRtest consists of lval = ltest = 625
pairs.
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Figure 2. Training, validation and test sets’ domains.

5.2. Simulation Steps

The simulation can be represented as the consequence of the following
phases:
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5.2.1. Normalization

Γυtrain is linearly scaled, i.e. input vector’s coordinates are projected
into [−1,+1] interval. The same is done with output values. The
obtained scaling coefficients are then used for the normalization of
Γυval and Γυtest. This phase is useful for numerical reasons, and strongly
recommended [14].

5.2.2. Searching Suboptimal Values for Hyperparameters and Testing

One determines the set of values for each hyperparameter (23).
Hence, each element of cartesian product SET1 × · · · × SETn defines
hyperparameters for certain SVM. Every such SVM is trained on
normalized Γυtrain and is then validated on normalized Γυval. The
hyperparameters of the SVM that delivers the minimal MSE on Γυval
define the suboptimal values of hyperparameters. This phase can be
repeated iteratively by redefinition of (23), see Section 5.4.

The winner is then tested on Γυtest.

5.2.3. Denormalization

The predicted values are denormalized (descaled) by means of the
coefficients obtained on the normalization step.

The consequence of these phases is carried out for each of 14
triplets (24).

5.2.4. Error Calculation

For each SNR value real and predicted coordinate values are used for
calculating local average error according to the next definition [3]:

ζux =

∣∣∣∣∣∣xuact −
1

V (u)

V (u)∑
v(u)=1

xv(u)rec

∣∣∣∣∣∣
dmax

u = 1, . . . , U

ζvy =

∣∣∣∣∣∣yvact −
1

U(v)

U(v)∑
u(v)=1

yu(v)rec

∣∣∣∣∣∣
dmax

v = 1, . . . , V

(26)

Here u and v define respectively horizontal and vertical position on the
grid formed by the cylinder’s center coordinates of the test set (Fig. 2).
v(u) represents possible vertical positions for horizontal position
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defined by u; V (u) is the number of such positions. Similarly u(v)
represents possible horizontal positions for vertical position defined
by v; U(v) is the number of such positions (for the given test set
V (u) = U(v) = 25). xuact and yvact are actual values of horizon and
depth coordinates for the position on the grid defined by u and v

respectively. xv(u)rec is the recovered horizon value for the position on
the grid defined by (u, v(u)). Similarly, yu(v)rec is the recovered depth
value for the position on the grid defined by (u(v), v). dmax = LS , see
Section 2. This phase is independently done for each SNR value.

Table 2. Values of hyperparameters for Sections 5.3, 5.4, and 5.5.

HYPREPARAMETER SET OF VALUES

Gaussian kernel
ν 0.4 0.6 0.8
C 10−1 1 10 102

γ 0.2 0.4 0.6 0.8 1
polynomial kernel, γ and δ are fixed
p 1 2 3 4 5 6 7 8
ν 0.01 0.02 0.03 0.04 0.05 0.06 0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
C 10−3 10−2 10−1 1 10

102 103 104 105 106

δ default (0)
γ default (1/k)

polynomial kernel, δ is fixed
p 2 3 4 5
ν 0.01 0.03 0.1 0.3 0.6 0.7
C 10−1 102 103 105

δ default (0)
γ 0.005 0.05 0.1
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5.3. Gaussian Kernel

Sets of hyperparameter values used in case of Gaussian kernel and the
obtained suboptimal values are cited in Table 2 (top part) and Table 3
respectively. The obtained local average errors (26) for horizon and
depth recovery problems (5 dB and 50 dB SNR) are presented on Fig. 4.

Table 3. Suboptimal values of hyperparameters: Gaussian kernel.

SNR Horizon SVM Depth SVM
[dB] γ ν C γ ν C

5 0.2 0.8 10−1 0.2 0.4 10−1

10 0.8 0.4 10 1 0.8 10−1

20 0.2 0.8 10−1 1 0.8 102

35 1 0.6 102 1 0.8 102

50 0.2 0.8 10−1 1 0.8 102

100 1 0.6 102 1 0.8 102

noiseless 1 0.6 102 1 0.8 102

5.4. Polynomial Kernel, γ and δ Fixed by Default Values

The following approach has been considered for this simulation. At
the beginning the sets (23) for ν and C have been chosen equal to ones
for the case of Gaussian kernel SVM (see the top part of the Table 2),
the set for p has been chosen as follows: SETp = {1, 2, 3, 4, 5}, γ and
δ have been fixed by default LIBSVM values: γ = 1/N , δ = 0. On the
basis of obtained MSE values graphs

MSE(h∗i ) = MSE(h∗sub1 , . . . , h∗subi−1 , h
∗
i , h

∗sub
i+1 , . . . , h

∗sub
m ),

i = 1, . . . ,m (27)

have been plotted for both horizon and depth recovery cases. Here

- m is the number of hyperparameters that are not fixed;
- h∗i ∈ SETi;
- h∗subi is the found subopotimal value of the hyperparameter hi.

These graphs reflect the behavior of (21); in fact they are formed by
the points that belong to cross-sections of surface defined by (21). This
gives the opportunity to correct SETi: to remove some elements from
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a region of hi where MSE is large or on the contrary to add some new
elements from a region of hi where MSE has appeared to be small.
Some examples of the graphs defined by (27) are presented on Fig. 3.
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Figure 3. Mean Square Error on validation set: polynomial kernel, γ
and δ are fixed.

Such a correction allows to restart searching suboptimal values
of hyperparameters on the corrected sets (23). Thus, searching
suboptimal values of hyperparameters have been carried out iteratively.
The sets (23) have been corrected 2 times. The finally formed sets are
cited in Table 2 (mid part). The overall number of different SVMs that
participated in model selection is 1200. Obtained suboptimal values
are cited in Table 4. Finally Fig. 4 (a-d) demonstrate the obtained
local average error (26) for horizon and depth recovery problems for
the cases of 5 dB and 50 dB SNR values.

This simulation has taken approximately 5 days (733 MHz Intel
Pentium III CPU, 128 MBytes RAM). The major part of time
(approximately 4 days) fell to SVM training phase. In its turn,
majority of training phase time fell to SNR = 5 dB (approximately
2 days). It has been also noticed that within the bounds of every
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Table 4. Suboptimal values of hyperparameters: polynomial kernel,
γ and δ are fixed.

SNR Horizon SVM Depth SVM
[dB] p ν C MSE p ν C MSE

5 4 0.5 10−1 0.33 2 0.6 106 0.29
10 4 0.03 103 0.30 2 0.6 106 0.26
20 2 0.1 102 0.33 3 0.8 102 0.19
35 4 0.6 106 0.29 4 0.7 106 0.17
50 5 0.5 106 0.31 5 0.7 106 0.16
100 5 0.7 106 0.26 4 0.6 106 0.16

noiseless 5 0.6 106 0.26 4 0.6 106 0.16

particular SNR value the main time expenses fell to training SVMs
with large values of C (C = 105, C = 106). Table 5 describes
dependence of training and test phase times on values of SNR and
C. C = 105, C = 106 are not cited because of requiring relatively
great time expenses.

Table 5. Dependence of (horizon+depth) training and test phase
times on SNR (p = 3, ν = 0.6, C = 1000) and on C (p = 3, ν = 0.6,
SNR = 5 dB).

SNR training time test time C training time test time
(dB) (sec) (sec) (sec) (sec)

5 5.89 1.68 10−1 2.24 1.65
10 3.25 1.74 1 2.37 1.79
20 3.26 1.81 102 2.67 1.59
35 2.69 1.82 103 5.89 1.68

104 29.43 1.61

5.5. Polynomial Kernel, Various Values of γ

This simulation concerns removing limitation on fixing γ. To
approximately estimate amount of time needed for its execution, two
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horizon+depth SVM pairs (p = 5, ν = 0.7, C = 106, δ = default) have
been trained on Γυ

x, 100 dB
train and Γυ

y , 100 dB
train : with default γ (1/32) and

γ = 0.9. Training has taken 17 seconds and 17 minutes respectively.
Several other values of γ have just reconfirmed the trend: the greater
the γ the more time expensive training phase. Finally, it has been
decided to use three different γ values: 0.005 (less than default γ), 0.05
and 0.1 (greater than default γ). Sets of values for p, ν and C have
been formed on the basis of the suboptimal values noted in Table 4 with
some changes, see Table 2 (bottom part). Hence, the overall number
of SVMs that participated in model selection is 288. C = 106 has not
been considered because of high computational expenses. Suboptimal
values of hyperparameters are collected in Table 6.

Table 6. Suboptimal values of hyperparameters:polynomial SVM, δ
is fixed.

SNR Horizon SVM
[dB] p ν C γ MSE

5 4 0.7 102 0.005 0.33
10 3 0.03 102 0.1 0.28
20 5 0.7 105 0.1 0.30
35 4 0.6 105 0.1 0.27
50 4 0.3 105 0.1 0.24
100 4 0.3 105 0.1 0.22

Depth SVM

5 3 0.6 105 0.1 0.27
10 4 0.6 105 0.1 0.25
20 4 0.3 105 0.1 0.15
35 3 0.7 105 0.1 0.15
50 4 0.7 105 0.1 0.13
100 4 0.6 105 0.1 0.14

Execution of training phase of this simulation has taken 7 days
(733 MHz Intel Pentium III CPU, 128 MBytes RAM) plus 2 days
(1700 MHz Intel Pentium IV CPU, 256 MBytes RAM). All the
consequent simulation phases (model selection, testing, etc.) have
taken less than 1 day (1700 MHz Intel Pentium IV CPU, 256 MBytes
RAM).



184 Bermani et al.

Thus given simulation has consumed more time than the previous
one despite the fact of decreasing the number of combinations by
approximately 4 times (288 instead 1200). Fig. 4 (e–h) demonstrate
obtained local average error (26) for horizon and depth recovery
problems for the cases of 5 dB and 50 dB SNR values.

5.6. Discussions

Training phases for simulations described in Sections 5.4 and 5.5
have taken more than 4 and 7 days respectively. Therefore, the
considered approach can not be recommended for problems where
learning machine is supposed to be retrained often. On the other hand,
test phase takes less than 2 seconds for ltest = 625 samples, that is less
than 3.2 · 10−3 seconds per sample. This means possibility of scatterer
detection on the run.

Fig. 3 demonstrates that generalization performance of SVM in
case of horizon recovery does not significantly depend on degree of
polynomial kernel starting from p = 2 (Fig. 3(a)). The same relates to
dependence on ν except SNR=5 dB (Fig. 3(c)), however slight trend
to decreasing MSE when ν increases up to 0.5 can be traced for high
SNR values. For depth recovery (Fig. 3(b) and 3(d)) trends are more
traceable. Namely, optimal degree values are almost always 2, 3 or 4.
Then MSE significantly decreases for high SNR values when ν increases
up to 0.5.

Dependence on C is the same for both depth and horizon recovery
(except 5 dB, 10 dB and 20 dB horizon recovery): MSE decreases when
C increases. Probable explanation of this fact is high similarity of
Γυtrain and Γυval (Fig. 2). Thus, for every point from Γυval close point
from Γυtrain exists. This means that as long as SNR value is small, SVM
during model selection phase is tested on almost the same data that
has been used for training. Consequently, it seems difficult to evaluate
generalization performance in this situation. This remains solving the
ERM problem (8) obtained from (9) by assuming exactly C = ∞. As
a conclusion, redefining of datasets in more disorderly way is expected
to be reasonable.

According to the obtained results polynomial kernels have
demonstrated better performance. However it is worth to notice that
in case of Gaussian kernels iterative procedure of searching suboptimal
values for hyperparameters has not been performed. This fact hamper
in rigorous comparison of two kernels performances. Nevertheless, for
low SNR values results are quite similar for both kernels.

Results obtained in Section 5.5 generally exceed the ones for
Section 5.4.
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Figure 4. Local average errors: γ and δ are fixed (a–d); δ is fixed
(e–h).
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6. CONCLUSIONS

In this article buried object detection problem has been reformulated
as regression estimation, and solved by means of learning by examples
methodology, namely by means of ν-SVM regression technique.
Simulation has been carried out on synthetic data generated by Finite
Element code and a PML technique; noisy environments have been
considered as well. Two different types of kernel functions have been
utilized.

It has been shown that using polynomial kernel along with
iterative model selection phase allows to outperform Gaussian kernel.

Though time required to SVM training can be tremendous, test
phase takes less than 2 seconds for ltest = 625 samples, that is less
than 3.2 ·10−3 seconds per sample. This implies possibility of scatterer
detection on the run.

The obtained results distinctly demonstrate the significant
increase of horizon’s local average error as the horizontal distance from
the transmitter increases. Thus, the main direction the future work will
press towards is considering the polynomial (and possibly some other)
kernel performance for the model with multiple transmitters [15]. One
of the other directions is model selection techniques. So far, validation
set method have been used for model selection, which is reasonable
when one is in data-reach situation (like synthetic data). However, this
method is unsuitable on real world domain, where only limited amount
of data is available. Considering other model selection methods (e.g.
k-fold cross-validation or maximum discrepancy criterion [13]), which
are better meet the specificity of limited amount of data, will allow to
more realistically evaluate the proposed approach.
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