
Journal of Machine Learning Research 20 (2019) 1-45 Submitted 6/16; Revised 2/18; Published 2/19

Kernels for Sequentially Ordered Data
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Abstract

We present a novel framework for learning with sequential data of any kind, such as multi-
variate time series, strings, or sequences of graphs. The main result is a ”sequentialization”
that transforms any kernel on a given domain into a kernel for sequences in that domain.
This procedure preserves properties such as positive definiteness, the associated kernel fea-
ture map is an ordered variant of sample (cross-)moments, and this sequentialized kernel
is consistent in the sense that it converges to a kernel for paths if sequences converge to
paths (by discretization). Further, classical kernels for sequences arise as special cases of
this method. We use dynamic programming and low-rank techniques for tensors to provide
efficient algorithms to compute this sequentialized kernel.
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1. Introduction

Sequentially ordered data are ubiquitous in modern science, occurring as time series, loca-
tion series, or, more generally, sequentially observed samples of structured objects. Two
stylised facts make learning with sequential data an ongoing challenge:

(A) Sequential data is very diverse, e.g. it includes sequences of different length of scalars,
letters, images, graphs (in time series, text, video, network evolution) or even heteroge-
neous combinations of these. This diversity is usually addressed by ad-hoc approaches,
extensive pre-processing and manual extraction of features, thus specific to the data
at hand.

(B) Sequential data is often large, with sequences easily obtaining the length of hundreds,
thousands, millions. Hence, the data sets quickly become very huge, and with them
computational cost.

In this paper, we present a novel approach to learning with sequential data based on joining
ideas from stochastic analysis and kernel learning, addressing the points above:
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(a) The (discretized) signature is a canonical feature map for sequences. It can intuitively
be described as an ordered version of sample moments. It completely describes a
sequence and makes sequences of different size and length comparable.

(b) The kernel trick applied to signature features avoids the combinatorial explosion of
coordinates inherent to the signature feature map (in analogy to the classic polynomial
kernel in R

d).

The main results of this article can be described as follows: if X is a topological space
(“structured objects”) and we denote with X

+ =
⋃

ℓ≥1X
ℓ the set of arbitrary length se-

quences in X (“sequences of structured objects”) then we construct a map that takes

a kernel k : X× X→ R to a kernel k+ : X+ × X
+ → R.

We call k+ the discretized signature kernel (or sequentialization) over k and provide efficient
algorithms to evaluate k+. This transformation is canonical in the sense that it preserves
important properties of k, such as positive definiteness and it is consistent in the sense that
k(x, y) for x, y ∈ X

+ converges to an inner product of a ”feature map“ for paths that is
classic in stochastic analysis (the path signature) if the sequences x, y converge to paths
(from discrete to continuous time).

Classical kernels for sequences such as string, global alignment or relation-convolution
kernels can be identified as special cases of the discretized signature kernel k+; for example
string kernels arise by taking X to be a finite set of “letters”. More interestingly, even for
X = R this yields new kernels for time series by the sequentialization of classic non-linear
kernels such as Gaussian, Laplace, etc. From a methodological point of view, this gives
a canonical way to transform static features (resp. kernels k) for structured objects into
features (resp. kernels k+) for evolving structured objects.

1.1. Kernels for paths

We first discuss the situation for path-valued observations (continuous time) rather than
sequence-valued observations (discrete time) — the latter then follows by discretizing time.
That is, if we denote with PX ⊂ X

[0,1] a sufficiently regular subset of the space of paths that
evolve in X (without loss of generality the paths are parameterized by [0, 1]), our aim is to
transform

a kernel k : X× X→ R into a kernel k⊕ : PX × PX → R.

Therefore, first recall that X ∋ u 7→ ku := k(u, ·) ∈ H ⊂ R
X can be thought of as the

“(canonical) feature map” induced by k. It is then natural to proceed as follows:

1. Lift a path evolving in data space X to a path evolving in feature space
H. We lift the path x that evolves in data space X to a path1 kx that evolves in the
feature space H via the kernel k. That is, we map

x = (x(t))t∈[0,1] ∈ PX to kx =
(

kx(t)
)

t∈[0,1]
∈ PH

where PH denotes a sufficiently regular subset of H[0,1].

1. Note the slight abuse of notation that ku ∈ H if u ∈ X and kx ∈ PH if x ∈ PX.
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2. Signature features for paths in H. We use a feature map that is well-known in
stochastic analysis for paths that evolve in linear spaces such as H. This map is called
the signature map S. It maps a path h ∈ PH into a series of tensors,

h 7→ S (h) ∈
∏

m≥0

H
⊗m.

By applying this map to the lifted path kx ∈ PH, we get the feature map PX →
∏

m≥0H
⊗m, defined as x 7→ S(kx).

3. Signature kernels. Taking inner products yields the kernel

k⊕ : PX × PX → R defined as inner product k⊕(x, y) = 〈S(kx), S(ky)〉.

It turns out, that k⊕ has a recursive structure that allows for an efficient and ro-
bust calculation even though kx, ky are paths evolving in the (in general infinite-
dimensional) state space H.

Below we give more details about the last two points of this construction.

1.2. The signature map

The signature S maps a (sufficiently regular) path h ∈ PH ⊂ H
[0,1] into a series of tensors,

h 7→ S(h) = (Sm(h))m≥0 ∈
∏

m≥0

H
⊗m

where by convention H
⊗0 := R and S0(h) := 1. The remaining terms Sm(h) are defined as

follows: the first degree, S1(h), of the signature is simply the average change,

S1(h) := Et[ḣ(t)] ∈ H,

where ḣ denotes the derivative of h and the expectation is taken over t sampled uniformly
from [0, 1]. The second degree of the signature, S2(h), is the (non-centred) covariance of
changes at two subsequent time points, that is

S2(h) :=
1

2
Et1<t2 [ḣ(t1)⊗ ḣ(t2)] ∈ H

⊗2,

where the expectation is over the time points t1, t2 sampled from the uniform distribution
on [0, 1] and put in chronological order. In general, the m-th degree of the signature, Sm(h),
is defined as the m-th moment tensor of the infinitesimal changes, where the expectation
is taken over m time points, t1, . . . , tm, that are sampled from the order statistic2 of the
uniform distribution on [0, 1], that is

Sm(h) :=
1

m!
Et1<···<tm [ḣ(t1)⊗ · · · ḣ(tm)] ∈ H

⊗m.

2. The order statistic for the uniform distribution [0, 1] of m points has a density p (t1, . . . , tm) =
m!1t1<···tm<1

3
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Hence, the signature S(h) of a path h characterises the sequential structure in h by quan-
tifying dependencies in their change, similar to classic sample moments in R

d. In fact,
signatures are in close mathematical analogy to polynomials: the feature map x 7→ S(h) is
injective and if h 7→ f(h) is a non-linear function on pathspace, then it can be well approxi-
mated as a linear function of the signature features S(h), that is f(h) ≈ 〈ℓ, S(h)〉. However,
signature features have the following drawbacks

• Even if H = R
d is finite dimensional, we have Sm(h) ∈

(

R
d
)⊗m

, thus the number
of (scalar) coordinates needed to store Sm(h) grows as O(dm) as m increases. This
combinatorial explosion makes the use of signature features costly for paths that
evolve in high-dimensional state spaces H and infeasible for paths evolving in infinite
dimensional state spaces H.

• Signatures are only defined for paths evolving in linear spaces; S(h) does not make
sense when h evolves in a general topological space X since ḣ(t)dt = dh(t) is not
well-defined.

However, as we will show, both of these shortcomings can be addressed by kernelization.

1.3. Inner products of signature features

The space
∏

m≥0H
⊗m is a linear space and by restricting to a subspace, we can work with

an inner product space (in fact, again a Hilbert space after completion); that is we define
for (sm), (tm) ∈

∏

m≥0H
⊗m

(s0, s1, . . .) + (t0, t1, . . .) := (s0 + t0, s1 + t1, . . .) ,

〈(s0, s1, . . .) , (t0, t1, . . .)〉 :=
∑

m≥0

〈sm, tm〉H⊗m

where 〈·, ·〉H⊗m is given as 〈u1 ⊗ · · · ⊗ um, v1 ⊗ · · · ⊗ vm〉H⊗m :=
∏m

i=1〈ui, vi〉H. The inner
product 〈S(g), S(h)〉 of the signature features of (sufficiently regular) paths g, h ∈ PH is
finite and using conditional expectations we get that 〈S(g), S(h)〉 equals

∑

m≥0

1

m!2
Es1<···<sm

t1<···<tm
[〈ġ(s1)⊗ · · · ⊗ ġ(sm), ḣ(t1)⊗ · · · ⊗ ḣ(tm)〉H⊗m ]

=
∑

m≥0

1

m!2
Es1<···<sm

t1<···<tm
[〈ġ(s1), ḣ(t1)〉H · · · 〈ġ(sm), ḣ(tm)〉H]

=

(

1 + Es1,t1

[

〈ġ(s1), ḣ(t1)〉 ·

(

1 +
1

22
Es2|s1

t2|t1

[

〈ġ(s2), ḣ(t2)〉 ·

(

1 +
1

32
Es3|s2

t3|t2

[. . . ]

)])])

.

Now applied to g = kx ∈ PH, h = ky ∈ PH, using the reproducing property of k we get

〈k̇x(s), k̇y(t)〉H ds dt = 〈dg(s), dh(s)〉H = ds dt k(x(s), y(t)) = κ(ds, dt)

where κ denotes the measure on [0, 1]2 defined as

κ([s, t]× [u, v]) = k(x(t), y(v))− k(x(s), y(v))− k(x(t), y(u)) + k(x(s), y(u)).
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(Note that this measure does not use differentiability of x, y). Replacing above expectations
over the order statistic by explicit integration over [0, 1], we arrive at

k⊕(x, y) = 1 +

ˆ

s1,t1

[

κ(ds1, dt1) ·

(

1 +

ˆ

s2>s1
t2>t1

[

κ(ds2, dt2) ·

(

1 +

ˆ

s3>s2
t3>t2

[. . . ]

)])]

. (1)

Finally, the data we have access is to is only a sequence (x(t1), . . . , x(tn)) ∈ X
+ rather

than the whole path x = (x(t))t∈[0,1] ∈ PX, but replacing the integrals by sums immediately
gives an explicit recursive formula for a kernel k+ : X+ × X

+ → R that is determined by
a Horner-type3 recursive evaluation; especially, one never computes the signature map of
a path that evolves in the high/infinite-dimensional Hilber space H directly. This yields
a robust and computationally effective formula for a kernel k+ for sequences, that has
well-defined behaviour in the scaling limit when sequences approximate paths. We make
the above informal derivation rigorous in the following sections, study its properties and
extended it to non-smooth paths in Appendix B.

1.4. Prior art and literature review

Learning with sequential data is a vast field. Prior art that inspired our present approach
can be found in

(i) dynamic programming algorithms for sequence comparison in the engineering com-
munity,

(ii) kernel and Gaussian processes for sequences in the machine learning community,

(iii) Rough paths in the stochastic process community.

Beyond the above, we are not aware of literature in statistics that deals with sequence-
valued data points in a way other than first identifying one-dimensional sequences with
real vectors of same size, or even forgetting the sequence structure entirely and replacing
the sequences with (order-agnostic) aggregates such as cumulants, quantiles or principal
component scores. Below we discuss above three points in more detail:

(i) Dynamic programming algorithms for sequence comparison.

The earliest use of order information in sequences for learning can probably be found
in Sakoe and Chiba (1970) and Sakoe (1979) by using editing or distortion distances. These
distances are then employed for classification by maximum similarity/minimum distance
principles. Through theoretical appeal and efficient computability, sequence comparison
methods, later synonymously called dynamic time warping methods, have become one of
the standard methods in comparing sequential data Kruskal (1983); Giorgino (2009). Se-
quence comparison methods in their original formulation can only be directly applied to

3. Horner’s scheme to evaluate a uni-variate polynomial p(x) =
∑m

i=0 aix
i is to write p(x) = a0 +

x (a1 + x (a2 + · · ·+ x (am−1 + xam))) and compute the brackets from the inside to the outside. This
needs only n additions and n multiplications which is optimal and in contrast to the n additions and
n2+n

2
multiplications needed for the naive evaluation of p(x); further, it is numerically more stable since

one never adds floats that live on different scales (such as a1x and amxm). This structural similarity
with formula (1) will be the key to our algorithms.
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relatively simple distance-based learning algorithms. This has been addressed by combining
such methods with kernel learning (discussed below).

(ii) Kernels and Gaussian processes for sequences.

Kernel learning is one of the most popular approaches to make non-linear data of arbitrary
kind amenable to classic and scalable linear algorithms and it provides learning theoretical
guarantees, see Schölkopf and Smola (2002); Shawe-Taylor and Cristianini (2004); Cucker
and Smale (2002). Kernels for strings, that is, sequences of symbols, were among the
first to be considered by Haussler (1999) and fast algorithms were obtained a few years
later Lohdi et al. (2002); Leslie and Kuang (2004). Kernels based on the above-mentioned
dynamic programming (time warping) approach were developed, for sequences of arbitrary
objects leading to so-called alignment kernel, see Bahlmann et al. (2002); Noma (2002);
Cuturi et al. (2007); Cuturi (2011). All of the mentioned kernels can be viewed from
Haussler’s original, visionary relation-convolution kernel framework, Haussler (1999), the
existing literature provides no unifying approach to kernels for sequences: for example the
relation between string kernels and dynamic time warping/global alignment kernels, or to
the classical theory of time series has remained unclear. Further, the only known kernels
for sequences of arbitrary objects, the dynamic time warping/global alignment kernels, are
in general not positive definite.

(iii) Rough paths and stochastic processes.

Series of iterated integrals appear in diverse areas such as control theory, combinatorics, ho-
motopy theory, physics (Feynman–Dyson–Schwinger theory) and more recently probability
theory; see (Lyons, 2004, Section “Historic papers”, p97). This series is treated under vari-
ous names in the literature like “Magnus expansion”, “time ordered” or ”non-commutative
exponential”, or the one we follow, namely “the signature of a path”. Signatures have
found many applications in stochastic analysis (rough path theory, regularity structures),
but their use in statistics and machine learning is very recent: Papavasiliou et al. (2011)
applies it to SDE parameter estimation; Levin et al. (2013); Lyons et al. (2014) applies
it to forecasting and classification; Yang et al. (2015) uses signature features as input to
deep neural nets. So far, all applications are restricted to paths evolving in low-dimensional
linear spaces due to the computational bottleneck given by the combinatorial explosion of
signature coordinates.

1.5. Outline

Section 2 introduces the signature as a canonical feature map for path-valued data. Section 3
shows that this signature can be kernelized to get a kernel k⊕ for paths and studies its
properties. Section 4 studies the discretization to turn k⊕ into a kernel k+ for sequences.
Section 5 shows that classic kernels for sequences arise as special cases of our construction.
Section 6 presents effective algorithms for computing k+ using above recursion with low-rank
techniques. Section 7 presents a Numpy implementation and basic benchmarks.

1.6. Notation

6
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Spaces, sequences and paths

X an arbitrary set
X
+

X
+ :=

⋃

ℓ≥1X
ℓ sequences of arbitrary length in X

PX a set of continuous paths from [0, 1] to X

H the reproducing kernel Hilbert space, H ⊂ R
X, of the kernel k

H
+

H
+ :=

⋃

ℓ≥1H
ℓ sequences of arbitrary length in H

+

PH a set of continuous bounded variation paths from [0, 1] to H

Signature features for paths and sequences in H

∏

m≥0H
⊗m the linear space of series of tensors in H

S the signature map S : PH →
∏

m≥0H
⊗m

S+ the discretized signature map S+ : H+ →
∏

m≥0H
⊗m

〈·,·〉 inner product on the subset of square-summable elements of
∏

m≥0H
⊗m

‖ · ‖ norm given by 〈·,·〉 for square summable elements of
∏

m≥0H
⊗m

Kernels

k a kernel k : X× X→ R

kx with x ∈ X the element kx := k(x, ·) ∈ H ⊂ R
X

kx with x ∈ X
+ the sequence kx := (kxi

)i=1,...,ℓ ∈ H
+ with x = (xi)i=1,...,l

kx with x ∈ PX the path kx := (kx(t))t∈[0,1] ∈ PH with x = (x(t))t∈[0,1]
k+ a kernel k+ : X+ × X

+ → R, k+(x, y) := 〈S+(kx), S
+(ky)〉

k⊕ a kernel k⊕ : PX × PX → R, k⊕(x, y) := 〈S(kx), S(ky)〉

Partitions of [0, 1]

π a partition of [0, 1], i.e. a collection of points 0 = t1 < · · · < tl = 1
mesh(π) mesh(π) := maxi=1,...,l−1 |ti+1 − ti|
xπ for x ∈ PX xπ := (x(ti))i=1,...,l ∈ X

+, the path x sampled along π

1.7. Author’s contribution

Both authors contributed equally, HO is the corresponding author.

2. The signature feature map

Mapping paths to series of tensors is well-known technique in stochastic analysis. In this
section we give a short introduction and highlight aspects of the signature map that make
it a good feature map for paths.

2.1. Bounded variation paths

Definition 2.1 Let H a Hilbert space. We denote the set of H-valued paths of bounded
variation on [0, 1] starting at the origin by

C1([0, 1],H) := {h ∈ C ([0, 1],H) : h(0) = 0, ‖h‖1 <∞}
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where ‖h‖1 = supπ
∑l−1

i=1 ‖h(ti+1) − h(ti)‖H and the supremum is taken over all finite par-
titions π = {(ti)i=1,...,l : 0 = t1 < · · · < tl = 1} of [0, 1].

As in the finite-dimensional case, the integral
´ 1
0 y(t) dh(t) ∈ H is defined as the limit of

Riemann–Stieltjes sums, see Appendix A for details. The integral itself is in general not a
scalar, but an element of the Hilbert space,

´

y dh ∈ H.

Definition 2.2 We define the sequence
(´

dh⊗m
)

m≥0
∈
∏

m≥0H
⊗m as4

ˆ

dh⊗0 := 1 and

ˆ

dh⊗m :=

ˆ 1

0

(
ˆ t

0
dh⊗(m−1)

)

⊗ dh(t).

We define

S : C1 ([0, 1] ,H)→
∏

m≥0

H
⊗m , h 7→

(
ˆ

dh⊗m

)

m≥0

and call S(h) the signature of the path h and denote Sm(h) =
´

dh⊗m.

Example 2.3 Let H = R
2 and h(t) = (a(t), b(t))⊤. The first levels of the signature of h

are

S0(h) = 1, S1(h) =

(

´ 1
0 da(t)
´ 1
0 db(t)

)

, S2(h) =

(

´ 1
0

´ t2
0 da(t1) da(t2)

´ 1
0

´ t2
0 da(t1) db(t2)

´ 1
0

´ t2
0 db(t1) da(t2)

´ 1
0

´ t2
0 db(t1) db(t2)

)

.

The degree m = 3, S3(h) ∈
(

R
2
)⊗3

, has 23-scalar valued coordinates, etc. In general, for
a path in R

d we need dm scalars to describe
´

dh⊗m and it is exactly this combinatorial
explosion that makes the use of signatures prohibitively expensive already for moderately
high-dimensional H and impossible to use for infinite-dimensional H (such as the RKHS
associated with most kernels relevant in machine learning).

Example 2.4 For the special case of a linear path in H = R
d, i.e. h(t) = t · v for a fixed

vector v ∈ R
d, a direct calculation shows that

Sm(h) =
v⊗m

m!
=

h(1)⊗m

m!
for m ≥ 0

or in more concise notation5, S(h) = exp(v) = exp(h(1) − h(0)). This explains why the
signature S(h) is also known as time-ordered exponential. This analogy with the exponential
function will be key motivation for the estimates in Section 4.

4. Recall that by convention H
⊗0 := R.

5. where one denotes t = (tm)m ∈
∏

m≥0 H
⊗m as t = t0 + t1 + t2 + · · · , set exp(t) =

∑
m≥0

t
⊗m

m!
and

identify v ∈ R
d as t = 0 + v + 0 + 0 + · · · .

8



Kernels for sequentially ordered data

2.2. The signature as a canonical feature map

The signature S(h) describes a path h by an element in the linear space
∏

m≥0H
⊗m and

the following properties make it a good feature map

Theorem 1

1. The map h 7→ S(h) is continuous,

2. The map h 7→ S(h) is injective up to tree-like equivalence6,

3. For any f ∈ C(K,R), K ⊂ C1([0, 1],H) compact, and ǫ > 0 there exists a ℓ ∈
⊕

m≥0H
⊗m such that

sup
h∈K
|f (h)− 〈ℓ, S (h)〉| < ǫ.

The proof is classic in stochastic analysis and given in Appendix A; the key insight is that
the space of linear combinations of iterated integrals forms an algebra. To sum up

1. the signature features are a mathematically faithful representation of the underlying
path-valued data h.

2. linear combinations of signature coordinates approximate continuous functions of
paths arbitrarily well. In the kernel learning context this is known as “universality”.

3. the signature features are sequentially ordered analogues to moments. Similar to poly-
nomials, the feature space has the natural grading by m designating the “polynomial
degree”.

3. Signature kernels

We come back to our original motivation: we are given a RKHS (H, k) on X and we want to
transform this into a RKHS for paths in X. Therefore recall that the reproducing property
implies that

k : X× X→ R equals k(u, v) = 〈ku, kv〉H

and that one may think of X ∋ u 7→ ku(·) := k(u, ·) ∈ H as the (canonical) feature map
induced by the kernel k. Now given a path x ∈ PX we lift it to a path7 kx ∈ PH given as

6. We call h, h′ tree-like equivalent if the concatenation h ⊔ h′−1 is tree-like. A path z ∈ C1([a, b],H)
is called tree-like if there exists a continuous map f : [a, b] → [0,∞) with f (0) = f (T ) = 0 and
|z (t)− z (s)| ≤ f (s)+ f (t)− 2 infu∈[s,t] f (u) for all s ≤ t ∈ [a, b]. The key remark is that being tree-like
equivalent is a very strong assumption, typically not seen in real data. Even if presented with a tree-like
path, adding time as extra coordinate transforms the path to a non-treelike path (that is, working with
t 7→ (t, h(t)) instead of t 7→ h(t)).

7. Recall the slight clash of notation ku ∈ H for u ∈ X and kx ∈ PH if x ∈ PX, but the meaning will always
be clear from the context. In fact, later we are also going to use kx ∈ H

+ if x ∈ X
+.

9
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t 7→ kx(t) := kx(t)(·) := k(x(t), ·). The results of Section 2 suggest S(kx) as features for kx,
that is the feature map

PX ∋ x 7→ S(kx) ∈
∏

m≥0

H
⊗m. (2)

Theorem 1 guarantees that S(kx) captures all the information about x ∈ PX that can be
obtained by looking at the path x through the kernel k.

Most RKHS H in machine learning are infinite dimensional which makes this approach
infeasible; even for finite dimensional H we suffer from the combinatorial explosion of the
number of signature coordinates, Example 2.3. The main result of this section is that the
feature map (2) can be complety kernelized, that is by defining

(x, y) 7→ k⊕(x, y) = 〈S(kx), S(ky)〉

we get a kernel for paths in X that can be very efficiently evaluated using only k (x(s), y(t))
for s, t ∈ [0, 1]. That is, only evaluations of the ”static” kernel k : X× X→ R.

We henceforth restrict attention to positive definite kernels on X and a set of paths PX

that lift to bounded variation paths. All our arguments extend to unbounded variation
such as semi-martingales, diffusion processes, Markov processes or Gaussian processes and
we give the needed modifications in Appendix B.

Assumption 3.1 Throughout the remainder of this article we assume that k : X×X→ R

is continuous and positive definite. We denote with H the associated RKHS. Further, we
denote with PX ⊂ X

[0,1] a set of paths in a topological space X and (H, k) a RKHS on X

such that

{t 7→ kx(t) : x ∈ PX} ⊂ C1([0, 1],H).

This yields the following kernel,

Definition 3.2 We call

k⊕ :PX × PX → R , (x, y) 7→ 〈S(kx), S(ky)〉,

the signature kernel over k.

Theorem 2 The signature kernel over k

k⊕ : PX × PX → R, k⊕(x, y) = 〈S (kx) , S (kx)〉

1. is a positive definite kernel,

2. k⊕(x, y) =
∑

m≥0

´

s1<···<sm
t1<···<tm

∏m
i=1 dκ(si, ti) with κ defined as

κ ([s, t]× [u, v]) := k (x(t), y(v))− k (x(s), y(v))− k (x(t), y(u)) + k (x(s), y(u))

and κ is a signed Borel measure on [0, 1]2 for every x, y ∈ PX.

10
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Proof Point (1) follows since k⊕ is given as an inner product, see Schölkopf and Smola
(2002). Using the definition of k⊕ we calculate

k⊕(x, y) = 〈S(kx), S(ky)〉 =
∑

m≥0

〈

ˆ

dk⊗m
x ,

ˆ

dk⊗m
y 〉H⊗m

=
∑

m≥0

〈

ˆ 1

0

(
ˆ sm−1

0
dk⊗(m−1)

x

)

⊗ dkx(sm),

ˆ 1

0

(
ˆ tm−1

0
dk⊗(m−1)

y

)

⊗ dky(tm)〉

= 1 +
∑

m≥1

ˆ

sm∈[0,1]
tm∈[0,1]

〈

ˆ sm

0
dk⊗(m)

x ,

ˆ tm−1

0
dk⊗(m−1)

y 〉〈dkx(sm), dky(tm)〉

=
...

= 1 +
∑

m≥1

ˆ

sm∈[0,1]
tm∈[0,1]

ˆ

sm−1∈[0,sm]
tm−1∈[0,tm]

· · ·

ˆ

s1∈[0,s2]
t1∈[0,t2]

〈dkx(s1), dky(t1)〉 · · · 〈dkx(sm), dky(tm)〉.

(3)

Now consider two paths x, y that are piecewise linear, that is there are time points s1 ≤
· · · ≤ sk such that ẋ is constant on intervals (si, si+1) and analogous for y there exists
t1 ≤ · · · ≤ tl such that ẏ is constant on all intervals (ti, ti+1). Then

ˆ

(s1,sk)×(t1,tl)
〈dkx(s), dky(t)〉H

=
∑

1≤i≤k−1
1≤j≤l−1

ˆ

(si,si+1)×(tj ,tj+1)
〈dkx(s), dky(t)〉H

=
∑

1≤i≤k−1
1≤j≤l−1

〈kx(si+1)− kx(si), ky(tj+1)− ky(tj)〉H

=
∑

1≤i≤k−1
1≤j≤l−1

k(x(si+1), y(tj+1))− k(x(si), y(tj+1))− k(x(si+1), y(tj)) + k(x(si), y(tj))

where we used the reproducing property 〈kx(s), ky(t)〉 = k(x(s), y(t)) for the last equality.
Note that

κ ([r, s]× [u, v]) := k(x(si+1), y(tj+1))− k(x(si), y(tj+1))− k(x(si+1), y(tj)) + k(x(si), y(tj))

defines a signed measure on [0, 1]2, hence above reads

ˆ

(s1,sk)×(t1,tl)
〈dkx(s), dky(t)〉H =

∑

1≤i≤k
1≤j≤l

κ([s1, sk]× [t1, tl]) =

ˆ

(s1,sk)×(t1,tl)
dκx,y(s, t).

Combined with the identity (3) this shows (2) for piecewise constant paths. For general
x, y fix a sequence {(sni ) : 0 = s1 < · · · < snl+1 = 1} ⊂ [0, 1]n such that maxi |s

n
i+1 − sni | → 0

11
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as n → ∞ and denote with xn, resp. yn, the piecewise linear path given by interpolating
between points (x(sni ))i, resp. (y(s

n
j ))j . Then

κxn,yn([r, s]× [u, v])→ κx,y([r, s]× [u, v])

for all r < s, u < v directly by the definition of κ. Thus κxn,yn converges weakly to κx,y
On the other hand, 〈S (xn) , S (yn)〉 converges to 〈S (x) , S (y)〉 which finishes the proof by
sending n→∞

The equality in Point (2) in Theorem 2 suggests the expansion

k⊕ (x, y) = 1 +

ˆ

(s1,t1)∈(0,1)×(0,1)

(

1 +

ˆ

(s2,t2)∈(0,s1)×(0,t1)
(1 + · · · ) dκx,y(s2, t2)

)

dκx,y(s1, t1).

(4)

This recursive structure will be the key for an efficient computation.

4. Discretization and recursion: from paths to sequences

To make the kernel k⊕ : PX×PX → R useful for real-world applications, we need to address
the following two points:

1. (Sequences). We do not observe the full path (x(t))t∈[0,1] ∈ PX but only a sequence

xπ = (x(ti))
l
i=1 ∈ X

+ for a partition π = {0 = t1 < · · · < tℓ = 1}. The partition π
might even vary from path to path.

2. (Computational cost). Computing the kernel k⊕ : PX × PX → R by evaluating it as
an inner product is computationally prohibitive even with X = R

d = H and the linear
kernel k(·, ·) = 〈·, ·〉Rd is used if d is large (Example 2.3). It is infeasible for standard
kernels such as the Gaussian kernel that have an infinite-dimensional RKHS.

To address point (1), we approximate the signature map

x 7→ S(kx) =

(
ˆ

dk⊗m
x

)

m≥0

by discretization of the integrals. This gives a feature map S+ for sequences

xπ 7→ S+(kxπ) =





∑

1≤i1<···<im≤ℓ−1

∇i1 kx⊗ · · · ⊗ ∇im kx





m≥0

where we use the notation ∇i kx := kx(ti+1)− kx(ti) and kxπ = (kx(ti))
l
i=1 ∈ H

+. A simple
calculation shows that this is equivalent to

xπ 7→ S+(kxπ) =
ℓ
∏

i=1

(1 +∇i kxπ
i
)

12
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if
∏

denotes the linear extension8 of the tensor product to the linear space
∏

m≥0H
⊗m and

this is the definition we are going to use. The kernel k+ is defined as the inner product of
this feature map

k+ : X+ × X
+ → R, (x, y) 7→ 〈S+(kx), S

+(ky)〉

To address Point (2), we make heavy use of the recursive expansion (4) for k⊕ and truncate
after a given degree m (that is usually determined by cross-validation to avoid overfitting
in analogy to the classic polynomial kernel).

4.1. Discretized signatures

Definition 4.1 We call the map

S+ : H+ →
∏

m≥0

H
⊗m, (hi)

l
i=1 7→

l
∏

i=1

(1 +∇ih)

the discretized signature map (of order 1).

To prove quantitative results about the quality of this discretization, we need to understand
how fast S+(kxπ) approximates S(kx) as mesh(π) := maxi |ti+1 − ti| → 0. We first study
this approximation of paths by sequences for general paths h ∈ PH.

Definition 4.2 Define for d ≥ 1

expd : Rd → R, v = (vi)
d
i=1 7→

d
∏

i=1

(1 + vi)

Define for a partition π = (ti)
ℓ
i=1 with 0 = t1 < · · · < tℓ = 1

‖h‖(π) : C
1([0, 1],H)→ R, h 7→

(

‖h[t1,t2]‖1, . . . , ‖h[tℓ−1,tℓ]‖1

)

∈ R
ℓ−1

where h[a,b] denotes the restriction of h ∈ C1 ([0, 1],H) to C1([a, b],H).

Using this notation, the main result of this section reads

Theorem 3 For h ∈ C1([0, 1],H) and a partition π = (ti)
ℓ
i=1, 0 = t1 < · · · < tℓ = 1,

∥

∥S+(hπ)− S(h)
∥

∥ ≤ exp (‖h‖1)− exp1

(

‖h‖(π)

)

,

where hπ = (h(ti))i=1,...,ℓ ∈ H
+.

As a consequence, we get explicit convergence rates.

8. For s, t ∈
∏

m≥0 H
⊗m with s0 = t0 = 1 define s · t ∈

∏
m≥0 H

⊗m as having the m-element equal to∑m

i=0 sitm−i. If we denote s = (s0, s1, . . .) as s = s0 + s1 + · · · , then this reads s · t = 1+ s1 + t1 + s2 +
s1t1 + t2 + · · · and

∏
(1+∇ih) refers to this product. Informally speaking, we multiply series of tensors

in the same way we multiply polynomials.

13
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Corollary 4.3 With the same notation as in Theorem 3 above, it holds that

∥

∥S+(hπ)− S(h)
∥

∥ ≤ ‖h‖1e
‖h‖1 · max

i=1,...,ℓ−1
‖h[ti,ti+1]‖1.

Hence, the convergence lim‖h‖(π)→‖h‖1
S+(hπ) = S(h), is of order O

(

maxi ‖h[ti,ti+1]‖1

)

.

Corollary 4.4 With the same notation as in Theorem 3 above, it holds that if π is chosen

such that ‖h[ti,ti+1]‖1 =
‖h‖1
ℓ−1 for all i = 1, . . . , ℓ − 1, then one has the asymptotically tight

bound

∥

∥S+(hπ)− S(h)
∥

∥ ≤
e‖h‖1

ℓ− 1

(

1 +
‖h‖ℓ−1

1

(ℓ− 3)!

)

.

The proofs of Theorem 3 and Corollaries 4.3 and 4.4 are given in Appendix A.

Remark 4.5 (About geometric approximations) The reader familiar with path sig-
natures will note that the approximations S+(hπ) to S(h) are not group-like elements of the
tensor (Hopf) algebra

∏

m≥0H
⊗m, thus “non-geometric” in the sense that there can not ex-

ist a path ĥ such that S+(hπ) = S(ĥ). However, as we will see in the following sections, from
a computational perspective non-geometric approximations have many benefits. In fact, the
“non-geometric” approximations of this section recover classic machine learning construc-
tions, see Section 5. Nevertheless, one can modify the discussion of this section to produce
geometric approximations and we carry this out in Appendix B; see also Remark B.6.

4.2. Discretized signature kernels

Definition 4.6 Given x = (xi)
l
i=1 ∈ X

+ denote kx = (kxi
)li=1 ∈ H

+. We refer to

k+ : X+ × X
+ → R, k+(x, y) = 〈S+(kx), S

+(ky)〉

as the discretized signature kernel (or sequentialization) over k of order 1.

Theorem 4 The discretized signature kernel over k,

k+ : X+ × X
+ → R, k+(x, y) = 〈S+ (kx) , S

+ (kx)〉

1. is a positive definite kernel,

2. k+(x, y) =
∑

m≥0

∑

1≤i1<···<im<|x|
1≤j1<···<jm<|y|

∏m
r=1∇ir,jr k(x, y),

3. k+(x, y) = 1 +
∑

i1≥1
j1≥1
∇i1,j1 k(x, y) ·

(

1 +
∑

i2>i1
j2>j1

∇i2,j2 k(x, y) ·

(

1 +
∑

i3>j2
j3>j2

. . .

))

,

where we use the notation x = (xi)
|x|
i=1 , y = (yi)

|y|
i=1 ∈ X

+ and

∇i,j k(x, y) := k(xi+1, yj+1) + k(xi, yj)− k(xi, yj+1)− k(xi+1, yj).

14
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Proof The first point follows, since k+ is an inner product. For the second point note that
∇i kx ≡ kxi+1 − kxi

,∇i ky ≡ kyj+1 − kyj and that by the reproducing property 〈∇i kx,∇j ky〉 =
∇i,j k(x, y). The identity then follows from multiplying out

〈S+(kx), S
+(ky)〉 = 〈

∏

i

(1 +∇i kx),
∏

j

(1 +∇j ky)〉

and using the definition of the inner product on H
⊗m. The last point follows by rearranging

the summation.

We can now combine this with Theorem 3 to quantify how fast the kernel k+ for sequences
approximates the kernel k⊕ for paths as the mesh of partitions gets finer.

Corollary 4.7 Let x, y ∈ PX, and π = (si)
k
i=1 with 0 = s1 < · · · < sk = 1 and ρ = (tj)

l
j=1

with 0 = t1 < · · · < tl = 1. Then,

∣

∣k+(xπ, yρ)− k⊕(x, y)
∣

∣ ≤ 4e‖x‖1+‖y‖1 − 2e‖x‖(π)+‖y‖1 − 2e‖x‖1+‖y‖(ρ) .

In particular,

lim
‖x‖(π)→‖x‖1
‖y‖(ρ)→‖y‖1

k+(xπ, yρ) = k⊕(x, y)

where convergence is uniform of order O
(

maxi ‖x[si,si+1]‖1 +maxj ‖y[tj ,tj+1
‖
1

)

.

Proof It holds that

k+(xπ, yρ)− k⊕(x, y) =〈S+(kπx), S
+(kρy)〉 − 〈S(kx), S(ky)〉

=〈S+(kπx), S
+(kρy))− S(ky)〉+ 〈S

+(kπx)− S(kx), S(ky)〉.

The Cauchy–Schwarz inequality implies that

|〈S+(kπx), S
+(kρy))− S(ky)〉| ≤ ‖ S

+(kπx)‖ · ‖ S
+(kρy)− S(ky)‖.

Theorem 3 implies

‖ S+(kπx)‖ · ‖ S
+(kρy))− S(ky)‖ ≤ 2 exp(‖x‖1) ·

(

exp(‖y‖1 − exp(‖y‖ρ)
)

and similarly, one obtains

‖〈S+(kρy), S
+(kπx)− S(kx)〉‖ ≤ 2 exp(‖y‖1) · (exp(‖x‖1)− exp(‖x‖π) .

Putting all (in-)equalities together yields the main claim, the convergence statement follows
from Theorem 3 (ii).
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4.3. Truncation and variations on a theme

The final step to get a practically useful kernel for sequences is to truncate the discrete
signature features S+(kx) ∈

∏

m≥0H
⊗m at a given degree m ≥ 1. In analogy with the

classic polynomial features (resp. kernel), this not only serves a computational purpose
but is also necessary to avoid overfitting; in applications the truncation degree m will be
typically determined by cross-validation.

Definition 4.8 Given an integer m ≥ 1, we call

k+m : X+ × X
+ → R, k+m(x, y) = 〈S+(kx), S

+(ky)〉m

the discretized signature kernel (or sequentialization) over k truncated at degree m. Here
we use the notation kx = (kxi

)i ∈ H
+ for x = (xi)i ∈ X

+ and 〈·, ·〉m for the inner product
truncated9at m.

Corollary 4.9 The discretized signature kernel k+m over k truncated at degree m,

k+m : X+ × X
+ → R, k+m(x, y) = 〈S+(kx), S

+(ky)〉m,

1. is a positive definite kernel,

2. k+m(x, y) =
∑m

d=1

∑

1≤i1<···<id<|x|
1≤j1<···<jd<|y|

∏d
r=1∇ir,jr k(x, y)

3. k+m(x, y) = 1 +
∑

|x|>i1≥1
|y|>j1≥1

∇i1,j1 k(x, y) ·

(

1 + · · · (1 +
∑

|x|>im>jm−1

|y|>jm>jm−1

∇im,jm k(x, y))

)

where we denote x = (xi)
|x|
i=1 , y = (yi)

|y|
i=1 ∈ X

+ and

∇i,j k(x, y) := k(xi+1, yj+1) + k(xi, yj)− k(xi, yj+1)− k(xi+1, yj).

While above follows as simple corollary from the discussion so far, the identity Point (3)
will be the key to an efficient algorithm; it is clearly more efficient than computing first
S+(x) and S+(y) and then their inner product; but it is also much more efficient than the
identity in Point (2) since it only uses ∇i,j k(x, y) for each i, j once.

Remark 4.10 (Variations on a theme) Modifications of the above are possible. For ex-
ample,

(i) One can omit the first differences, that is consider the sequentialization

k+ : X+ × X
+ → R; (x, y) 7→ 1 +

∑

m≥1
1≤i1<···<im≤|x|
1≤j1<···<jm≤|y|

m
∏

k=1

k(xik , yjk).

In feature space, this amounts to replacing the path (kt)t∈[0,1] by the path (
´ t

0 ks ds)t∈[0,1]
and calculating the signature of the latter.

9. 〈(s0, s1, . . .), (t0, t1, . . .)〉m := 〈(s0, s1, . . . , sm, 0, . . .), (t0, t1, . . . , tm, 0, . . .)〉
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(ii) More generally, one may replace for each m, the inner product
∏m

k=1 k(xik , yjk) by a
kernel km : Xm × X

m → R. This leads to a sequentialization of the family of kernels
(km)m given as

k+ : X+ × X
+ → R; (x, y) 7→

∑

m≥1
1≤i1<···<im≤|x|
1≤j1<···<jm≤|y|

km((xi1 , . . . , xim), (yj1 , . . . , yjm)).

This corresponds to choosing different kernels on different levels of the tensor algebra,
e.g., re-normalization.

(iii) One may (additionally) opt to remember the position of elements in the sequence.
This can be done by mapping sequences in X

+ to a position-remembering sequence in
(X × N)+ first, and then carrying out the sequentialization in (ii) for the family of
kernels (km)m where km : (X× N)+ × (X× N)+ → R is defined as

κ ((i1, . . . , im), (j1, . . . , jm)) · km ((xi1 , . . . , xim), (yj1 , . . . , yjm)) .

and κ : N+ × N
+ → R denotes an arbitrary positive definite kernel. Further, one can

replace the strict inequalities < in the summation over 1 ≤ i1 < · · · < im ≤ |x| and
1 ≤ j1 < · · · < jm ≤ |y| by ≤.

Further, Assumption 3.1, especially the continuity of k can be dropped and any of above
sequentializations gives a kernel for sequences (but convergence to a kernel on paths is no
longer guaranteed). There are many other modifications and above choices, while minor,
seem somewhat arbitrary. The above have their justification in explaining prior art, see
Section 5 below.

5. Revisiting classic kernels for sequences: string, alignment and

convolution kernels

In this section we show that the discretized signature kernel is closely related to the existing
kernels for sequential data, in the sense that classic kernels for sequences arise as special
cases of our approach, namely:

(a) String kernels Lohdi et al. (2002); Leslie and Kuang (2004) can be seen as a case of
discretized signature kernels.

(b) The global alignment kernel Cuturi et al. (2007); Cuturi (2011) can be obtained from
a special case of the discretized signature kernel, by deleting some smaller terms, in
the process destroying positive definiteness.

(c) The discretized signature kernel can be related to the framework of the relation-
convolution kernel Haussler (1999) with the relation “being a subsequence”.

The results of this section are not important for using our method as presented in the
previous and following section, but it might be of interest to researchers who are familiar
with above kernels.
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5.1. The string kernel

The string kernel is a kernel for sequences in a finite set X; in this context, the elements
of X are usually called letters and X is called the alphabet. Two important examples are
the Latin alphabet X = {A,B, . . . , Z, a, b, . . . , z} for classic text mining, or X being DNA
nucleotides, proteins, etc., in bioinformatics.

Definition 5.1 (Definition 1, page 423 of Lohdi et al. (2002)) Fix a finite set X and
a parameter λ ∈ [0, 1]. The string kernel on X with parameter λ is defined as

kstring : X+ × X
+ → R (x, y) 7→

∑

w∈X+

Φw(x)Φw(y)

where

Φw(x) =
∑

1≤i1<···<im≤r

λ|im−i1+1|1(xi1
,...,xik

)=w for w ∈ X
+.

Proposition 5.2 Fix a finite set X and a parameter λ ∈ [0, 1]. Define a kernel

k : X× X→ R, k(a, b) = 1a=b.

Then the sequentialization of k given in Remark 4.10 (i), equals the string kernel with
parameter λ = 1 up to an additive constant 1, that is k+(x, y) = 1 + kstring(x, y) for all
x, y ∈ X

+.

Proof We apply Theorem 4 in the variation given in Remark 4.10 (i) to the kernel k to get

k+(x, y) = 1 +
∑

m≥1

∑

1≤i1<···<im≤|x|
1≤j1<···<jm≤|y|

m
∏

r=1

k(xir , yjr) = 1 +
∑

m≥1

∑

1≤i1<···<im≤|x|
1≤j1<···<jm≤|y|

1xi1
=yj1
· · · 1xim=yjm

= 1 +
∑

m≥1

∑

1≤i1<···<im≤|x|
1≤j1<···<jm≤|y|

1(xi1
,...,xim )=(yj1 ,...,yjm )

= 1 +
∑

m≥1

∑

w∈X+,|w|=m

Φw(x)Φw(y) = 1 +
∑

w∈X+

Φw(x)Φw(y) = 1 + kstring(x, y)

More generally, for any λ ∈ [0, 1] one can apply the κ-sequentialization given in Remark
4.10 (iii), to the kernel k(a, b) = 1a=b and

κ((i1, . . . , im), (j1, . . . , jm)) = λim−i1+1λjm−j1+1

to recover the string kernel kstring for the parameter λ; this follows as above. Similarly,
various variants of the vanilla string kernel such as gappy kernels, Leslie and Kuang (2004)
can be recovered10. Note that the +1 in kstring+1 = k+ arises since in string kernels one
usually does not count the empty word (if we count the empty word then k+ = kstring).
However, this is merely convention and of non-importance for the Gram matrix.

10. As one of the reviewers pointed out, a very general framework for sequences that encompasses string
kernels are so-called rational kernels.
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Remark 5.3 Implicit in above discussion is the identification of a string formed from an
alphabet X as a lattice path in H = R

|X|, that is the string x = (ai1 , . . . , ail) is identified as
the lattice path in the vector space R

|X| for which we identify X as an orthnomal basis (the
free vector space over X),

x ∈ C1([0, l],H) x(t) = {t} · ai⌊t⌋ +

⌊t⌋
∑

r=1

air ,

where ⌊t⌋ is the floor function of t, and {t} is the fractional part of t. We deal with ”non-
geometric rough paths‘’, see Remark 4.5.

5.2. The global alignment kernel

The global alignment kernel is one of the most used kernels for sequences. We give its
definition in modern terminology (Section 2.2 of Cuturi (2011)).

Definition 5.4 Define

A(m,n) =
{

π = (πi)
k
i=1 ∈

(

N
2
)+

: k ≤ m+ n− 1, π1 = (1, 1), πk = (m,n),

(πi+1 − πi) ∈ {(0, 1), (1, 0), (1, 1)}
}

We call an element of A(m,n) an alignment of (m,n).

Definition 5.5 For a set X and a kernel k : X × X → R, the global alignment kernel is
defined as

kGA : X+ × X
+ → R (x, y) 7→

∑

π∈A(|x|,|y|)

e−Dx,y(π)

where Dx,y(π) =
∑|π|

i=1 k(xπ1
i
, yπ2

i
), and we denote with |x|, |y| the length of the sequences

x, y and we denote the entries of an alignment π = (π1, . . . , πk) as πi = (π1
i , π

2
i ) ∈ N

2.

In its native form, the global alignment kernel cannot be written as a discretized signature
kernel since these preserve positive definiteness, while the global alignment kernel does not
(see the discussion in Cuturi (2011)). However, a simple modification turns the global
alignment kernel into a positive definite kernel that can be obtained by sequentialization.

Definition 5.6 Define

A 1
2
(l) = {π = (π1, . . . , πk) ∈

(

N
1
)+

: πk ≤ l, πi+1 − πi ∈ {0, 1}}

and call an element of A 1
2
:=
⋃

l≥1A 1
2
(l) a half-alignment.

Definition 5.7 Fix a set X and a kernel k : X× X→ R. The global half-alignment kernel
is defined as

kGHA : X+ × X
+ → R (x, y) 7→

∑

π∈A 1
2
(|x|)

ρ∈A 1
2
(|y|)

|π|=|ρ|

e−Dx,y(π,ρ)

where Dx,y(π, ρ) =
∑|π|

i=1 k(xπi
, yρi).
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Proposition 5.8 Fix a set X and a positive definite kernel k : X×X→ R. Then the global
half-alignment kernel kGHA equals the κ-sequentialization of the kernel (x, y) 7→ e− k(x,y)

given in Remark 4.10(iii), that is kGHA(x, y) = k+(x, y) with κ(π, ρ) = 1π∈A 1
2

1ρ∈A 1
2

.

Proof The κ-sequentializtion yields

k+(x, y) =
∑

m≥1
1≤π1≤···≤πm≤|x|
1≤ρ1≤···≤ρm≤|y|

κ((π1, . . . , πm), (ρ1, . . . , ρm))
m
∏

r=1

k(xπr , yρr)

=
∑

m≥1

∑

1≤π1≤···≤πm≤|x|
1≤ρ1≤···≤ρm≤|y|

1(π1,...,πm)∈A 1
2

1(ρ1,...,ρm)∈A 1
2

m
∏

r=1

e− k(xπr ,yρr )

=
∑

m≥1

∑

π∈A 1
2
(|x|)

ρ∈A 1
2
(|y|)

|π|=|ρ|=m

e−
∑m

i=1 k(xπi
,yρi ) = kGHA(x, y).

Remark 5.9 The terms missing in kGA, when compared to kGHA are those arising from
sequence pairs π ∈

(

N
2
)+

in which there is an increment (0, 0). In view of the discussion in
Section 3.2 of Cuturi (2011), these missing terms are exactly the locus of non-transitivity in
the sense of Shin and Kuboyama (2008). Concerning the possible non positive definiteness of
kGA, one can follow Cuturi (2011) and study sufficient conditions under which the original
global alignment kernel is positive definite.

5.3. The relation-convolution kernel

Finally, we would like to point out that the discretized signature kernels are closely related
to the relation-convolution kernels, see Haussler (1999), Section 2.2.

Definition 5.10 Fix kernels ki : Xi × Xi → R for i = 1, . . . ,m. Fix a relation R between
the sets X1 × · · · × Xm and X, that is a subset R ⊂ X1 × · · · × Xm × X and say that
(x1, . . . , xm) ∈ X1 × · · · × Xm decomposes x ∈ X if (x1, . . . , xm, x) ∈ R. The relation-
convolution kernel of (k1, . . . , km) is defined as

kRC : X× X→ R, (x, y) 7→
∑

(x1,...,xm):((x1,...,xm),x)∈R
(y1,...,ym):((y1,...,ym),y)∈R

m
∏

i=1

ki(xi, yi).

The intuition for above definition is that we can measure similarity of two objects x, y ∈ X

by decomposing them into substructures and comparing these substructures.

Proposition 5.11 Let X be any set and k : X × X → R. Then the sequentialization
k+ : X+×X+ → R given in Remark 4.10 (i) is a relation-convolutional kernel for the relation
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”being an ordered subsequence‘’. More precisely, define X1 = N, Xi = X for i = 2, . . . ,m+1
and

k1(i, j) = 1i=j and ki(x, y) = k(x, y) for i = 2, . . . ,m+ 1.

Then for

R = {(l, x1, . . . , xm+1, x
′) ∈ X1 × · · · × Xm+1 × X

+ : l ≤ m and ∃i1 < · · · < il

such that (x′1, . . . , x
′
l) = (xi1 , . . . , xil)}

the relation-convolutional kernel kRC equals k+.

The proof follows by spelling out the definitions of kRC and k+. It is interesting to note
the native discretized signature kernel of Theorem 4 does not, at least naturally, fall into
Haussler’s convolutional kernel framework since it heavily relies on the additional differences
∇ k. (Above variation is only obtained after the summation step described in Remark 4.10).

6. Efficient algorithms

In this section, we design effective algorithms to evaluate or approximate the (n×n)-Gram
matrix

(

k+m(xi, xj)
)

i,j∈{1,...,n}
of n sequences x1, . . . , xn ∈ X

+. The results are summarized

in Table 2. The key are the recursive Horner-type formula given in Corollary 4.9 together
with ideas from dynamic programming and low-rank approximations.

method algorithm time storage

naive evaluation Definition 4.8 O(n2 · ℓ · dim(H)m) O(n2 dim(H)m)
dynamic programming Algorithm 3 O(n2 · ℓ2 ·m) O(ℓ2)
DP & LR, per-element Algorithm 4 O(n2 · ℓ · ρ ·m) O(ℓ · ρ)
DP & LR, per-sequence Section 6.3.1 O((n+ ρ) · ℓ2 · ρ ·m) O(n · ℓ2)
DP & LR, simultaneous Algorithm 5 O(n · ℓ · ρ ·m) O(n · ℓ · ρ)

Table 2: Computational time (in elementary arithmetic operations) and storage cost for
computing (an approximation) to the (n× n)-Gram matrix

(

k+m(xi, xj)
)

i,j∈{1,...,n}

between sequences x1, . . . , xn ∈ X
+ of length at most ℓ, that is |xi| ≤ ℓ for i =

1, . . . , n. Methods: DP = dynamic programming, LR = low-rank. In the low-rank
methods, ρ is a meta-parameter which controls accuracy of approximation.

Remark 6.1 Naive evaluation of k+m(x, y) by directly calculating it as an inner product of
signature features incurs an exponential storage cost O(dim(H)m). Even for H = R

d this
becomes quickly very expensive and infeasible when dim(H) =∞ which is the case for most
practically relevant kernels.

Remark 6.2 Above algorithms are already powerful for H = R
d with the inner product in

R
d as kernel k. In this case, k+x ≈ S(kx) = S(〈kx, ·〉) ≃ S(x) ∈

∏

m≥0

(

R
d
)⊗m

, that is the

feature map for a path x is the usual signature S(x) ∈
∏

m≥0

(

R
d
)⊗m

. Compared to naive
computation of S(x), Algorithm 5 gives a massive reduction in complexity (from exponential
to linear!).
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Remark 6.3 For readability we have absorbed in Table 2 the computational time c that is
needed to evaluate k(x, y) for x, y ∈ X into the big O bound since this is just a multiplicative
factor. E.g. the computational time for Algorithm 3 would read O(c ·n2 ·ℓ2 ·m) if we include
c.

6.1. Notation and subroutines for computations with arrays (tensors)

We introduce notation (inspired by Python/Numpy) and fast algorithms for dynamic pro-
gramming subroutines. This allows us to express our algorithms as operations on arrays
alone and makes it easy to implement them in high-level languages that are optimized for
operating on arrays (such as Numpy, etc).

Notation 6.4 (Arrays/tensors) We will denote the (i1, . . . , ik)-th element of a k-fold
array (= degree k tensor) A by A[i1, . . . , ik]. Occasionally, for ease of reading, we will use
“|” instead of “,” as a separator, for example A[i1, i2|i3, . . . , ik] if the indices on the left
side of “|” are semantically distinct from those on the right side. The arrays all contain
elements in R, and the indices will always be positive integers, excluding zero.

Notation 6.5 (functions applied elementwise) For a function f : R→ R, and an ar-
ray A, we will denote by f(A) the array where f is applied element-wise. I.e., f(A)[i1, . . . , ik] =
f(A[i1, . . . , ik]). Similarly, for f : Rm → R and arrays A1, . . . , Am, we denote

f(A1, . . . , Am)[i1, . . . , ik] = f(A1[i1, . . . , ik], . . . , Am[i1, . . . , ik]).

For example, 1
2 · A

2 is the array A having all elements squared, then divided by two. The
array A+B contains, element-wise, sums of elements of A and B.

Notation 6.6 (slice, shift, cumulative sum) Let A be a k-fold array of size (n1×· · ·×
nk).

(i) For an index ij (at j-th position), we will write A[:, . . . , :, ij , :, . . . , :] for (k − 1)-fold
array of size (n1 × · · · × nj−1 × nj+1 × . . . nk) such that

A[:, . . . , :, ij , :, . . . , :][i1, . . . , ij−1, ij+1, . . . , ik] = A[i1, . . . , ik].

We define in analogy, iteratively, A[:, . . . , :, ij , :, . . . , :, ij′ , :, . . . , :], and so on. Arrays
of this type are called slices (of A).

(ii) For an integer m, we will write A[:, . . . , :,+m, :, . . . , :] for the k-fold array of size
(n1 × · · · × nj−1 × (nj +m)× nj+1 × · · · × nk) such that

A[:, . . . , :, ij , :, . . . , :][i1, . . . , ij−1, ij +m, ij+1, . . . , ik] = A[i1, . . . , ik],

and where non-existing indices of A are treated as zero. Arrays of this type are called
shifted (versions of A). For negative m, the shifts will be denoted with a “minus”-sign
instead of a “plus”-sign.
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(iii) We will write A[:, . . . , :,⊞, :, . . . , :], where ⊞ is at the j-th position, for the k-fold array
of size (n1 × · · · × nk) such that

A[:, . . . , :,⊞, :, . . . , :][i1, . . . , ik] =

nj
∑

κ=ij

A[i1, . . . , ij−1, κ, ij+1, . . . , ik].

Arrays of this type are called slice-wise cumulative sums (of A).

(iv) We will write A[:, . . . , :,Σ, :, . . . , :], where Σ is at the j-th position, for the (k − 1)-
fold array of size (n1 × · · · × nj−1 × nj+1 × · · · × nk) such that A[:, . . . , :,Σ, :, . . . , :
][i1, . . . , ik−1] =

∑nj

κ=1A[i1, . . . , ij−1, κ, ij , . . . , ik−1]. Arrays of this type are called slice-
wise sums (of A).

We will further use iterations and mixtures of the above notation, noting that the index-
wise sub-setting, shifting, and accumulation commute with each other. Therefore expressions
such as A[+1, : |Σ,+2] or A[j| :,+3,⊞] are well-defined, for example. We will also use the
notation A[⊞+m, . . . ] to indicate the shifted variant of the cumulative sum array.

Cumulative sums can be computed efficiently, in the order of the size of an array, as opposed
to squared complexity of more naive approaches. The algorithm is classical, we present it
for the convenience of the reader in Algorithms 1 and 2.

Algorithm 1 Computing the cumulative sum of a vector.
Input: A 1-fold array A of size (n)
Output: The cumulative sum array A[⊞]

1: Let Q← A.
2: for κ = 2 to n do
3: Q[κ]← Q[κ− 1] +A[κ]
4: end for
5: Return Q

Algorithm 2 Computing the cumulative sum of an array.
Input: A k-fold array A of size (n1 × · · · × nk)
Output: The cumulative sum array A[⊞, . . . ,⊞, :, . . . , :] (up to the m-th index)

1: Let Q← A
2: for κ = 2 to m do
3: Let Q← Q[:, . . . , :,⊞, :, . . . , :] (at the κ-th index), where the right side is computed

via applying algorithm 1 slice-wise.
4: end for
5: Return Q
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6.2. Computing the discretized signature kernel

Algorithm 3 Evaluation of k+m.
Input: Sequences x, y ∈ X

+. A kernel k : X× X→ R. A truncation degree m.
Output: k+m(x, y)

1: Set ℓx = |x| − 1, ℓy = |y| − 1
2: Compute the (ℓx × ℓy)-array K with entries K[i, j] = ∇i,j k(x, y)
3: Initialize an (m× ℓx × ℓy)-array A
4: Set A[1| :, :]← K
5: for d = 2 to m do
6: Compute Q← A[d− 1|⊞,⊞]
7: Set A[d| :, :]← K · (1 +Q[+1,+1])
8: end for
9: Compute R← 1 +A[m|Σ,Σ]

10: Return R

The correctness of above Algorithm follows directly from the recursive formula (3) in Corol-
lary 4.9: we start by evaluating the innermost parenthesis and then use the summation to
build the content of the next parenthesis. In symbols, define for d = 1, . . . ,m− 1 ,

A1
i,j := ∇i,j k(x, y) and Ad+1

i,j := ∇i,j k(x, y)









1 +
∑

i′>i
j′>j

Ad
i′,j′









,

then k+m(x, y) = 1 +
∑

i≥1
j≥1

Am
i′,j′ . In above Algorithm 3 we denote A[d|i, j] = Ad

i,j .

Remark 6.7

• Disregarding the cost of computing the (ℓx × ℓy)-matrix (∇i,j k(x, y))i,j, the compu-
tational cost of Algorithm 3 is O(m|x||y|) elementary arithmetic operations (= the
number of loop elements) and O(m|x||y|) units of elementary storage. The storage
requirement can be reduced to O(|x||y|) by discarding A[d− 1| :, :] from memory after
step 7 each time.

• In each run of the loop, a matrix Q is pre-computed to avoid a five-fold loop that would
be necessary with the more naive version of line 7,

A[m|i, j]← A[m|i, j] ·



1 +
∑

i′>i

∑

j′>j

A[m− 1|i′, j′]



 ,

that leads to a blown up computational cost of O(mℓ2xℓ
2
y) at the asymptotically insignif-

icant gain of storing one (ℓx × ℓy)-matrix less (the matrix Q).
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6.3. Large scale strategies

By using Algorithm 3 one can compute the Gram matrix
(

k+m(xi, xj)
)

i,j=1,...,n
of n sequences

x1, . . . , xn ∈ X
+ in O(n2·ℓ2·m) elementary arithmetic operations. While this is for moderate

sizes of n,m and ℓ achievable on contemporary desktop computers, it becomes quickly
prohibitive for large n, ℓ due to the quadratic growth — especially when combined with
parameter tuning or cross-validation schemes (as later in our experiments). We present two
low-rank techniques to address this: the first is classic and reduces the quadratic cost in n
to linear, the second reduces the quadratic cost in ℓ to linear. Finally, we combine these
two techniques to get O(n · ℓ ·m · ρ) computation time with ρ denoting an approximation
parameter.

6.3.1. Low-rank methods for the sequence-vs-sequence kernel matrix

Since
(

k+m(xi, xj)
)

i,j=1,...,n
is a Gram-matrix, it is directly amenable to large-scale variants

of low-rank type. Strategies of this kind include the incomplete Cholesky decomposition,
Nyström approximation, or the inducing point formalism in a Gaussian process framework.
For n sequences, all strategies mentioned above require evaluation of at most an (n × r)
and an (r × r) matrix (where r is a meta-parameter), which costs O((r + n) · r · ℓ2 · m)
elementary operations and O((r + n) · r · ℓ2) storage11. Any of these low-rank strategies
reduces the complexity of the Gram matrix to be linear in n, but not in ℓ since the strategy
is completely independent of how the discretized signature kernel was evaluated at a given
pair (xi, xj) ∈ X

+ × X
+. For the same reason, any improvements on the cost of evaluating

k+m(xi, xj) will combine with this strategy.

6.3.2. Low-rank methods for the element-vs-element kernel matrix

The evaluation k+m(xi, xj) for a pair (xi, xj) ∈ X
+ is given by nested partial summations

and multiplications applied to the (ℓj × ℓj)-matrix (k(xi,r, xj,s))r,s where r = 1, . . . , ℓi,

s = 1, . . . , ℓj and we denote xi = (xi,1, . . . , xi,ℓi), xj = (xj,1, . . . , xj,ℓj ) ∈ X
+. The low-rank

methods of the previous paragraph cannot be applied naively to this (ℓi×ℓj)- matrix: firstly,
this matrix is in general non-symmetric; secondly, the summation- and multiplication-type
operations require in naive form at each recursion step access to the full (ℓi × ℓj)-matrix.
The first issue is easily addressed by replacing the respective symmetric decomposition with
the analogous non-symmetric one. The second issue is much harder to deal with, but below
we show that by working exclusively on low-rank factorizations in each recursion step this
issue can also be dealt with.

Definition 6.8 Let A be an (a×b)-matrix. For U an (a×r)-matrix, and V a (b×r)-matrix,
we say that (U, V ) is a low-rank presentation of A, of rank r, if

Ai,j =
r
∑

r′=1

Ui,r′Vj,r′

With • denoting the usual matrix multiplication this is equivalent to A = U • V ⊤.

11. followed by a slightly modified variant of the learning algorithm itself which usually costs O((r+n) · r2)
elementary operations and storage (at most) instead of the unmodified variant which usually costs O(n3)
(at most).
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The fact that A has a low-rank presentation of rank r does imply that A is of rank r or
less (by equivalence of matrix rank with decomposition rank), but it does not imply that A
is of rank exactly r.

We state a number of straightforward but computationally useful Lemmas that show how
low-rank matrices behave under shifting, summation and cumulative summation, component-
wise addition and multiplication. This allows us to replace these operations on matrices in
Algorithm 4 by the operations on low-rank matrices.

Lemma 6.9 (Low-rank under cumulative summations and shifts) Let (U, V ) be a
low-rank representation of rank r for an (a× b)-matrix A. Then

(i) Define A′ and A′′ as A′
i,j =

∑

i′≥iAi′,j and A′′
i,j =

∑

j′≥j Ai,j′. Define U ′ as U ′
i,r =

∑

i′≥i Ui′,r and V ′ as V ′
j,r =

∑

j′≥j Vj′,r. Then (U ′, V ) is a low-rank representation or
rank r of A′ of rank and (U, V ′) is a low-rank representation of rank r of A′.

(ii) Define A′ and A′′ as A′
i,j = Ai+s,j and A′′

i,j = Ai,j+s for s ≥ 1. Define U ′ and V ′ as
U ′
i,r = Ui+s,r1i+s≤a and V ′

j,r = Vj+s,r1j+s≤b. Then (U ′, V ) is a low-rank representation
of A′ of rank r and (U, V ′) is a low rank representation of rank r of A′′.

Proof This follows by spelling out the definition: for (i)

A′
i,j =

∑

i′≥i

Ai′,j =
∑

i′≥i

r
∑

r′=1

Ui′,r′Vj,r′ =

r
∑

r′=1

U ′
i,r′Vj,r′ ;

for (ii)

A′
i,j = Ai+s,j =

r
∑

r′=1

Ui+s,r′Vj,r′ =

r
∑

r′=1

U ′
i,r′Vj,r′ .

The statements for A′′ follow similarly.

Lemma 6.10 (Low rank under addition and multiplication) Let A1, A2 be (a × b)-
matrices such that (U, V ) is a low-rank representation of A1 of rank r1, and (R,S) is a
low-rank representation of A2 of rank r2. Then

(i) (U ′, V ′) is a low rank representation of A1 +A2 of rank r1 + r2 where

U ′
i,r =

{

Ui,r , if 1 ≤ r ≤ r1

Ri,r−r1 , if 1 + r1 ≤ r ≤ r1 + r2
, V ′

j,r =

{

Vj,r , if 1 ≤ r ≤ r1

Sj,r−r1 , if 1 + r1 ≤ r ≤ r1 + r2

(ii) (Ū , V̄ ) is a low rank representation of12 A1 ◦A2 of rank r1r2 where

Ūi,r = Ui,aRi,b and V̄j,r = Vj,aSj,b

and a, b are such that r = (a− 1) · r2 + b− 1 with a ∈ {1, . . . , r1} and b ∈ {1, . . . , r2}

12. We denote the elementwise product of matrices with A ◦B, that is (A ◦B)i,j = Ai,jBi,j .
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Proof Since the (i, j)-entry of the matrix A1+A2 equals
∑r1

r=1 Ui,rVj,r+
∑r2

r′=1Ri,r′Sj,r′ and
the (i, j)-entry of A1 ◦A2 equals

∑r1
r=1 Ui,rVj,r

∑r2
r′=1Ri,r′Sj,r′ , the result follows by substi-

tuting the two sums over r ∈ {1, . . . , r1} and r′ ∈ {1, . . . , r2} by one sum over {1, . . . , r1+r2}
resp. over {1, . . . , r1r2}.

In view of Point (ii) of above Lemma we introduce new array notation:

Notation 6.11 Let A1 be a k-fold array of size (n1× · · · ×nk) and A2 be a k-fold array of
size (n1 × · · · × nk−1 × n′

k). Write A1 ⋆ A2 for the (n1 × · · · × nk−1 × (nk · n
′
k)) array with

entries

A1 ⋆ A2[i1, . . . , ik] = A1[i1, . . . , ik−1, a]A2[i1, . . . , ik−1, b]

where a, b are such that ik = (a− 1) · n2 + b− 1 with a ∈ {1, . . . , n1} and b ∈ {1, . . . , n2}.

Algorithm 4 Evaluation of k+m, with low-rank speed-up.
Input: Sequences x, y ∈ X

+. A kernel k : X × X → R. A truncation degree m ≥ 1. An
integer 1 ≤ r ≤ min(ℓx, ℓy).
Output: An approximation to k+m(x, y)

1: Set ℓx ← |x| − 1 and ℓy ← |y| − 1
2: Compute a low-rank representation (U, V ) of rank r, approximating the element-vs-

element matrix/array with entries K[i, j] = ∇i,j k(x, y), i ∈ {1, . . . , ℓx}, j ∈ {1, . . . , ℓy}
3: Initialize an (m× ℓx × ∗)-array B and an (m× ℓy × ∗)-array C (* means that the size

may change dynamically)
4: Set B[1| :, :]← U and C[1| :, :]← V
5: for d = 2 to m do
6: P ← B[d− 1|⊞+1, :] and Q← C[d− 1|⊞+1, :]
7: Append an (ℓx × 1)-array of 1’s to P and append an (ℓy × 1)-array of 1’s to Q
8: Set B[d| :, :]← (U ⋆ P )[:, :] and C[d| :, :]← (V ⋆ Q)[:, :]
9: optional: “simplify” the low-rank presentation (B,C), reducing its rank

10: end for
11: Set R← B[m|Σ, :] and S ← C[m|Σ, :]
12: Return 1 + (R · S)[Σ]

Algorithm 4 first approximates the element-vs-element (ℓx×ℓy)-matrix K = (∇i,j k(x, y))i,j
by a low rank approximation (U, V ). It then uses the formula for k+m given in Corollary 4.9
and updates the low-rank representation in each recursion step (starting from the innermost
parenthesis):

• The first time line 6 is called it uses Lemma 6.9 to calculate a low-rank represen-

tation (P,Q) of the (ℓx × ℓy)-matrix
(

∑

i′>i,j′>j ∇i′,j′ k(x, y)
)

i,j
from the low-rank

approximation (U, V ) for K = (∇i,j k(x, y))i,j ; later calls of line 6 do the same but
with K replaced by another matrix with low-rank factorization stored in B[d| :, :] and
C[d| :, :].
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• The first time line 7 is called, it calculates a low-rank representation (P̄ , Q̄) of the
(ℓx × ℓy)-matrix (1 + (P •Q⊤)i,j)i,j by using (P,Q) and the trivial identity

1 +
r
∑

k=1

Pi,kQj,k =
r+1
∑

k=1

P̄i,kQ̄j,k

where P̄ and Q̄ are given by adding a (r + 1)-th column consisting of 1’s. Note that
the rank increases by one by going from (P,Q) to (P̄ , Q̄). Later calls do the same but
with (P,Q) replaced by another matrix with low-rank factorization stored in B[d| :, :]
and C[d| :, :].

• Line 8 calculates a low-rank representation (Ū , V̄ ) for the elementwise product between
the (ℓx × ℓy)-matrices K = U • V ⊤ and P̄ • Q̄⊤. By Lemma 6.10 it is given as
Ūi,r̄ = Ui,aP̄i,b and V̄r̄,j = Va,jQ̄b,j .

• Line 9 is optional, aiming at keeping the low-rank presentation small13.

• Line 11 uses that

∑

i≥1,j≥1

(R • S⊤)i,j =
∑

i≥1,j≥1

∑

k

Ri,kSj,k =
∑

k

(
∑

i≥1

Ri,k)(
∑

j≥1

Sj,k).

(Recall that R ·S denotes elementwise multiplication of arrays R,S and R•S denotes
the usual matrix multiplication if R,S are interpreted as matrices).

• The computational cost of Algorithm 4 is of the same order as the maximum size
of B and C. That is, if ρ is the smallest integer such that at any time B requires
ℓx ·m · ρ space, and C requires ℓy ·m · ρ space, then the computational complexity of
Algorithm 4 is14 O((ℓx + ℓy) · ρ ·m).

6.3.3. Simultaneous low-rank methods

Algorithm 4 yields an efficient low-rank speed-up for computing a single entry k+m(xi, xj).
Thus total computational cost for the Gram matrix (k+m(xi, xj))i,j∈{1,...,n} is O(n2 · ℓ · ρ ·m)
and cost quadratic in the number of data points n may be prohibitive on large scale data.
We address this by combining both low-rank strategies mentioned before to achieve a further
reduction of computational cost from O(n2 · ℓ · ρ ·m) to O(n · ℓ · ρ ·m).

13. This can be achieved for example via singular value decomposition, sub-sampling, or random projection
type techniques.

14. Since one can always choose a low-rank representation of B[m| :, :] and C[m| :, :] of rank min(ℓx, ℓy) or
less, the computational complexity is bounded by O(ℓx · ℓy ·m) (which is the complexity of Algorithm 3).
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Algorithm 5 Computation of the Gram matrix of k+m, with (double) low-rank speed-up.
Input: Sequences x1, . . . , xn ∈ X

+. A kernel k : X × X → R. A truncation degree m. An
integer r ≥ 1.
Output: A low-rank approximation (U,U) of the Gram matrix K =

(

k+m(xi, xj)
)

i,j=1,...,n
.

1: Compute arrays U (i) such that each pair (U (i), U (j)) i, j ∈ {1, . . . , n} is a low-rank

presentation of rank r for the ((|xi| − 1)× (|xj | − 1))-matrix K(ij) with entries K
(ij)
a,b =

∇a,b k(xi, xj)
2: Initialize an (n×m×∗×∗)-array B (where * means that the sizes may change dynam-

ically)
3: B[i|1| :, :]← U (i) for all i ∈ {1, . . . , n}
4: for d = 2 to m do
5: Compute P ← B[: |d− 1|⊞+1, :]
6: Set κ, ρ such that (n× κ× ρ) is the size of P
7: Append an (n× κ× 1)-array of ones to P
8: B[: |d| :, :]← B[: |1| :, :] ⋆ P [:, :, :]
9: optional: “simplify” the low-rank presentation encoded in B, reducing its rank

10: end for
11: Compute U ← B[: |m|Σ, :]
12: Return U

Algorithm 5 is obtained as follows:

• The previous Algorithm 4 transforms for any pair xi, xj ∈ X
+ a low rank representa-

tion (U (ij), V (ij)) of the (ℓi × ℓj)-matrix K(ij) = (∇a,b k(xi,a, xj,b))a,b into a low-rank

representation (R(ij), S(ij)) such that

k+(xi, xj) = 1 +
∑

a≥1,b≥1

(

R(ij) • (S(ij))⊤
)

a,b
.

But if U (ij) is independent of j and if V (ij) is independent i, then R(ij) will depend
by Algorithm 4 only on i and S(ij) will depend only on j; hence R(ij) = S(ji). If we

denote R(i) := R(ij) := S(ji), then in above Algorithm 5, B[i,m, a, r] equals R
(i)
a,r when

the end of the for loop is reached, line 10.

• Write

k+m(xi, xj) = 1 +
∑

a≥1
b≥1

(

R(i) • (R(j))⊤
)

a,b
= 1 +

r′
∑

k=1





∑

a≥1

R
(i)
a,k

∑

b≥1

R
(j)
b,k





=
r′+1
∑

k=1

R̄i,kR̄j,k

where we denote with r′ the rank of (R(i), R(j)) and set R̄i,k :=
∑

a≥1R
(i)
a,k and R̄a,k :=

1 if k = r′+1. Hence, (R̄, R̄) is a low-rank representation of the (n×n)-Gram matrix
K = (k+m(xi, xj))i,j . In Algorithm 5, the array entry U [i, r′] equals R̄i,r′ , line 11.
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Remark 6.12 Line 1 requires that for each pair of sequences xi = (xi,a)a=1,...,ℓi , xj =

(xj,b)b=1,...,ℓj ∈ X
+ we compute the (ℓi × ℓj)-matrix K(ij) with entries K

(ij)
a,b = k(xi,a, xj,b).

That is, the matrices U (i), when row-concatenated, should have low rank15. Jointly low-rank
U (i) can be obtained by running a suitable joint diagonalization or singular value decompo-
sition scheme on the matrices K(ij).

Remark 6.13 (Fast sequential kernel methods) By Section 5, fast string kernel meth-
ods such as the gappy, substitution, or mismatch kernels presented in Leslie and Kuang
(2004) may be transferred to general sequential kernels. In general, this amounts to small
modification of Algorithm 3; for example, to obtain a gappy variant of the sequential kernel,
summation in line 6 of Algorithm 3 over the whole matrix, of quadratic size, is replaced by
summation over a linear part of it.

7. Experimental validation

We perform two experiments to validate the practical usefulness of the signature kernels:

(1) On a real world data set of hand movement classification (eponymous UCI data
set Sapsanis et al. (2013)), we show the discretized signature kernel outperforms
the best previously reported predictive performance Sapsanis et al. (2013), as well
as non-sequential kernel and aggregate baselines.

(2) On a real world data set on hand written digit recognition (pendigits), we show that
the discretized signature kernel over the Euclidean kernel (= linear use of signature
features) achieves only sub-baseline performance. Using the discretized signature
kernel over a Gaussian kernel improves prediction accuracy to the baseline region.

We emphasize that our experiments do not constitute a systematic benchmark com-
parison to prior work, only validation that the signature kernel is a practically meaningful
concept: experiment (1), shows that the sequentialization of standard kernels can achieve
state-of-the-art performance on time series data; experiment (2) shows that even for paths
in low dimensions, X = R

2, using a non-linear static kernel for the sequentialization out-
performs the linear kernel (the latter corresponds to learning with signature features of a
2-dimensional path; the former, corresponds to learning with signature features of the path
lifted to the RKHS H of the non-linear kernel).

A systematic benchmark comparison is likely to require a larger amount of work, since
it would have to include a number of previous methods (multiple variants of the string
and general alignment kernels, dynamic time warping, naive use of signatures), for most of
which there is no freely available code with interface to a machine learning toolbox, and
benchmark methods (order-agnostic baselines such as summary aggregation and chunking;
distributional regression; naive baselines).

15. For example, if k is the Euclidean scalar product, U (i) can be taken as the raw data matrix, where rows
are different time points and columns are features.
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7.1. Validation and prediction set-up

7.1.1. Prediction tasks

In all data sets, samples are multi-variate (time) series. All learning tasks are supervised
classification tasks of predicting class labels attached to series of equal length.

7.1.2. Prediction methods

For prediction, we use eps-support vector classification (as available in the python/scikit-
learn package) on the kernel matrices obtained from the following kernels:

(1.a) the Euclidean kernel k(x, y) = 〈x, y〉. This kernel has no parameters.

(1.b) the Gaussian kernel k(x, y) = exp
(

1
2γ

2‖x− y‖2
)

. This kernel has one parameter, a
scaling constant γ.

(2.a) the (truncated) discretized signature kernel k+m over the linear/Euclidean kernel k(x, y) =
γ〈x, y〉. This kernel has two parameters, a scaling constant γ, and the truncation de-
gree m.

(2.b) the (truncated) discretized signature k+m over the Gaussian kernel k(x, y) = θ exp
(

1
2γ

2‖x− y‖2
)

.
This kernel has three parameters: scaling constants γ and θ, and truncation degree
m.

(1.a) and (1.b) are considered standard kernels, (2.a) and (2.b) are discretized signature
kernels. Note that the kernels (1.a) and (1.b) can only be applied to sequential data samples
of equal length which is the case for the data sets considered. Even though (1.a), (1.b) may
be applied to sequences of same length, they do not use any information about their ordering:
both the Euclidean and the Gaussian kernel are invariant under (joint) permutation of the
order of the indexing in the arguments. Another subtlety is that the discretized signature
kernels (2.a), (2.b) do use information about the ordering of the sequences, but only for
a truncation m ≥ 2. For m = 1, the kernel corresponds to choosing the increment/mean
aggregate feature (Euclidean) or a type of distributional classification (Gaussian). We will
therefore explicitly compare truncation degrees 1 versus 2 and higher, to enable us to make
a statement about whether using the order information was beneficial (or not).

7.1.3. Tuning and error estimation

In all experiments, we use nested (double) cross-validation for parameter tuning (inner
loop) and estimation of error metrics (outer loop). In both instances of cross-validation, we
perform uniform 5-fold cross-validation.

Unless stated otherwise, parameters are tuned on the tuning grid given in Table 3 (when
applicable). Kernel parameters are the same as in the above section “prediction mehods”.
The best parameter is selected by 5-fold cross-validation, as the parameter yielding the
minimum test-f1-score, averaged over the five folds.
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parameter range

kernel param. γ 0.01, 0.1, 1
kernel param. θ 0.01, 0.1, 1

truncation degree m 1,2,3
SVC regularizer 0.1, 1, 10, 100, 1000

Table 3: Tuning grid

7.1.4. Error metrics

The out-of-sample classification error is reported as precision, recall, and f1-score of out-of-
sample prediction on the test fold. Errors measures are aggregated with equal weights on
classes and folds. These aggregates are reported in the result tables.

7.2. Experiment: Classifying hand movements

We performed classification with the eps-support vector machine (SVC) on the hand move-
ments data set from UCI Sapsanis et al. (2013). The first database in the data set which we
considered for this experiment contains, for each of five subjects (two male, three female)
180 samples of hand movement sEMG recordings. Each sample is a time series in two vari-
ables (channels) at 3.000 time points. The time series fall into six classes of distinct types
of hand movement (spherical, tip, palmar, lateral, cylindrical, hook). For each subject,
30 samples of each class were recorded. Hence, for each subject, there is a total of 180
sequences in X

3000 with X = R
2.

For each of the five subjects, we conducted the classification experiment as described
in Section 7.1, comparing prediction via SVC using one of the following kernels: (1.a) the
Euclidean kernel, (1.b) the Gaussian kernel, (2.a) the sequentialized Euclidean kernel. For
the non-sequential kernels (1.a), (1.b), prediction was performed with and without prior
standardization of the data. For the sequential kernel, the tuning grid was considered in
two parts: a truncation degree ofm = 1, corresponding to mean aggregation, and truncation
degrees of m = 2, 3, corresponding to the case where genuine sequence information is used.
Further, we use the low-rank speed, Algorithm 5, to compute the Gram matrix.

The results are reported in Tables 4 to 8. Jackknife standard errors (pooling the five
folds) are all 0.04 or smaller. Baseline performance of an uninformed estimator is 1/6 ≈ 0.17.
One can observe that for all five subjects, SVC with sequential kernel of degree 2 or higher

method precision recall f1-score
(1.a) linear 0.37 0.38 0.36
(1.a) linear, standardized 0.33 0.32 0.29
(1.b) Gaussian 0.57 0.59 0.56
(1.b) Gaussian, standardized 0.54 0.50 0.50
(2.a) mean aggregation 0.19 0.20 0.18
(2.a) sequential, degree ≥ 2 0.87 0.86 0.86

Table 4: female1.mat

outperforms SVC using any of the other kernels not using any sequence information. The
sequence kernel outperforms the reported methods from the original paper Sapsanis et al.
(2013) as well (Figures 11 and 12).
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method precision recall f1-score
(1.a) linear 0.47 0.39 0.37
(1.a) linear, standardized 0.31 0.28 0.27
(1.b) Gaussian 0.71 0.71 0.70
(1.b) Gaussian, standardized 0.59 0.58 0.56
(2.a) mean aggregation 0.18 0.20 0.18
(2.a) sequential, degree ≥ 2 0.94 0.97 0.95

Table 5: female2.mat

method precision recall f1-score
(1.a) linear 0.48 0.46 0.46
(1.a) linear, standardized 0.47 0.42 0.43
(1.b) Gaussian 0.66 0.64 0.63
(1.b) Gaussian, standardized 0.54 0.51 0.50
(2.a) mean aggregation 0.26 0.23 0.20
(2.a) sequential, degree ≥ 2 0.96 0.96 0.96

Table 6: female3.mat

method precision recall f1-score
(1.a) linear 0.37 0.33 0.33
(1.a) linear, standardized 0.38 0.36 0.36
(1.b) Gaussian 0.59 0.57 0.57
(1.b) Gaussian, standardized 0.53 0.54 0.53
(2.a) mean aggregation 0.20 0.18 0.17
(2.a) sequential, degree ≥ 2 0.96 0.96 0.96

Table 7: male1.mat

method precision recall f1-score
(1.a) linear 0.36 0.33 0.32
(1.a) linear, standardized 0.37 0.29 0.27
(1.b) Gaussian 0.72 0.71 0.70
(1.b) Gaussian, standardized 0.34 0.39 0.35
(2.a) mean aggregation 0.22 0.23 0.20
(2.a) sequential, degree ≥ 2 0.93 0.93 0.93

Table 8: male2.mat

7.3. Experiment: Pendigits

We performed classification on the pendgits data set from the UCI repository16. It contains
10992 samples of digits between 0 and 9 written by 44 different writers with a digital pen
on a tablet. One sample consists of a pair of horizontal and vertical coordinates of sampled
at 8 different time points, hence we deal with a sequence in X

8 with X = R
2. The data set

comes with a pre-specified training fold of 7494 samples, and a test fold of 3498 samples.
Estimation of the prediction error is performed in this validation split, while tuning is done
as described via nested 5-fold cross-validation, inside the pre-specified training fold.

We compared prediction via SVC using one of the following three kernels: (2.a) the
sequentialized Euclidean kernel, and (2.b) the sequentialized Gaussian kernel. For both,
the truncation degree was set to m = 4. The results are reported in Table 9. Jackknife
standard errors (pooling the five folds) are all 0.01 or smaller. Baseline performance of an
uninformed estimator is 1/10 ≈ 0.10.

16. https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
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method\method precision recall f1-score

sequential, linear 0.91 0.90 0.89
sequential, Gaussian 0.97 0.97 0.97

Table 9: Pendigits

The quality of the SVC prediction with the sequentialzed linear kernel is comparable
to results reported in Diehl (2013). It is outperformed by SVC prediction with the sequen-
tialized Gaussian kernel. The latter performance is similar to the baseline performance of
k-nearest neighbors reported in the documentation of the pendigits data set.
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Appendix A. Signatures, and proofs of Theorem 1 and Theorem 3

A.1. Signatures

Definition A.1 Let E be a normed space and denote with L (H, E) the set of continu-
ous linear maps from H to E. Given x ∈ C1([0, 1],H) and y ∈ C1 ([0, 1] , L (H, E)), the
Riemann–Stieltjes integral of y over [a, b] ⊆ [0, 1] is defined as the element in E given as

ˆ b

a

y dx := lim
mesh(π)→0

l
∑

i=1

y(ti) (x(ti+1)− x(ti))

where the limit is taken over all partitions π = {a ≤ t1 < · · · < tl ≤ b} and mesh(π) :=
maxi=1,...,l−1 |ti+1 − ti|. We also use the shorter notation

´

y dx if the integration domain
is clear from the context.

See (Lyons, 2004, Theorem 1.16) for a proof of a more general result. Applying the above
with E being the subspace of

∏

m≥0H
⊗m of square summable tensors and the linear map

being tensor multiplication, gives the series

S(x) := (Sm(x))m≥0 :=

(
ˆ

dx⊗m

)

m≥0

∈
∏

m≥0

H
⊗m

with
´

dx⊗0 := 1 and
´

dx⊗(m+1) :=
´

dx⊗m.

A.2. Proof of Theorem 1

This is more or less a folk theorem in rough path theory, but we recall it for readers not
familiar with the subject. Point (1) of Theorem 1 follows since S(h) is itself a solution of a
linear ODE driven by h and this solution map is continuous, see Lyons (2004). Point (2) is
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more involved and we refer to Hambly and Lyons (2010). For the last point, Point (3), the
key insight is that the series S(h) behaves like monomials.

Theorem 5 (Shuffle product) Let h ∈ C1([0, 1],H), then

ˆ

dh⊗m ⊗

ˆ

dh⊗m′
=
∑

σ

σ

(
ˆ

dh⊗(m+m′)

)

.

Here the sum is taken over all ordered shuffles OSm,m′ which are defined as

{

σ : σ permutation of
{

1, . . . ,m+m′
}

, σ (1) < · · · < σ (m) , σ (m+ 1) < · · · < σ
(

m+m′
)}

.

and σ ∈ OSm,m′ acts on H
⊗(m+m′) as σ

(

ei1 ⊗ · · · ⊗ eim+m′

)

= eσ(i1) ⊗ · · · ⊗ e
σ(im+m′).

The proof of above is given in (Lyons, 2004, Theorem 2.29 (ii)). A direct consequence by
applying Stone–Weierstrass (in analogy to classic monomials) is that linear functionals of
signatures approximate nonlinear functions of paths aribtrary well, thus showing Point (3)
of Theorem 1.

A.3. Proof of Theorem 3 and Corollaries 4.3 and 4.4

Definition A.2 Denote with ∆ℓ
[a,b] the n-simplex over the interval [a, b], that is

∆ℓ
[a,b] = {(ti)

ℓ
i=1 : a = t1 < · · · < tℓ = 1},

and with ∆[a,b] =
⋃

ℓ≥2∆
ℓ
[a,b]. If the interval [a, b] is clear from the context is clear, then we

just write ∆ℓ and ∆.

The following notation for sequences becomes useful.

Notation A.3 For n ≥ 1 denote

1. [n] := {1, . . . , n},

2. sequences in [n] as i = (i1, . . . , il) ∈ [n]l and call |i| = l the length of the sequence i,

3. d(i) := max{r : i1 = i2 = · · · = ir} the number of repetitions of the first element in
the sequence i where by convention d(i) = 0 if i1 6= i2,

4. i! := n1! · · ·nk! if i consists of k = |{i1, . . . , il}| different elements in [n] and n1, . . . , nk

denote the number of times they occur in i,

5. i ⊏ [n] if i = (i1, . . . , il) ∈ [n]l and i1 < · · · < il,

6. i ⊑ [n] if i = (i1, . . . , il) ∈ [n]l and i1 ≤ · · · ≤ il,

7. i ⊑d [n] if i ⊑ [n] and no element in the sequence i appears more than than d times.
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Király and Oberhauser

Lemma A.4 Let h ∈ C1([a, b],H), π ∈ ∆ℓ
[a,b] and define hπ = (h(ti))i=1,...,ℓ ∈ H

+. For

any sequence i = (ik)k=1,...,m ∈ [ℓ]m with 1 ≤ i1 ≤ · · · ≤ im ≤ ℓ denote ∆i := ∆ ∩

×m−1
k=1 [tik , tik+1]. Then

Sm(h)− S+m(hπ) =
∑

i

ˆ

∆i

dh⊗m,

where the sum is taken over all i = (ik)
m
k=1 with 1 ≤ i1 ≤ · · · ≤ im ≤ ℓ that have at least

one repeating index, that is ik = ik+1 for at least one 1 ≤ k ≤ m− 1. Moreover, each term
in above sum can be bounded as follows

∥

∥

∥

∥

ˆ

∆i

dh⊗m

∥

∥

∥

∥

H

≤
1

i!

∏

i∈i

‖h|[ti,ti+1]‖1.

where we use i! as introduced in Notation A.3.

Proof We can decompose ∆ into a disjoint union of ∆i over all sequences i, with 1 ≤ i1 ≤
· · · ≤ im ≤ ℓ, hence

Sm(h) =

ˆ

dh⊗m =
∑

i

ˆ

∆i

dh⊗m.

Split the sum
∑

i into a sum over i that have an repeating element, i.e. ik = ik+1 for at
least one k, and a sum

∑

i over indices that do not have repeating elements. For the latter,
the integration can be done explicitly and this sum equals

∑

i

∇i1h⊗ · · · ⊗ ∇imh

with our usual notation ∇ih = h(ti+1) − h(ti). However, this is exactly S+m(h), hence the
first statement follows.

For the first sum over sequences i with repeating elements, denote with ī1, . . . , īk the
distinct indices in i, and n1, . . . , nk the total counts of their respective occurrences. Then
∆i =×k

j=1 ∆̄j with ∆̄j := ∆nj ∩ [t̄ij , t̄ij+1]
nj and it follows that

ˆ

∆i

dh⊗m =

k
⊗

j=1

ˆ

∆̄j

dh⊗nj .

Therefore, we obtain
∥

∥

∥

∥

∥

∥

k
⊗

j=1

ˆ

∆̄j

dh⊗nj

∥

∥

∥

∥

∥

∥

H

=
k
∏

j=1

∥

∥

∥

∥

∥

ˆ

∆̄j

dh⊗nj

∥

∥

∥

∥

∥

H

≤
1

i!

∏

i∈i

‖h|[ti,ti+1]‖1.

This is enough to prove our main approximation result:

Theorem 6 Let h ∈ C1([0, 1],H) let π ∈ ∆ℓ. Then for every m ≥ 0

‖ Sm(h)− S+m(hπ)‖H⊗m ≤ gm
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where (gm) are the coefficients in the Taylor expansion around 0 of the function

g(z) :=

∞
∑

m=1

gm · z
m := exp(z · ‖h‖1)−

ℓ−1
∏

i=1

(

1 + z · ‖h|[ti,ti+1]‖1

)

.

Moreover,

‖ S(h)− S+(hπ)‖ ≤ exp(‖h‖1)−

ℓ−1
∏

i=1

(

1 + ‖h|[ti,ti+1]‖1

)

If π is chosen such that ‖h|[ti,ti+1]‖1 =
1

ℓ−1‖h‖1 for all i = 1, . . . , ℓ− 1, then

‖ S(h)− S+(h)‖ ≤
exp(‖h‖1)

ℓ− 1

(

1 +
‖h‖ℓ−1

1

(ℓ− 3)!

)

.

Proof The bound for ‖ Sm(h)−S+m(hπ)‖H⊗m follows from Lemma A.4 by explicitly writing
out the coefficient gm. Applying the triangle inequality and using this bound and one
obtains

‖ S(h)− S+(hπ)‖ ≤

∞
∑

m=1

‖ Sm(h)− S+m(hπ)‖H⊗m ≤

∞
∑

m=1

gm = g(1)

Finally, for the special choice of a uniform partition π

g(1) = exp ‖h‖1 −

(

1 +
‖h‖1
ℓ− 1

)ℓ−1

,

to which we apply Euler’s approximation theorem, Theorem 7, below using that ‖h|[a,b]‖1+
‖h|[b,c]‖1 = ‖h|a,c‖1.

The first part of Theorem 6 implies Theorem 3, the second part implies Corollary 4.4.
For readers’ convenience we recall Euler’s well-known approximation to the exponential
function.

Theorem 7 Let x ∈ R, n ∈ N. Then,

(

1 +
x

n

)n

− exp(x) = g(x, n), with |g(x, n)| ≤
exp(x)

n

(

1 +
xn

(n− 2)!

)

.

In particular, it holds that

lim
n→∞

(

1 +
x

n

)n

= exp(x),

where convergence is uniform of order O(n−1) on any compact subset of R.

Proof All statements follow from the first, which we proceed to prove. By the binomial
theorem, it holds that

(

1 +
x

n

)n

=
n
∑

k=0

(

n

k

)

·
xk

nk
.
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From the definition of the binomial coefficient and an elementary computation, one obtains

(

n

k

)

·
xk

nk
=

xk

k!
+ g(x, n, k), where ‖g(x, n, k)‖ ≤

xk

k!n
,

for k ≤ n. For k ≥ n, one has

xk

k!
≤

xn

n!
·

xk−n

(k − n)!
.

Putting together all inequalities and using the Taylor expansion of exp yields the claim.

To prove Corollary 4.3 we need to generalize Euler’s approximation of expx to the case
when x is not divided into uniform parts, but potentially very unbalanced parts. This is
done in the proposition below

Proposition A.5 Let x ∈ R, n ∈ N, x ≥ 0. Let x1, . . . , xℓ ∈ R, xi ≥ 0 for i = 1, . . . , ℓ such
that

∑ℓ
i=1 xi = x. Then,

exp(x) =
ℓ
∏

i=1

(1 + xi) + g(x, x1, . . . , xℓ), where 0 ≤ g(x, x1, . . . , xℓ) ≤ x exp(x) · max
i=1,...,ℓ

xi.

In particular, it holds that

lim
maxi xi→0

∏

i

(1 + xi) = exp(x),

where convergence is uniform of order O(maxi xi) on any compact subset of [0,∞).

Proof All statements follow from the first, which we proceed to prove. We use Notation A.3
Writing out the product, we obtain

ℓ
∏

i=1

(1 + xi) =
∑

i⊏[ℓ]

xi,

where abbreviatingly we have written xi :=
∏

i∈i xi. The Taylor expansion of the exponen-
tial on the other hand yields

exp(x) = exp

(

ℓ
∑

i=1

xi

)

=
∑

i⊑[ℓ]

1

i!
xi.

Note the major different between both sums above being the repeating indices which may
occur in the expansions of exp(x). More precisely, we obtain

exp(x)−
m
∏

i=1

(1 + xi) =
∑

i⊑[ℓ]
i!>1

1

i!
xi.

38



Kernels for sequentially ordered data

We further split up the sum by length of i:

exp(x)−

ℓ
∏

i=1

(1 + xi) =

∞
∑

m=2

∑

i⊑[ℓ]
|i|=m
i!>1

1

i!
xi.

Positivity of g follows from this equation and positivity of x. Now consider the map φ which
removes the first duplicated index in an ordered index sequence i yielding a sequence of
length |i| − 1. On sequences of length m, the map φ is at most m-to-one, and surjective
onto sequences of length m− 1. Therefore,

∑

i⊑[ℓ]
|i|=m
i!>1

1

i!
xi ≤ X ·

∞
∑

m=2

m

2

∑

i⊑[ℓ]
|i|=m−1

1

i!
xi,

where X = maxi xi. Thus,

∞
∑

m=2

∑

i⊑[ℓ]
|i|=m
i!>1

1

i!
xi ≤ X ·

∞
∑

m=1

m ·
∑

i⊑[ℓ]
|i|=m

1

i!
xi.

Comparing to the expansion of exp(x) above, one observes that the right hand side is equal
to

X ·

∞
∑

m=1

m ·
xm

m!
= X · x

∞
∑

m=0

xm

m!
= X · x · exp(x).

The bounds in Proposition A.5 are worse than those from Euler’s classic approximation
result to the exponential in the case of equal xi, by a factor of x. This is due to the fact
that the bound also needs to be valid for heavily imbalanced partitions of x into xi.

Appendix B. Higher order signature kernels and noisy observations

The discretized signature kernel was defined as inner product

k+ : X+ × X
+ → R k+(x, y) = 〈S+(kx), S

+(ky)〉

of features S+ that approximate the signature S, thus k+ will approximate the signature
kernel

k⊕ : PX × PX → R k⊕(x, y) = 〈S(kx), S(ky)〉

when the sequences are discretizations of paths: in Section 4 we showed under Assumption
3.1 that

k+(xπ, yπ
′
)→ k⊕(x, y) as max(mesh(π),mesh(π′))→ 0.
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For essentially all practically relevant kernels k : X× X→ R Assumption 3.1 holds whever
the underlying paths x, y are of bounded variation. However, a common situation is that
observations are perturbed by noise which are generically of unbounded variation.

Example B.1 Let X = R and k(x, y) = 〈x, y〉R (that is H = R). If x ∈ C1([0, 1],X) and
B = (Bt)t∈[0,1] is a Brownian motion in X then S(kx+B) ≃ S(x+ B) =

(´

d(x+B)⊗m
)

is
not well-defined as a Riemann–Stieltjes integral.

A general strategy is to replace the signature map x 7→ S(x) by a a map from paths to
∏

m≥0H
⊗m as follows: construct a sequence of bounded variation paths (xn) that approx-

imation x and such that t 7→
(

´ t

0 dx
⊗m
n

)

converges to a
∏

m≥0H
⊗m-valued path which is

called the “(geometric) rough path lift” of x.

Example B.2 Constructions for mapping a path to an element of
∏

m≥0H
⊗m are known

for a wide range of stochastic processes; below we mention a few

• Brownian motion (leading to p-rough paths for any p > 2 )

• more generally, continuous Semimartingale (leading to p-rough paths for any p > 2),

• fractional Brownian motion of Hurst parameter H > 1
4 ,

• more generally, Gaussian processes (leading to p-rough paths where p depends on the
regulary of the covariation process),

• Markov processes in continuous time (leading to p-rough paths with p depending on
the generator of the Markov process).

For details and more examples see Lyons (2004).

The notion of a geometric rough path allows to study classes of much “rougher” paths by the
same approach we developed for the bounded variation case: below we provide the needed
modifications for obtaining a sequentialized kernel such that k+(xπ, yπ

′
) is still well-defined

as the mesh vanishes when x, y are paths of unbounded variation but a “rough path lift”
exists (e.g. all the stochastic processes in Example B.2)

Remark B.3 A more radical approach is to assume that the we are not only given paths as
data but also the first levels of their “rough path lift”, see for example Crisan et al. (2013).
The same recursion applies to give a kernel, however, we do not spell out details since all
benchmark data sets we are aware of, only provide path increments.

Definition B.4 Let d ∈ N. We call the map

S+(d) :H
+ →

∏

m≥0

H
⊗m, (hi)

ℓ
i=1 7→

ℓ
∏

i=1

d
∑

j=0

(∇ih)
⊗j

j!

the discretized signature map of degree d. We denote with S+(d,m) the projection of S+(d) to
⊕m

n=0H
⊗n.
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Definition B.5 Let k : X× X→ R and d,m ≥ 1, d ≥ m. The discretized signature kernel
over k of order d and at degree m is defined as

k+(d,m)(x, y) : X
+ × X

+ → R, k+(d,m) (x, y) = 〈S
+
(d,m) (kx) , S

+
(d,m) (ky)〉.

Remark B.6

• The sequentialization k+m from Section 4 arises as special case of above, more general,
definition: k+m = k+(d,m) for d = 1, m ∈ N.

• Readers familiar with rough paths will notice that the choice m = d = ⌊p⌋ recovers
the notion of (kx(t))t∈[0,1] lifted to a geometric p-rough path. However, for machine
learning applications it is often beneficial to take d = ⌊p⌋ to ensure convergence but to
consider m > d and find the optimal degree m from the data (e.g. by cross-validation).

In analogy to the order d = 1 approximations discussed in Section 4, the central mathemat-
ical identity is now

ℓ−1
∏

i=1

d
∑

m=0

(x(ti+1)− x(ti))
⊗m

m!
=

∑

i⊑d[ℓ−1]

1

i!

|i|
∏

r=1

(x(tir+1)− x(ti)) ≈

(
ˆ

dx⊗m

)

m≥0

where we use Notation A.3.

Proposition B.7 For x, y ∈ X
+, d,m ≥ 1, m ≥ d,

(a) S+(d,m)(kx) = 1 +
∑m

n=1

∑

i⊑d[|x|−1]
|i|=n

1
i!

∏|i|
r=1∇i kx,

(b) k+(d,m)(x, y) = 1 +
∑m

n=1

∑

i⊑d[|x|−1]
j⊑d[|y|−1]
|i|=|j|=n

1
i!j!

∏|i|
r=1∇ir,jr k(x, y).

where ∇i kx := kxi+1 − kxi
∈ H.

Proof By definition

S+(d)(kx) =

|x|−1
∏

r=1

d
∑

n=0

1

n!
(∇r kx)

⊗n.

Application of the (non-commutative) associative law yields

|x|−1
∏

r=1

d
∑

n=0

1

n!
(∇r kx)

⊗n =
∑

i⊑d[|x|−1]

1

i!

|i|
∏

r=1

∇ir kx .

Using the analogous expression for S+(d)(y), taking the scalar product while noting

〈

|i|
∏

r=1

∇ir kx,

|j|
∏

r′=1

∇ kjr′ 〉 = δ|i|,|j| ·

|i|
∏

r=1

〈∇ kir ,∇jr ky〉.

and truncating at tensor degree m and restricting to i ⊑d [|x| − 1] and j ⊑d [|y| − 1] yields
the claim.
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Remark B.8 The appearance of the i! term together with i ⊑d [|x| − 1] makes a recursion
formula more complex since one needs to keep track how many elements in i are equal in
every recursion step. We give an effective algorithm in Section B.1 that relies on multi-way
recursion.

B.1. Computing the higher order discretized signature kernel

Algorithm 6 Evaluation of k+(d,m).

Input: Sequences x, y ∈ X
+. A kernel k : X × X → R. A truncation degree m. An

approximation order d with 1 ≤ d ≤ m.
Output: k+(d,m)(x, y)

1: Let ℓx ← |x| − 1 and ℓy ← |y| − 1
2: Compute an (ℓx × ℓy) array K such that K[i, j] = ∇i,j k(x, y)
3: Initialize an (m× d× d× ℓx × ℓy)-array A, all entries zero
4: for n = 2 to m do
5: d′ ← min(d, n− 1)
6: A[n|1, 1| :, :]← K · (1 +A[n− 1|Σ,Σ|⊞+1,⊞+ 1])
7: for r = 2 to d′ do
8: A[n|r, 1| :, :]← 1

r
·K ·A[n− 1|r − 1,Σ| :,⊞+ 1]

9: A[n|1, r| :, :]← 1
r
·K ·A[n− 1|Σ, r − 1|⊞+1, :]

10: for s = 2 to d′ do
11: A[n|r, s| :, :]← 1

rs
·K ·A[n− 1|r − 1, s− 1| :, :]

12: end for
13: end for
14: end for
15: Compute R← 1 +A[m|Σ,Σ|Σ,Σ]
16: Return R

Recall that multiplications of arrays in Algorithm 6 are entry-wise (not matrix multiplica-
tions). At the end of Algorithm 6, the array A contains as elements A[m|r, s|i, j] the con-
tributions from sub-sequences i ⊑ [ℓx], j ⊑ [ℓy], beginning at i and j, with start-sequences
iii . . . of length r and jjj . . . of length s, and of total length at most m.

Proposition B.9 Let x, y ∈ X
+, m ≥ 1 and d with 1 ≤ d ≤ m. Define ℓx = |x| − 1,

ℓy = |y| − 1 and

An,r,s
i,j :=

∑

i⊑d[ℓx]
j⊑d[ℓy ]
|i|=|j|=n

1

i!j!

n
∏

κ=1

∇iκ,jκ k(xiκ , yjκ)

for every r, s ≥ 1 and i ∈ [ℓx], j ∈ [ℓy] where the sum over i = (i1, . . . , in), j = (j1, . . . , jn)
is additionally restricted in the following way:

i = i1 = i2 = · · · = ir 6= ir+1 and j = j1 = j2 = · · · = js 6= js+1.
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By convention, set An,r,s
i,j = 0 if r < n or s < n. Then,

k+(d,m)(x, y) = 1 +

m
∑

n=1

ℓx
∑

i=1

ℓy
∑

j=1

d
∑

r=1

d
∑

s=1

An,r,s
i,j (5)

and the following equalities hold

An,r,s
i,j =

1

rs
· ∇i,j k(x, y) ·A

n−1,r−1,s−1
i,j , (6)

An,1,1
i,j = ∇i,j k(x, y) ·



1 +
∑

i′>i

∑

j′>j

d
∑

r=1

d
∑

s=1

An−1,r,s
i′,j′



 , (7)

An,r,1
i,j =

1

r
· ∇i,j k(x, y) ·

∑

j′>j

d
∑

s=1

An−1,r−1,s
i,j′ , (8)

An,1,s
i,j =

1

s
· ∇i,j k(x, y) ·

∑

i′>i

d
∑

r=1

An−1,r,s−1
i′,j , (9)

for r, s ≥ 2, i ∈ [ℓx], j ∈ [ℓy].

Proof By Proposition B.7

k+(d,m)(x, y) = 1 +
m
∑

n=1

∑

i⊑d[ℓx]
j⊑d[ℓy ]
|i|=|j|=n

1

i!j!

n
∏

r=1

∇ir,jr k(x, y)

= 1 +
∑

i⊑d[ℓx]
j⊑d[ℓy ]

1

i!j!
∇i1,j1 k(x, y) (1 +∇i2,j2 k(x, y) (1 + · · · (1 +∇im,jm k(x, y))) · · · )

and the first equality shows the identity (5) by explicitly summing over that starting point of
sequences and the number of repeated elements. Equality (6) follows directly by definition of
An,r,s

i,j and that for i = (i1, i2, . . . , in) with d(i) = r and i′ = (i2, . . . , in) we have i! = 1
r
(i′!).

Equality (7) follows since

{i = (i1, . . . , in) : d(i) = 0, i1 = i} = {(i, i′) : i′ = (i′1, . . . , i
′
n−1), i

′
1 > i}

=
d
⋃

r=0

{(i, i′) : i′ = (i′1, . . . , i
′
n−1), i

′
1 > i, d(i′) = r}

where in above equalities we implicitly additionally assume that all indices i, i′ are increasing
(that is, i1 ≤ · · · ≤ in, i

′
1 ≤ · · · ≤ i′n−1). Equalities (8),(9) follow similarly.

Remark B.10 The computational cost of Algorithm 6 is O(d2m|x||y|) elementary arith-
metic operations (= the number of loop elements) and O(d2|x||y|) units of elementary stor-
age (when freeing up space for array entries directly after the last time they are read out).
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Remark B.11 The higher order Algorithm 6 can be combined with the low-rank techniques
analogous to the treatment of the order d = 1 algorithm in Section 6 by applying the low-
rank representation to the matrices/2D-arrays A[m|i, j| :, :]. Since all assignments and
manipulations can be re-phrased in those matrices, the same strategy applies.
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