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Abstract. We present a method for applying machine learning algo-
rithms to the automatic classification of astronomy star surveys using
time series of star brightness. Currently such classification requires a
large amount of domain expert time. We show that a combination of
phase invariant similarity and explicit features extracted from the time
series provide domain expert level classification. To facilitate this appli-
cation, we investigate the cross-correlation as a general phase invariant
similarity function for time series. We establish several theoretical prop-
erties of cross-correlation showing that it is intuitively appealing and al-
gorithmically tractable, but not positive semidefinite, and therefore not
generally applicable with kernel methods. As a solution we introduce a
positive semidefinite similarity function with the same intuitive appeal as
cross-correlation. An experimental evaluation in the astronomy domain
as well as several other data sets demonstrates the performance of the
kernel and related similarity functions.

1 Introduction

The concrete application motivating this research is the classification of stars into
meaningful categories from astronomy literature. A major effort in astronomy
research is devoted to sky surveys, where measurements of stars’ or other celestial
objects’ brightness are taken over a period of time. Classification as well as other
analyses of stars lead to insights into the nature of our universe, yet the rate at
which data are being collected by these surveys far outpaces current methods
to classify them. For example, microlensing surveys, such as MACHO [1] and
OGLE [2] followed millions of stars for a decade taking one observation per night.
The next generation panoramic surveys, such as Pan-STARRS [3] and LSST [4],
will begin in 2009 and 2013, respectively, and will collect data on the order of
hundreds of billions of stars. It is unreasonable to attempt manual analysis of
this data, and there is an immediate need for robust, automatic classification
methods.

It is this need that we address directly with our first contribution: the foun-
dation of an automatic methodology for classifying periodic variable stars where
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a star is variable if its brightness varies over time, and periodic if the variance in
brightness is periodic over time. In the data sets taken from star surveys, each
example is represented by a time series of brightness measurements, and differ-
ent types of stars have different periodic patterns. Fig. 1 shows several examples
of such time series generated from the three major types of periodic variable
stars: Cepheid, RR Lyrae, and Eclipsing Binary. In our experiments only stars
of the types in Fig. 1 are present in the data, and the period of each star is
given. A complete solution will automatically process an entire survey, of which
a small percentage will be periodic variable stars. We are actively working on
automatic methods for filtering out non-periodic variables and for identifying
period, however these are outside the scope of this paper. We use the existing
OGLEII periodic variable star catalog [5] to show that our classification method
achieves > 99% accuracy once such processing and filtering has been done.

As our second contribution we present several insights into the use of the cross-
correlation function as a similarity function for time series. Cross-correlation
provides an intuitive mathematical analog of what it means for two time series
to look alike: we seek the best phase alignment of the time series, where the
notion of alignment can be captured by a simple Euclidean distance or inner
product. We show that cross-correlation is “almost” a kernel in that it satisfies
the Cauchy-Schwartz inequality and induces a distance function satisfying the
triangle inequality. Therefore, fast indexing methods can be used with cross-
correlation for example with the k-Nearest Neighbor algorithm [6]. We further
show that although every 3 × 3 similarity matrix is positive semidefinite, some
4 × 4 matrices are not and therefore cross-correlation is not a kernel and not
generally applicable with kernel methods.
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Fig. 1. Examples of light curves of periodic variable stars. Each column shows two
stars of the same type. Left: Cepheid, middle: RR Lyrae, right: eclipsing binary. Exam-
ples of the same class have similar shapes but are not phase aligned. Examples are a result
of folding a long sequence of observations leading to a noisy sample of one period of the
light curve. The y-axis labels represent brightness in magnitude units, which is an inverse
logarithmic scale (this is the convention in astronomy).
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As our final contribution we introduce a positive semidefinite similarity func-
tion that has the same intuitive appeal as cross-correlation. We investigate the
performance of our kernel on other data sets, both real and artificial, showing
excellent performance. We show instances where the kernel outperforms all other
methods as well as instances where a simple universal phasing algorithm per-
forms comparably. Our investigation reveals that our kernel performs better than
cross-correlation and that the ability to use Support Vector Machines (SVM) [7]
with our kernel can provide a significant increase in performance.

The remainder of the paper is organized as follows. Section 2 investigates
properties of cross-correlation, and Sect. 3 introduces the new kernel function.
Related work is discussed in Sect. 4. We present our experiments and discuss
results in Sect. 5. Finally, the concluding section puts this work in the larger
context of fully automatic processing of sky surveys.

2 Cross-Correlation

Our examples are vectors in IRn but they represent an arbitrary shifts of periodic
time series. We use the following notation: y+s refers to the vector y shifted by s
positions, where positions are shifted modulo n. We then use the standard inner
product between shifted examples

〈x, y+s〉 =
n∑

i=1

xi(y+s)i.

We define the cross-correlation between x, y ∈ IRn as

C(x, y) = max
s

〈x, y+s〉.

In the context of time series, computing the cross-correlation corresponds to
aligning two time series such that their inner product, or similarity, is maximized.

2.1 Properties of Cross-Correlation

We first show that cross-correlation has some nice properties making it suitable
as a similarity function:

Theorem 1

(P1) C(x, x) = 〈x, x〉 ≥ 0.
(P2) C(x, y) = C(y, x).
(P3) The Cauchy-Schwartz Inequality holds, i.e. ∀x, y, C(x, y) ≤√

C(x, x)C(y, y).
(P4) If we use the cross-correlation function to give a distance measure d such
that

d(x, y)2 = C(x, x) + C(y, y) − 2C(x, y) = min
s

‖x − (y+s)‖2

then d satisfies the Triangle Inequality.
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In other words cross-correlation has properties similar to an inner product, and
can be used intuitively as a similarity function. In particular, we can use metric
trees and other methods based only on the triangle inequality [8,6] to speed up
distance based algorithms using cross-correlation.

Proof. For (P1) note that by definition C(x, x) ≥ 〈x, x〉. On the other hand,
C(x, x) =

∑
xixi+s, and by the Cauchy-Schwartz inequality,

∑
xixi+s ≤

√∑
x2

i

√∑
x2

i+s =
√∑

x2
i

√∑
x2

i = 〈x, x〉. (1)

Which means 〈x, x〉 ≥ C(x, x) ≥ 〈x, x〉 or C(x, x) =〈x, x〉 ≥ 0.
To prove (P2) observe that since 〈x, y+s〉 = 〈x−s, y〉 = 〈x+(n−s), y〉 maximiz-

ing over the shift for y is the same as maximizing over the shift for x.
(P3) follows from K1 of Theorem 2 below (see Proposition 2.7 of [9]) but

we give a direct argument here. Let C(x, y) = 〈x, y+s〉 = 〈x, z〉, where s is the
shift maximizing the correlation and where we denote z = y+s. Then by (P1),√

C(x, x)C(y, y) =
√〈x, x〉〈y, y〉 = ‖x‖‖y‖. Therefore the claim is equivalent to

‖x‖‖y‖ ≥ 〈x, z〉, and since the norm does not change under shifting the claim
is equivalent to ‖x‖‖z‖ ≥ 〈x, z〉 = C(x, y). The last inequality holds by the
Cauchy-Schwartz inequality for normal inner products.

Finally, for (P4) let x, y, z ∈ IRn. Let τab be the shift that minimizes d(a, b).

d(x, y) + d(y, z) = ‖(x+τxy) − y‖ + ‖(y+τyz) − z‖ (2)
= ‖(x+τxy+τyz ) − (y+τyz )‖ + ‖(y+τyz) − z)‖ (3)
≥ ‖(x+τxy+τyz ) − (y+τyz ) + (y+τyz ) − z‖ (4)
= ‖(x+τxy+τyz ) − z‖ (5)
≥ ‖(x+τxz) − z‖ = d(x, z) (6)

Where (3) holds because shifting x and y by the same amount does not change
the value of ‖x − y‖, (4) holds because of the triangle inequality, and (6) holds
because by definition τxz minimizes the distance between x and z. 	


Since cross-correlation shares many properties with inner products it is natural
to ask whether it is indeed a kernel function. We show that, although every 3x3
similarity matrix is positive semidefinite, the answer is negative.

Theorem 2

(K1) Any 3 × 3 Gram matrix of the cross-correlation is positive semidefinite.
(K2) The cross-correlation function is not positive semidefinite.

Proof. Let x1, x2, x3 ∈ IR, G a 3×3 matrix such that Gij = C(xi, xj), c1, c2, c3 ∈
IR. We prove K1 by showing Q =

∑3
i=1

∑3
j=1 cicjGij ≥ 0.
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At least one of the products c1c2, c1c3, c2c3 is non-negative. Assume WLOG that
c2c3 ≥ 0 and shift x2 and x3 so that they obtain the maximum alignment with
x1, calling the shifted versions x̃1, x̃2, x̃3 noting that x̃1 = x1. Now C(xi, xj) =
〈x̃i, x̃j〉 except possibly when (i, j) = (2, 3), so

3∑

i=1

3∑

j=1

cicjGij =
3∑

i=1

3∑

j=1

cicj〈x̃i, x̃j〉 + 2c2c3(C(x̃2, x̃3) − 〈x̃2, x̃3〉)

≥
3∑

i=1

3∑

j=1

cicj〈xi, xj〉 ≥ 0

since c2c3 ≥ 0 and C(x̃2, x̃3) ≥ 〈x̃2, x̃3〉 by definition.
The negative result, K2, is proved is by giving a counter example. Consider

the matrix A and the row-normalized A′

A =

⎛

⎜⎜⎝

0 1 2
1 0 0
2 1 2
0 2 1

⎞

⎟⎟⎠ A′ =

⎛

⎜⎜⎝

0 0.4472 0.8944
1 0 0
0.6667 0.3333 0.6667
0 0.8944 0.4472

⎞

⎟⎟⎠

where each row is a vector of 3 dimensions. This illustrates a case where we have
4 time series, each with 3 samples and the time series are normalized. Using the
cross-correlation function on A′, we would get the following Gram matrix

G =

⎛

⎜⎜⎝

1 0.8944 0.8944 0.8
0.8944 1 0.6667 0.8944
0.8944 0.6667 1 0.8944
0.8 0.8944 0.8944 1

⎞

⎟⎟⎠

G has a negative eigenvalue of −0.0568 corresponding to the eigenvector c =
(−0.4906, 0.5092, 0.5092,−0.4906) and therefore G is not positive semidefinite.
In other words cGc′ =

∑4
i=1

∑4
j=1 cicjGij = −0.0568. 	


3 A Kernel for Periodic Time Series

Since the cross-correlation function is not positive semidefinite, we propose an
alternative kernel function that can be used in place of the cross-correlation
function with kernel methods. To motivate our choice consider first the kernel

K(x, y) =
n∑

i=1

n∑

j=1

〈x+i, y+j〉.

Note that here K iterates over all possible shifts, so that we no longer choose the
best alignment but instead aggregate the contribution of all possible alignments.
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This seems to lose the basic intuition behind cross-correlation and it is indeed
not a good choice. On closer inspection we can see that

K(x, y) = (x+1 + x+2 + . . . + x+n)y+1 + . . . + (x+1 + x+2 + . . . + x+n)y+n

= (
n∑

i=1

x+i)(
n∑

j=1

y+j).

So K just calculates the product of the sums of the shifted vectors. In particular,
if the data is normalized as mentioned above then this is identically zero.

Instead our kernel weights each shift with exponential function so that shifts
with high correlation are highly weighted and shifts with low correlation have
smaller effect.

Definition 1. The kernel function K : IRn × IRn → IR is defined as

K(x, y) =
n∑

i=1

eγ〈x,y+i〉 (7)

where γ ≥ 0 is a constant.

Thus like cross-correlation the value of the kernel will be dominated by the max-
imizing alignment although the number of “good alignments” is also important.
In this way we get positive semidefinite kernel while having the same guiding
intuition as cross-correlation. Exponential weighting of various alignments of
time series has been proposed previously in [10]. Despite the similarity in the
construction, the proof of positive semidefiniteness in [10] does not cover our
case as their set of alignments is all possible time warpings under a fixed phase
and does not allow for circular shifting. Similar ideas to weight different matches
exponentially have also been explored in kernels for multi-instance problems [11].

Theorem 3. K is a positive semidefinite kernel.

Proof. Consider the following function

K ′(x, y) =
n∑

i=1

n∑

j=1

eγ〈x+i,y+j〉.

By [12], K ′(x, y) is a convolution kernel. This can be directly shown as follows.
First rewrite K ′ as

K ′(x, y) =
∑

a∈R−1(x)

∑

b∈R−1(y)

eγ〈a,b〉 (8)

where R−1(x) gives all shifts of x. It is well known that the exponential function
eγ〈x,y〉 is a kernel [9]. Let Φ(x) be the underlying vector representation of the
this kernel so that eγ〈x,y〉 = 〈Φ(x), Φ(y)〉. Then

K ′(x, y) =
∑

a∈R−1(x)

∑

b∈R−1(y)

〈Φ(a), Φ(b)〉 = 〈(
∑

a∈R−1(x)

Φ(a)), (
∑

b∈R−1(y)

Φ(b))〉

(9)
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Thus K ′ is an inner product in the same vector space captured by Φ with the
map being the aggregate of all elements in R−1(x).

Note that K ′(, ) iterates over all shifts of both x and y, hence effectively
counting each shift n times. For example, observe that for the identity shift, we
have 〈x, y〉 = 〈x+1, y+1〉 = . . . = 〈x+(n−1), y+(n−1)〉. Hence we need to scale K ′

by 1/n in order to count each shift exactly once. This gives us

K(x, y) =
1
n

n∑

i=1

n∑

j=1

eγ〈x+i,y+j〉.

Since scaling a kernel (i.e. K ′) is also a kernel, K is a kernel. 	

Previous work [13] has shown that cross-correlation can be calculated in time
O(n log n) where n is the length of the time series. In particular they show
that 〈x, y+s〉 = F−1(X · Ŷ)[s] where · indicates point-wise multiplication, X
is the discrete Fourier transform of x, and Ŷ is the complex conjugate of the
discrete Fourier transform of y. Therefore cross-correlation can be calculated as
C(x, y) = maxs F−1(X · Ŷ)[s] and using the fast Fourier transform we get the
claimed time bound. This easily extends to our kernel by calculating K(x, y) =∑

s eF
−1(X·Ŷ)[s] implying:

Proposition 1. K(x, y) can be calculated in time O(n log n).

Note that we need take the Fourier transform of each example only once. This gives
a significant practical speedup over the naive quadratic time implementation.

4 Related Work

The current discoveries from the microlensing surveys such as OGLE and MA-
CHO are predominantly transient objects such as gravitational microlensing,
supernovae etc., and some periodic variable stars [14,15]. Recent work on star
surveys introduced the application of semi-automatic classification techniques
for periodic variable stars based on simple selection criteria over the parameter
space indexed by average brightness, average difference in brightness between
two spectral regions, and period, e.g [16,17]. We refer to these three parame-
ters as explicit features. The semi-automatic methods require significant human
intervention and hence pose an imperfect solution for a survey of even tens
of millions of stars. An automatic approach has been proposed in [18]. This
approach extracts explicit features from the light curves and applies machine
learning methods in the resulting parameter space. Despite the similarity in
terms of automation, our approach is unique in that we use the shape of the
periodic time series to derive a similarity measure. Furthermore our approach is
not astronomy-specific and is applicable across a range of domains.

There are many existing approaches for processing and classifying time series.
A classical approach is to extract features of the time series, such as the Fourier
basis, wavelets, or Hermite basis representation, and then work directly in the



496 G. Wachman et al.

resulting vector space,e.g. [19]. Another major approach models the time series
using a generative probabilistic model, such as Hidden Markov Models (HMM),
and classifies examples using maximum likelihood or MAP estimates [20]. Our
work falls into a third category: using similarity functions or distance measures
for time series data [21,22]. Various similarity functions for time series have been
proposed. Notably, Dynamic Time Warping (DTW) has been shown to be very
effective across a large number of applications [21,23]. Such similarity functions
are not phase invariant, hence they rely on a good universal phasing of the data.

Cross-correlation has been proposed precisely as an effective phase-invariant
similarity function for astronomy and has been used for anomaly detection [13]. It
is faster in runtime, O(n log n), than other methods that compute a maximum
phase-invariant alignment. The notion of phase-invariance similarity has also
been explored in the context of time series classification, specifically for time
series generated from 2-d shape contours. For example, [23] present a method
for applying any distance measure in a phase-invariant context. This allows for
the application of Dynamic Time Warping, for instance, to data that is phase-
invariant. While in general the run-time (O(n3)) is as bad as brute-force methods
such as in [24], they give experimental evidence that their heuristics lead to
much faster, run-times in practice. We extend the work in [13] by investigating
theoretical properties of cross-correlation and proposing a positive semidefinite
alternative.

Several alternative approaches for working with non-positive semidefinite sim-
ilarity measures exist in the literature. The simplest approach is just to use the
(non-PSD) similarity function with SVM and hope for good results. Our ex-
periments in the next section show that this does not always yield the desired
performance. Another common alternative is to add a diagonal term λI to the
gram matrix in order to render it positive semidefinite. More recent approaches
reformulate the SVM optimization to account for the potential non-PSD ker-
nel [25,26]. Finally, [27] show that a similarity function that meets some general
requirements can be used to project examples into an explicit feature space in-
dexed by their similarity to a fixed set of examples, and that this preserves some
useful learnability properties. Unlike these generic methods, our work gives an
explicit kernel construction that is useful for the time series domain.

There is significant overlap between the domain of time series classification
and 2-d shape matching [23]. This is in part because a popular method for
representing 2-d shapes is to create a time series from the contour of the shape.
Shape classification has its own domain-specific approaches and it is beyond the
scope of this paper to examine them. Nevertheless we note that shape matching
is an example of a phase-invariant time series classification problem, and in fact
we will present experiments from this domain.

The general issue of “maximizing alignment” appears repeatedly in work on
kernels for structured objects. Dynamic Time Warping is a classic (non-positive
semidefinite) example where we maximize alignment under legal potential warp-
ing of the time axes. A general treatment of such alignments, characterizing when
the result is a kernel, is developed by [28]. Their results do not cover the case of
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cross-correlation, however. A similar alignment idea has been used for graph ker-
nels in the application of classifying molecules, where each molecule can be seen
as a graph of atoms and their bonds [29,30,31]. Here a base kernel is introduced
between pairs of nodes in the two graphs. Then one can define a convolution ker-
nel between the graphs using an equation similar to (8) where the sum ranges
over all nodes in the graph [29,30]. Note that this approach does not maximize
alignments, but sums over all possible alignments. A non-positive semidefinite
alternative is to maximally align the two molecules by pairing their atoms in
a one-to-one manner [31]. A major question is whether one could define an ef-
ficiently computable exponentially weighted version of such a (non-maximizing
but PSD) graph kernel. One can show that this problem is closely related to
calculating the permanent, a problem well known to be computationally hard
[32,33]. As it is a special case of the permanent problem, however, where edge
weights are related through the kernel function, it may be possible to calculate
efficiently.

5 Experiments

In the following sets of experiments we demonstrate the performance of
cross-correlation and our kernel in the context of phase-invariant time series
classification.

For real-world data we use time series from astronomy surveys, and time series
generated from contours of 2-d images. For artificial data, we generate examples
that highlight the importance of phase invariance in an intuitive fashion. We
use the same pre-processing for all time series, unless otherwise noted. The time
series are smoothed as in [13,34], linearly-interpolated to 1024 evenly spaced
points, and normalized to have mean of 0 and standard deviation of 1.

In all experiments we use the LIBSVM [35] implementation of SVM [7] and
k-Nearest Neighbors (k-NN) to perform classification. For LIBSVM, we choose
the “one-versus-one” multiclass setting, and we do not optimize the soft-margin
parameter, instead using the default setting. For k-NN, we choose k = 1 follow-
ing [23], who have published results on the shape data used in this paper1. When
we use explicit features, we use a linear kernel. When we use cross-correlation or
our kernel in addition to explicit features, we simply add the result of the inner
product of the explicit features to the value of the cross-correlation or kernel2.

We use five different similarity functions in our experiments: Euclidean Dis-
tance (ED) returns the inner product of two time series. The Universal Phasing
(UP) similarity measure uses the method from [13] to phase each time series

1 We reproduce their experiments as opposed to reporting their results in order to
account for the different splits when cross-validating; our results do not differ signif-
icantly from those reported in [23].

2 Another approach would be to perform multiple kernel learning [36] with one kernel
being the cross-correlation and the other the inner product of the explicit features.
However, this issue is orthogonal to the topic of the paper so we use the simple
weighting.
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according to the sliding window on the time series with the maximum mean,
and then behaves exactly like Euclidean Distance. We use a sliding window size
of 5% of the number of original points; the phasing takes place after the pre-
processing explained above. In all experiments where we use K as in Equation 7,
we do parameter selection by performing 10-fold cross-validation on the training
set for each value of γ in (1, 5, 10, 15, 25, 50, 80), then re-train using the value of γ
that gave best average accuracy on the training set. When we use Dynamic Time
Warping (DTW), we use the standard algorithm and do not restrict the warp-
ing window [21]. Finally we note that although cross-correlation is not positive
semidefinite, we can in practice use it on some data sets with SVM.

In the first set of experiments we run on the OGLEII data set [5]. This data set
consists of 14087 time series (light curves) taken from the OGLE astronomical
survey. Each light curve is from one of three kinds of periodic variable star :
Cepheid, RR Lyrae (RRL), or Eclipsing Binary (EB). We run 10-fold cross-
validation over the entire data set, using the cross-correlation (CC), our kernel
(K), and Universal Phasing (UP). The results, shown in the left top three rows
of Tab. 1, illustrate the potential of the different similarities in this application.
We see significant improvements for both cross-correlation and the kernel over
Universal Phasing. We also see that the possibility to run SVM with our kernel
leads to significant improvement over cross-correlation.

While the results reported so far on OGLEII are good, they are not suffi-
cient for the domain of periodic variable star classification. Thus we turn next
to improvements that are specific to the astronomy domain. In particular, the
astronomy literature identifies three aggregate features that are helpful in vari-
able star classification: the average brightness of the star, the color of the star
which is the difference in average brightness between two different spectra, and
the period of the star, i.e. the length of time to complete one period of brightness
variation [16,17]. The right side of Tab. 1 gives the results when these features
are added to the corresponding similarities. The features on their own yield very
high accuracy, but there is a significant improvement in performance when we
combine the features with cross-correlation or the kernel. Interestingly, while
Universal Phasing on its own is not strong enough, it provides improvement
over the features similar to our kernel and cross-correlation. Notice that a per-
formance gain of 2% is particularly significant in the domain of astronomy where
our goal is to publish such star catalogs with no errors or very few errors. The
left confusion matrix in Tab. 2 (for SVM with our kernel plus features) shows
that we can get very close to this goal on the OGLEII data. To our knowledge
this is the first such demonstration of the potential of applying a shape match-
ing similarity measure in order to automatically publish clean star catalogs from
survey data. In addition, based on our domain knowledge, some of the errors
reported in the left of Tab. 2 appear to be either mis-labeled or borderline cases
whose label is difficult to determine.

In addition to classification, we show in Tab. 2 that the confidences produced
by the classifier are well ordered. Here we do not perform any calibration and
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Table 1. Accuracies with standard deviation reported from 10-fold cross-validation on
OGLEII using various kernels and the cross-correlation

1-NN SVM 1-NN SVM

CC 0.844 ± 0.011 0.680 ± 0.011 features + CC 0.991 ± 0.002 0.998 ± 0.001

K 0.901 ± 0.008 0.947 ± 0.005 features + K 0.992 ± 0.002 0.998 ± 0.001

UP 0.827 ± 0.010 0.851 ± 0.006 features + UP 0.991 ± 0.002 0.997 ± 0.001

features 0.938 ± 0.006 0.974 ± 0.004

Table 2. Three confusion matrices for OGLEII, using SVM with K and features. From
left to right we reject none, then the lowest 1%, 1.5% and 2%.

Ceph EB RRL Ceph EB RRL Ceph EB RRL Ceph EB RRL

Cepheid 3416 1 13 3382 1 3 3363 1 3 3352 1 0

EB 0 3389 0 0 3364 0 0 3342 0 0 3312 0

RRL 9 0 7259 1 0 7195 0 0 7166 0 0 7138

simply take the raw output of each of the 3 hyperplanes learned by the SVM3.
To calculate the confidence in label 1, we add the raw output of the 1v2 (the
classifier separating class 1 from class 2) and 1v3 classifiers. To calculate the
confidence in label 2 we add the negative output of the 1v2 hyperplane and the
output of the 2v3 hyperplane, etc. We can then reject the examples that received
the lowest confidences and set them aside for review. When we reject the lowest
1%, for example, we reject all but 5 errors, showing that almost all of our errors
have low confidences. We now have reason to believe that, when we classify a
new catalog, we can reliably reject a certain percentage of the predictions that
are most likely to be errors. The rejected examples can either be ignored or set
aside for human review.

In the next set of experiments we use five shape data sets: Butterfly, Arrowhead,
Fish, Seashells introduced in [23], as well as the SwedishLeaf data set [38]4. These
data sets were created by taking pictures of objects and creating a time series by
plotting the radius of a line anchored in the center of the object as it rotates around
the image [23]. As all of the pictures have aligned each object more or less along a
certain orientation, we randomly permute each time series prior to classification
in order to eliminate any bias of the orientation. The identification of objects from
various orientations is now cast as a phase-invariant time series problem.

A natural and relatively easy problem is to use a classifier to separate the
different image types from each other. In this case we attempt to separate but-
terflies, arrowheads, seashells, and fish. We refer to this data set as Intershape5.

3 While there are several methods in the literature to produce class-membership prob-
abilities from SVM output [37], exploratory experiments could not confirm the re-
liability of these probabilities for our data. Therefore we chose to use the simple
method based on raw SVM output.

4 Detailed Information available via www.cs.ucr.edu/~eamonn/shape/shape.htm
5 We treat the SwedishLeaf set differently because it has a different resolution and is

not part of the same overall shape data set.
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Table 3. Number of examples in each data set. For those data sets that were filtered
to include 20 examples of each class, the number of examples post-filtering appears
after the ‘/’.

Num Examples Num Classes Majority Class

Arrowhead 558/474 9 0.19

Butterfly 754/312 5 0.39

Intershape 2511 4 0.30

SwedishLeaf 1125 15 0.07

We also investigate the potential to separate sub-classes of each shape type. The
SwedishLeaf data has already been labeled before, and hence the sub-classes
are already identified. For the other data sets that have not been explicitly la-
beled by class before, we generate labels as follows: for the Butterfly and Fish
data set, we consider two examples to be the same class if they are in the
same genus. For the Arrowhead data set, we consider two arrowheads to be
the same type if they share the same type name, such as “Agate Basin”, or
“Cobbs.” In order to make the results more statistically robust, we eliminate
sub-types for which there exist fewer than 20 examples. Seashells and Fish have
too few examples when processed in this way and are therefore only used in the
Intershape data set. A summary of the data sets, including number of exam-
ples and majority class probability (that can be seen as a baseline) are given
in Tab. 3.

For these experiments we calculate no explicit features. We run 10-fold cross-
validation using k-NN with cross-correlation (1-NN CC), the kernel (1-NN K),
Dynamic Time Warping (1-NN DTW), Universal Phasing (1-NN UP) and SVM
with the kernel (SVM K), Universal Phasing (SVM UP), and Euclidean distance
(SVM ED). The results are given in Tab. 4. We also tried using 1-NN with
Euclidean Distance, but the performance was not competitive with any of the
other methods so we do not include it in the comparison.

The results demonstrate that both cross-correlation and the kernel provide a
significant performance advantage. It is not surprising that DTW does not do
well since it only considers the one given random phasing of the data. Rather,
it is surprising that it does not perform worse on this data. The only way it
can expect to perform well with k-NN is if, by chance, for each example there
is another example of the same class that happens to share roughly the same
phase. In a large enough data set, this can happen, and this may explain why
DTW does much better than random guessing. It is interesting that SVM does
not always dominate k-NN and does very poorly on SwedishLeaf. It may be that
the data are linearly inseparable but there are are enough examples such that
virtual duplicates appear in the data allowing 1-NN to do well.

Another interesting observation is that while Universal Phasing never outper-
forms all methods it does reasonably well across the domains. Recall that this
method phases the time series according to the maximum average brightness of
a sliding window. This finds a “maximum landmark” in the data for alignment
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Table 4. Performance on various shape data sets. All results are cross-validated. Data
set names: A = arrowhead, B = butterfly, I = intershape, S = Swedish.

1-NN CC 1-NN K 1-NN DTW 1-NN UP SVM ED SVM UP SVM K

A 0.54 ± 0.06 0.54 ± 0.08 0.33 ± 0.06 0.49 ± 0.05 0.2 ± 0.05 0.41 ± 0.05 0.63 ± 0.04

B 0.73 ± 0.04 0.73 ± 0.04 0.59 ± 0.08 0.70 ± 0.07 0.4 ± 0.1 0.65 ± 0.08 0.76 ± 0.08

I 0.98 ± 0.01 0.98 ± 0.01 0.84 ± 0.03 0.97 ± 0.02 0.47 ± 0.03 0.8 ± 0.02 0.91 ± 0.02

S 0.84 ± 0.03 0.82 ± 0.03 0.48 ± 0.06 0.78 ± 0.04 0.08 ± 0.03 0.18 ± 0.03 0.33 ± 0.04

and is obviously not guaranteed to be informative of the class in every case.
Nevertheless, it works well on the Butterfly and Intershape data sets showing
that this type of landmark is useful for them.

As we show in the next set of experiments with artificial data, it is easy to
construct examples where Universal Phasing will fail. We generate two classes
of time series. Each example contains 1024 points. Class 1 is a multi-step func-
tion with one set of four steps beginning at time 0, as well as one spike placed
randomly. Class 2 is also a multi-step function but with two sets of two steps,
the first at time 0 and the second at time 665 (roughly 65% of the entire time
series) and one random spike exactly as in class 1. We show two examples of
each class in Fig. 2. We generate 10 disjoint training sets containing 70 ex-
amples and test sets containing 30 examples for cross-validation. We keep the
training set small to avoid clobbering the results by having near-identical exam-
ples. In these experiments we normalize as above, however we do not perform
smoothing.

For this type of data the random spike will always be in the center of the
largest magnitude sliding-window, and hence Universal Phasing will phase each
time series according to the random location of the spike. In a real world setting,
the random spike could be sufficiently wide noise period in the signal, or any
irrelevant feature of the time series. This is key to understanding the strength
of our method: if it is easy to find a global shifting such that each example
is maximally correlated with every other, our method performs identically to
Euclidean Distance. On the other hand, when a global shift is not trivial to find,
our method succeeds where a Universal Phasing algorithm fails. To illustrate
further the performance potential of the kernel we create a second version of the
data where we add noise to the labels by flipping the label of each example with
probability of 0.1. When the data are completely or nearly separable, both k-NN
and SVM should attain close to 100% accuracy. The noise changes the domain
to make it harder to get this level of performance.

The results are shown in Tab. 5. As we expected, Universal Phasing does quite
poorly in this setting. With no noise, 1-NN with cross-correlation, 1-NN with
our kernel, and SVM with our kernel attain almost 100% accuracy. The results
with noisy data show that SVM with our kernel is more robust to noise than
1-NN with cross-correlation or our kernel.
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Fig. 2. Examples of artificial data. The left two examples are from class 1, the right
two example are from class 2.

Table 5. Results on artificial data

1-NN CC 1-NN K 1-NN UP SVM UP SVM K

Artificial 0.99 ± 0.02 1.00 ± 0.00 0.65 ± 0.04 0.50 ± 0.07 0.997 ± 0.001

Artificial w/ Noise 0.84 ± 0.14 0.84 ± 0.12 0.61 ± 0.09 0.53 ± 0.12 0.90 ± 0.05

6 Conclusion

On the OGLEII data set we have shown a basis for a completely automatic star
classification algorithm. We have shown that cross-correlation is an effective sim-
ilarity measure for phase-invariant time series, we proved that cross-correlation
is not positive semidefinite, and we gave a positive semidefinite alternative, jus-
tifying its use in an experimental setting.

The work we have presented in the astronomy domain is a portion of our
continuing effort to build an “end-to-end” automatic classification system for
astronomy events. In particular we have used the work presented here to clas-
sify other star surveys such as MACHO. A complete star classification system
requires several modules in addition to the classification method we have demon-
strated here. For instance, the raw data from a survey contains no information
about the star other than its brightness measured at specific times. To classify
the star, we must first determine if it is variable, determine if it is periodic, and
find its period; only then can we finally classify it. What we have shown in this
paper represents the bulk of the classification portion. A manuscript detailing
a methodology for the complete task and results for the MACHO catalog is
currently in preparation.

As discussed in Sect. 4, using a computationally tractable approximation to
the maximum alignment has potential applications in the domain of classifying
graphs and other structured data. The main question is whether we can efficiently
calculate an exponential weighted approximation to a maximum alignment and
whether this would prove useful in an experimental setting.
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