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ABSTRACT. Let X C Rn and let K be a trace class operator on L2(X)

with corresponding kernel K(x,y) € L2(X x X). An integral formula for

tr K, proven by Duflo for continuous kernels, is generalized for arbitrary trace

class kernels. This formula is shown to be equivalent to one involving the

factorization of K into a product of Hilbert-Schmidt operators. The formula

and its derivation yield two new necessary conditions for traceability of a

Hilbert-Schmidt kernel, and these conditions are also shown to be sufficient

for positive operators. The proofs make use of the boundedness of the Hardy-

Littlewood maximal function on L2(R").

1. Introduction. Given a kernel function, K(x,y), what are necessary and

sufficient function-theoretic conditions on K(x, y) so that the corresponding integral

operator on L2(X) is traceable, and how does one compute tr A in terms of the

given kernel? These questions arise quite naturally in, for example, the theory

of unitary group representations. For the case when X C Rn, the main result

of this paper, Theorem 3.1, answers the second question completely by proving a

generalization of the formula

trK=     K(x,x)dx

that holds for arbitrary trace class kernels, and we show how this result can be

related to the factorization of a trace class operator into a product of Hilbert-

Schmidt operators. Theorem 3.1 also provides a partial answer to the first question

by proving that a Hilbert-Schmidt operator, K, is traceable only if

/ MK(x, x) dx < oo,

where MK is the Hardy-Littlewood maximal function of the kernel K(x,y). A

second necessary condition for traceability is the existence and integrability of a

kernel determined by the Lebesgue Differentiation Theorem. In §4 we show that

these conditions are also sufficient for traceability of positive operators.

It is difficult to produce conditions on the function-theoretic properties of a kernel

that are both strong enough to imply traceability yet weak enough to include a

fairly large class of kernels. One technique is to show that K(x, y) is in the domain

of a sufficiently high power of some selfadjoint operator on L2(R2n) with known
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1182 CHRIS BRISLAWN

spectrum. Sugiura [7, Proposition IV.3.5] uses the two-dimensional Laplacian to

prove that if K(6,d>) is a C2-function on the torus, T2, then the integral operator

on L2(Tl) defined by

Kf(0)= [   K(e,<f>)f(4>)dcp
Jt1

is traceable.   Following Sugiura, one can prove an analogous theorem for kernel

operators on L2(R") using the 2n-dimensional Hermite operator, H2n. For M >

n + 1 the Mth power of the inverse Hermite operator, Í7¿^M, is Hilbert-Schmidt

(cf. [4, p. 21]). This fact implies the following:

PROPOSITION 1.1. Let K(x,y) G L2'(R2n). If K G Dom(H^), M > n+ 1,

then the operator

Kf(x)= f   K(x,y)f(y)dy
Jr"

is a trace class operator on L2(Rn).

Dom(if^) means here a domain in L2(R2n) on which H^ has a bounded in-

verse. This includes Schwartz functions on R2n but is otherwise quite restrictive.

The idea of averaging K(x,y) over cubes appears in a paper by Weidmann [9],

where he provides a sufficient condition for traceability of a positive Hilbert-Schmidt

operator on L2(Rn); we shall discuss this result and prove its converse in §4 as an

immediate corollary of Theorem 3.1. We will then provide a generalization of the

following theorem, which can be found in Tricomi [8] or Riesz and Nagy [3].

Proposition 1.2 (Mercer's Theorem). Let I = [0,1]. Suppose that
P(x,y) G L2(I x /) is a continuous, positive-definite Hilbert-Schmidt kernel; then

the eigenfunction expansion

CO

converges pointwise in I x I, absolutely and uniformly:

P(x,y) =£A¿(fo(x)<¿>,G/).

Consequently,

f1
trP=        P(x,x)dx.

Jo

2. Averaging on cubes. Let Cr be the n-dimensional cube of radius r centered

at the origin in R", and let Cr(x) be the translated cube centered at x G R":

CT = [-r,r]n,        Cr(x) = x + Cr.

Let Ar be the linear operator that averages a function / € L¡oc(Rn) over cubes of

radius r:

(2.1) Arf(x) = -±— f       f(t)dt=r¿- f   f(x + t)dt.
\Cr(x)\ JcT(x) M Jcr

We use |Cr| to denote the Lebesgue measure of CT. For each x G Rn, Arf(x) is

a continuous function of r G (0, oo), and for each r > 0, Arf(x) is a continuous
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KERNELS OF TRACE CLASS OPERATORS 1183

function of x. The Hardy-Littlewood maximal function of / is

(2.2) Mffx)=sup-L f   \f(x + t)\dt.
r>0 |W| Jcr

Mf(x) has a well-defined value in [0, oo] at every point x G Rn. The Maximal The-

orem states that if / G Lp(Rn), 1 < p < oo, then Mf is finite almost everywhere,

and if 1 < p < oo then

iip>(2-3) ||M/||P < Cp

where Cp is a constant depending only on p and the dimension, n. By the Lebesgue

Differentiation Theorem, if / G Lloc(Rn) then

(2.4) lim Arf(x) = f(x)    a.e. [dx].

A standard reference on these results is Stein [6].

For r > 0, definitions (2.1) and (2.2) show that

(2.5) \Arf(x)\ < Mf(x)

at every point x G R", so if 1 < p < oo the Maximal Theorem (2.3) implies that

AT is a bounded linear operator on Lp(Rn). At every point x at which the limit

(2.4) holds, we can extend Arf(x) to a continuous function of r 6 [0, oo) by defining

Aof(x) = f(x), and the bound (2.5) then holds when r = 0. Define

(2.6) /(x) = limAr/(x);
r—>0

then / exists almost everywhere and

f(x) = f(x)    a.e. [dx\.

f agrees with / at each point of continuity.

The operator AT not only smooths Lp functions, it also smooths Lp convergence:

LEMMA 2.1. Let r > 0, 1 < p < oo; if fn -t / in Lp(Rn) then Arfn -> Arf
uniformly.

COROLLARY 2.2. If^2fn converges to f in Lv'-norm then X^Ar/n converges

uniformly to Arf.

We will occasionally use superscripts on Ar or M to indicate the dimension in

which averages are being taken. Thus, definition (2.1) for averages of functions

f GL¡oc(R2n) becomes

idt.(2.7) 42«)/(X)2/)=     1      /"    f   f{x + sy + t)ds(
\     r |      J Cr J Cr

The reason for averaging over cubes rather than balls is that the averaging operator

on cubes is multiplicative on tensor products of Hubert spaces:

LEMMA 2.3.   Let<p,ipGL2(Rn);then

42nH<t>® rp)(x,y) = AinU(x)A^iP(y).
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As a consequence,

LEMMA 2.4.   The maximal function is submultiplicative and subadditive:

M(2")(0<8)ip)(x,y) < M^<j>(x)M^ip(y)

and

M(</> + tp)(x) < M<t>(x) + Mip(x).

REMARKS. Although the theorems in §§3 and 4 about trace class operators

on L2(X) will be presented for the case X = R", they remain valid if X is any

measurable subset of R". The crucial feature we need to retain in X is the existence

almost everywhere of the limits of averages as defined by (2.6). To compute averages

of functions defined only on A C Rn we consider them to be equal to zero on Rn\A.

3. Trace class operators. There is an isomorphism between the ideal of

Hilbert-Schmidt operators on L2(A) and the space L2(X x A) that identifies each

operator, K, with a kernel K(x,y) G L2(X x A). Every positive-definite Hilbert-

Schmidt operator, P, has an eigenfunction expansion

CO

(3.1) p = y<x^®^
i=l

where (<fo)i€N is an orthonormal sequence in L2(X), and the eigenvalues, A», are

positive and square-summable. The series (3.1) converges in Hilbert-Schmidt norm,

(3.2) \\P\\2HS = tr(P2) = Jl \P(x,y)\2dp(x)dp(y),

and thus also in operator norm. The corresponding expansion for the kernel,

(3.3) P(x,y)=^A^(x)^),

converges in L2(A x A).

If |A| is a trace class operator (i.e., if J^A¿ < oo), to what extent does the

formula

(3.4) trA= f K(x,x)dp(x)
Jx

hold? Clearly, this integral is not even well defined in general since we are only

given the kernel as an element of L2(A x A). Duflo [1, Theorem V.3.1.1] has

proven (3.4) when K(x, y) is a continuous trace class kernel on a cr-compact, locally

compact space, A, with a Radon measure, p. We shall now prove a version of (3.4)

that holds for arbitrary trace class kernels when X C R™.

If K(x,y) G L2(R2") then K(x,y) is defined as in (2.6):

K(x,y) = lim A^K(x,y).
r—*0

K(x,y) is defined pointwise a.e. [dxdy].  Since K(x,y) is uniquely determined by

the operator K, the averaging process can be regarded as a way of selecting a

"smooth" pointwise representative for the corresponding kernel.

Consider an expansion of the form (3.3) for P > 0,

P(x,y) =£At<fo(x)</»¿(í/),
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where <f>i denotes pointwise representatives for the eigenfunctions in L2(R").  We

will say that x G R" is a regular point of the expansion if, for all i G N,

(3.5) lim AT<t>i(x) = <f>i(x).
r—►O

Thus, for any given choice of representatives for the functions fa, almost every point

in Rn is a regular point. By Corollary 2.2 and Lemma 2.3 we have, for r > 0,

(3.6) A^P(x, y) = T XtAlnUi(x)A^Üy)

at every point (x, y).

THEOREM 3.1.   Let K be a trace class operator on L2(Rn); then M(2n)A(x,x)

GL1(Rn), K(x,x) exists a.e. [dx], and

(3.7) trA= Í K(x,x)dx.

PROOF. First, note that every trace class operator, K, can be written as a linear

combination of four positive-definite trace class operators:

K = Pi-P2 + i(P3-P4).

Since M is subadditive and since Ar and the trace formula (3.7) are linear, it suffices

to prove Theorem 3.1 for positive-definite trace class operators.

We have an expansion for P > 0 of the form (3.1),

CO

(3.8) P = £A¿</>t®&,
i=i

with A¿ > 0 and J2 A» < oo. Let qbi denote representative functions defined point-

wise everywhere. Since P is traceable,

/ £A¿|</>¿(x)|2 = £A¿ < oo

so the series X) A¿|rp,(x)|2 is finite almost everywhere.

Using Lemma 2.4 and the bound (2.3) for the maximal function on L2(Rn), we

have the following calculation:

ÍM^P(x, x) dx < f £ Xi(M(n)&(x))2 dx

<^A¿||M^||2

<<3'2>ll*ilä
< oo.

This proves the first assertion in the theorm and shows the convergence of the

nonnegative series

£a¿(M</>¿(x))2 < co   a.e. [dx].

Choose a conull set of regular points Y c R" so that for all x G Y both of the

following series are finite:

£At|^(x)|2,        £Ai(M0i(¡t))a.
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Since Y consists of regular points, the Ar<f>i(x) are continuous functions of r G [0, oo)

for all x € F and all i. Now,

|Ar^(x)|2 < (MUx))2

for x € F and r G [0, oo) so for each x G Y the series

£A¿|Ar^(x)|2

converges absolutely and uniformly with respect to r G [0, oo). By (3.6) we know

that for r > 0

A(2")p(x,x) = £Ai|Ar0i(x)|2

so, letting r —» 0, we have

P(x,x)= lim A^P(x,x)

= y>¿iim|Ar</>i(x)|2

= £aî|«a1(x)|2,

for each x G Y. Since this series converges in L1(Rn), we have

trP = £(P0„<¿,)

= £/(A<&(*))fc(*)<fc

= /£Ai|0i(x)|2dx

For an illustration of the limitations of Theorem 3.1 we have the following ex-

ample; applications of the Theorem will occur in the form of Corollaries 4.2 and

4.4.

EXAMPLE 3.2. The Voltefra integral operator is the Hilbert-Schmidt operator

on L2(I) given by the kernel

*<->-{; ;:
< x,

> X.

Although K is discontinuous, one easily sees that K(x, x) = | = MK(x, x) for

all x G (0,1) so

/   K(x,x)dx = - = /   MK(x,x)dx.
Jo 2      /0

But it is elementary to show that the Volterra operator's singular values are A„ =

2(7r(2n + l))-1, so K is not traceable. This example shows that integrability of

MK(x,x) or A(x,x) are not sufficient conditions for traceability.

Now let us consider the relation between the trace formula (3.7) of Theorem 3.1

and the factorization of a trace class operator into a product of Hilbert-Schmidt

operators. K is traceable if and only if K factors as K — LJ, where L and J are

Hilbert-Schmidt. The corresponding factorization of the kernel in L2(R2n) is

(3.9) K(x,y)=L*J(x,y)    a.e. [dxdy],
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where the "convolution" of kernels is

L * J(x, y)=     L(x, z)J(z, y) dz.

Gaal [2] proves the following result (Theorem VI.7.17):

PROPOSITION 3.3.   If K is traceable, K = LJ, then

(3.10) tr K = i L * J(x, x) dx.

The utility of (3.10) is limited, however, by the fact that it is not possible to

explicitly compute the kernels L(x, y) and J(x, y) in terms of a given kernel K(x, y),

and Gaal fails to indicate when pointwise equality holds for (3.9) on the diagonal

in R2n. This issue is resolved by our next theorem.

Let L(x, y) and J(x, y) be pointwise representatives for the kernels of the Hilbert-

Schmidt operators L and J. Ar(nj(M(n)) and Ar (M(")) denote the n-dimensional

averaging (maximal) operators acting on the first or second variables of a kernel,

respectively; e.g.

Arin)L(x, y) - —- ¡   L(x + s, y) ds.
I°r| Jcr

LEMMA 3.4.   If L(x,y) G L2(R2n), then

M(n)L(x,y), M^L(x,y)GL2(R2n).

PROOF. For almost every y, L(-,y) G L2(Rn) so the Maximal Theorem implies

// |M(n)L(x,2/)|2dxd2/ < I \C¡ / |L(x,y)|2dx   dy < oo.

THEOREM 3.5. If K = LJ is a factorization of the trace class operator K into

a product of Hilbert-Schmidt operators, then

K(x, x) = L * J(x, x)    a.e. [dx].

PROOF. For r > 0, note that

(3.11) \Ar(n)L(x,z)A^J(z,y)\ < M{n)L(x,z)M^J(z,y)

and

(3.12)

I M{n)L(x,z)M^J(z,y)dz\    < j \M(n)L(x,z)\2 dz j \M^ J(z,y)\2 dz

where

|M(n)L(x, z)|2 dz < oo   a.e. [dx]
/'

and

f \M^J(z, y)\2 dz<oo   a.e. [dy]

by Lemma 3.4. This justifies Fubini's Theorem:

A^K(x,y) = -^ f    f   f   L(x + s,z)J(z,y + t)dzdSdt
r3 13\ l°r|     JCrJCrJR"

= I' Ar(n)L(x,z)A^J(z,y)dz,

for almost every x and almost every y.
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Now, for almost every z we have

lim Arin)L(x,z) — L(x,z)    a.e. [dx]

and

lim 4")J(z,j,) = J(z,y)    a.e. [dy].

Estimates (3.11) and (3.12) allow us to pass to the limit in (3.13):

K(x, x) — lim / Ar(n)L(x, z)A^ J(z,x)dz

= L * J(x,x)    a.e. [dx].

4. Positive operators. We now consider the problem of giving necessary and

sufficient conditions for a positive Hilbert-Schmidt kernel, P(x,y), to be traceable.

Weidmann gives a sufficient condition in Satz 1 of [9] :

PROPOSITION 4.1. Let P(x,y) G L2(R2n) be the kernel of a positive operator,

P, on L2(Rn). // there exists a function f G L1(Rn) such that for all x and all r,

0 < r < rn, we have

A^P(x,x)<f(x),

then P is traceable.

Theorem 3.1 now provides us with the converse:

COROLLARY 4.2. The positive Hilbert-Schmidt kernel P(x,y) is traceable if

and only if

M(2n)P(x,x)dx<co.
/■

If K(x, y) is not traceable, then there is no assurance that K(x, x) exists unless K

is continuous on the diagonal. Even then, K(x, x) does not contain the information

about the global behavior of K that MK(x,x) does. It is interesting that for pos-

itive kernels the integrability of P(x, x) implies traceability, modulo the existence

of P(x,x). This is a generalization of Mercer's Theorem (Proposition 1.2):

THEOREM 4.3. Let P be a positive Hilbert-Schmidt operator on L2(R") with

eigenfunction expansion

CO

(4.1) P = YJK<i>i®Ji,        A2>0.
i=i

// P(x, x) exists for almost every x then

P(x,x) >0    a.e. [dx]

and

(4.2) trP<  / P(x,x)dx.

Note that we allow the extended real value P(x,x) — +oo. If P(x,x) < oo o.e. [dx]

then expansion (4.1) converges pointwise:

(4.3) P(x,y) = ^2xi4>i(x)Myj    a.e. [dxdy].
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PROOF. As before, we let the functions <¡>i be pointwise representatives for the

eigenfunctions. Then
m

Sm(x,y) = £A¿<¿>¿(x)&(y)
¿=i

is defined everywhere, and

Hm(x,y) = P(x,y) - Sm(x,y)

is defined wherever P(x, y) exists. Since

CO

Hm =     £    Xi(¡>i®(¡)i,
i=m+l

Hm is a positive operator.

Let Y c R" be the set of all regular points, x, for the expansion (4.1) at which

P(x,x) exists, and note that Y contains almost all of Rn. Then for all x G Y,

Lemma 2.3 and (3.5) justify the calculation

Hm(x,x) = P(x,x) -J^XilcpiW
t=i

= lim A^P(x, x) - £ Xi lim A(2n'(0¿ <g> &)(*, x)

¿=i

= limA(2")(P-5m)(x,x)
r-»0

= lim T—r¿ I     I    Hm(x + s,x + t)dsdt
r—° |Or|    JcrJcr

1
= JlSn Trl2(HmÍ-Cr(x),ÍCr(x))

r—fO |L/r|

>o,
where 1cr(x) lB fhe characteristic function of Cr(x). If x G Y then, for all m,

P(x,x) - Sm(x,x) = Hm(x,x) > 0,

implying that

(4.4) P(x,x)>£a,|^(x)|2>0.

Now integrate (4.4):

(4.5) trP = ^A¿ f \<i>i(x)\2 dx < Í P(x,x)dx.

If P(x, x) < oo for all x G Y then

[£|Ai(Mx)0^)|]2 <£Ai|^(x)|2£Ai|(>i(î/)|2

< oo   if (a;, y) € Y x Y,

which says that Sm(x, y) converges absolutely on Y x Y. But Sm —> P in L2(R2")

so the pointwise limit agrees with P almost everywhere.

We can combine estimate (4.5) and Theorem 3.1 to obtain the following useful

result:
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COROLLARY 4.4.   If P > O and P(x,x) exists a.e. [dx] then

f -
(4.6) trP=     P(x,x)dx.

Thus, P is traceable if and only if the integral (4.6) is finite.

REMARKS. Unlike the classical version of Mercer's Theorem on the compact

domain [0,1], even if P(x, y) is continuous on R" the best we can hope for is almost

everywhere convergence of (4.3) since P need not have continuous eigenfunctions

on Rn. If P is continuous, though, one can prove that (4.3) converges to P almost

everywhere on the diagonal:

P(x, x) = £ Xi\<t>i(x)\2    a.e.[dx].

For continuous kernels, Corollary 4.4 provides a new proof of a result in [1, Theorem

V.3.3.1 and 5, Theorem 2.12]. It would be interesting to know whether P(x,x)

exists in [0, oo] a.e. [dx] for every positive Hilbert-Schmidt operator, P.
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