
1426 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Kerneltron: Support Vector “Machine” in Silicon
Roman Genov, Member, IEEE, and Gert Cauwenberghs, Senior Member, IEEE

Abstract—Detection of complex objects in streaming video
poses two fundamental challenges: training from sparse data
with proper generalization across variations in the object class
and the environment; and the computational power required of
the trained classifier running real-time. The Kerneltron supports
the generalization performance of a support vector machine
(SVM) and offers the bandwidth and efficiency of a massively
parallel architecture. The mixed-signal very large-scale integra-
tion (VLSI) processor is dedicated to the most intensive of SVM
operations: evaluating a kernel over large numbers of vectors in
high dimensions. At the core of the Kerneltron is an internally
analog, fine-grain computational array performing externally
digital inner-products between an incoming vector and each of
the stored support vectors. The three-transistor unit cell in the
array combines single-bit dynamic storage, binary multiplication,
and zero-latency analog accumulation. Precise digital outputs
are obtained through oversampled quantization of the analog
array outputs combined with bit-serial unary encoding of the
digital inputs. The 256 input, 128 vector Kerneltron measures
3 mm 3 mm in 0.5 m CMOS, delivers 6.5 GMACS throughput
at 5.9 mW power, and attains 8-bit output resolution.

Index Terms—Analog array processors, analog-to-digital
conversion (ADC), charge-injection device (CID), dynamic
random-access memory (DRAM), matrix-vector multiplication
(MVM), oversampling quantization, pattern recognition, support
vector machines (SVMs), vector quantization (VQ).

I. INTRODUCTION

S
UPPORT VECTOR machines (SVMs) [1] offer a prin-

cipled approach to machine learning combining many of

the advantages of artificial intelligence and neural-network

approaches. Underlying the success of SVMs are mathematical

foundations of statistical learning theory [2]. Rather than

minimizing training error (empirical risk), SVMs minimize

structural risk which expresses an upper bound on the general-

ization error, i.e., the probability of erroneous classification on

yet-to-be-seen examples. This makes SVMs especially suited

for adaptive object detection and identification with sparse

training data.

Real-time detection and identification of visual objects in

video from examples is generally considered a hard problem for

two reasons. One is the large degree of variability in the object

class, i.e., orientation and illumination of the object or occlu-

Manuscript received September 15, 2002.This work was supported by NSF
IIS-0209289 (Universal Access), ONR N00014-99-1-0612, ONR/DARPA
N00014-00-C-0315 and WatchVision Corporation. The chip was fabricated
through the MOSIS service.

R. Genov was with the Department of Electrical and Computer Engineering,
Johns Hopkins University, Baltimore, MD 21218 USA. He is now with the
Department of Electrical and Computer Engineering, University of Toronto,
Toronto, ON M5S 3G4, Canada (e-mail: roman@eecg.toronto.edu).

G. Cauwenberghs is with the Department of Electrical and Computer
Engineering, Johns Hopkins University, Baltimore, MD 21218 USA (e-mail:
gert@bach.ece.jhu.edu).

Digital Object Identifier 10.1109/TNN.2003.816345

sions and background clutter in the surrounding, which usually

necessitates a large number of training examples to generalize

properly. The other is the excessive amount of computation in-

curred during training, and even in run-time.

Support vector machines have been applied to visual object

detection, with demonstrated success in face and pedestrian de-

tection tasks [3]–[6]. Unlike approaches to object detection that

rely heavily on hand-crafted models and motion information,

SVM-based systems learn the model of the object of interest

from examples and work reliably in absence of motion cues. To

reduce the computational burden of real-time implementation

to a level that can be accommodated with available hardware,

a reduced set of features are selected from the data which also

result in a reduced number of support vectors [5]. The reduction

in implementation necessarily comes at a loss in classification

performance, a loss which is more severe for tasks of greater

complexity.

The run-time computational load is dominated by evaluation

of a kernel between the incoming vector and each of the support

vectors. For a large class of permissible kernels, which include

polynomial splines and radial kernels, this computation entails

matrix-vector multiplication in large dimensions. For the pedes-

trian detection task in unconstrained environments [5], highest

detection at lowest false alarm is achieved for very large num-

bers (thousands) of input dimensions and support vectors, incur-

ring millions of matrix multiply-accumulates (MAC) for each

classification. The computation recurs at different positions and

scales across each video frame.

The Kerneltron offers a factor 100–10 000 improvement in

computational efficiency (throughput per unit power) over the

most advanced digital signal processors available today. It af-

fords this level of efficiency at the expense of specificity: the

very large-scale integration (VLSI) architecture is dedicated to

massively parallel kernel computation [7]. Speed can be traded

for power dissipation. Lower power is attractive in portable ap-

plications of kernel-based pattern recognition, such as visual

aids for the blind [8].

Section II briefly summarizes feature extraction and SVM

classification for object detection in streaming video. Section III

describes the architecture and circuit implementation of the Ker-

neltron. Experimental results, scalability issues, training, and

application examples are discussed in Section IV.

II. OBJECT DETECTION WITH SUPPORT VECTOR MACHINES

A support vector machine is trained with a data set of la-

beled examples. For pattern classification in images, relevant

features are typically extracted from the training set examples

using redundant spatial filtering techniques, such as overcom-

plete wavelet decomposition [4]. The classifier is trained on

these feature vectors. In run time, images representing frames

1045-9227/03$17.00 © 2003 IEEE

GENOV AND CAUWENBERGHS: KERNELTRON: SUPPORT VECTOR “MACHINE” IN SILICON 1427

Fig. 1. Functional block diagram of the SVM classifier. The core of the
system is a support vector machine processor for general object detection
and classification. An overcomplete wavelet decomposition of the incoming
sensory data at the input generates redundant input features to the SVM,
providing for robust and relatively invariant classification performance.

of streaming video are scanned by moving windows of different

dimensions. For every unit shift of a moving window, a wavelet

feature vector is computed and presented to the SVM classi-

fier to produce a decision. The general block diagram of such

a system is outlined in Fig. 1. A brief functional description of

the major components follows next.

A. Overcomplete Wavelet Decomposition

An overcomplete wavelet basis enables the system to handle

complex shapes and achieve a precise description of the object

class at adequate spatial resolution for detection [4]. The trans-

formation of the sensory data into the feature vector is of

the linear form

(1)

where the wavelet coefficients form an overcomplete basis,

i.e., .

In visual object detection overcomplete Haar wavelets have

been successfully used on pedestrian and face detection tasks

[4], [5]. Haar wavelets are attractive because they are robust and

particularly simple to compute, with coefficients that are

either 1 or 1.

B. Support Vector Classification

Classification of the wavelet transformed features is per-

formed by an SVM [1]. From a machine learning theoretical

perspective [2], the appealing characteristics of SVMs are as

follows.

1) The learning technique generalizes well even with rela-

tively few data points in the training set, and bounds on

the generalization error can be directly estimated from the

training data.

2) The only parameter that needs tuning is a penalty term

for misclassification which acts as a regularizer [9] and

determines a tradeoff between resolution and generaliza-

tion performance [10].

3) The algorithm finds, under general conditions, a unique

separating decision surface that maximizes the margin

of the classified training data for best out-of-sample

performance.

SVMs express the classification or regression output in terms

of a linear combination of examples in the training data, in

which only a fraction of the data points, called “support vec-

tors,” have nonzero coefficients. The support vectors thus cap-

ture all the relevant data contained in the training set. In its

basic form, a SVM classifies a pattern vector into class

based on the support vectors and corresponding

classes as

(2)

where is a symmetric positive-definite kernel function

which can be freely chosen subject to fairly mild constraints

[1]. The parameters and are determined by a linearly

constrained quadratic programming (QP) problem [2], [11],

which can be efficiently implemented by means of a sequence

of smaller scale, subproblem optimizations [3], or an incre-

mental scheme that adjusts the solution one training point at a

time [12]. Most of the training data have zero coefficients

; the nonzero coefficients returned by the constrained QP

optimization define the support vector set. In what follows we

assume that the set of support vectors and coefficients are

given, and we concentrate on efficient run-time implementation

of the classifier.

Several widely used classifier architectures reduce to special

valid forms of kernels , like polynomial classifiers,

multilayer perceptrons,1 and radial basis functions [14]. The

following forms are frequently used:

1) inner-product based kernels (e.g., polynomial; sigmoidal

connectionist):

(3)

2) radial basis functions (norm distance based)

(4)

where is a monotonically nondecreasing scalar function

subject to the Mercer condition on [2], [9].

With no loss of generality, we concentrate on kernels of the

inner product type (3), and devise an efficient scheme of com-

puting a large number of high-dimensional inner-products in

parallel. Computationally, the inner-products comprise the most

intensive part in evaluating kernels of both types (3) and (4).

Indeed, radial basis functions (4) can be expressed in inner-

product form

(5)

1With logistic sigmoidal activation function, for particular values of the
threshold parameter only.

1428 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 2. Architecture of the core recognition processor, combining overcomplete wavelet decomposition with generalized support vector machine classification.
Communication with outside modules is through a serial digital input/output interface for maximal flexibility and programmability, while the core internal
computations are parallel and analog for optimal efficiency.

where the last two terms depend only on either the input vector

or the support vector. These common terms are of much lower

complexity than the inner-products, and can be easily precom-

puted or stored in peripheral registers.

The computation of the inner-products takes the form of

matrix-vector multiplication (MVM),

, where is the number of support vectors. For large

scale problems as the ones of interest here, the dimensions of

the matrix are excessive for real-time implementation

even on a high-end processor. As a point of reference, consider

the pedestrian and face detection task in [5], for which the

feature vector length is 1326 wavelets per instance, and the

number of support vectors is in excess of 4000. To cover

the visual field over the entire scanned image at reasonable

resolution (500 image window instances through a variable

resolution search method) at video rate (30 frames/s), a com-

putational throughput of multiply-and-accumulate

operations/s, is needed. The computational requirement can

be relaxed through simplifying and further optimizing the

SVM architecture for real-time operation, but at the expense of

classification performance [4], [5].

III. KERNELTRON: MASSIVELY PARALLEL VLSI

KERNEL MACHINE

A. Core Recognition VLSI Processor

At the core of the system is a recognition engine, which ef-

ficiently implements kernel-based algorithms, such as SVMs,

for general pattern detection and classification. The imple-

mentation focuses on inner-product computation in a parallel

architecture.

Both wavelet and SVM computations are most efficiently

implemented on the same chip, in a scalable VLSI architecture as

illustrated schematically in Fig. 2. The diagram is the floorplan

of the Kerneltron, with matrices projected as two-dimensional

(2-D) arrays of cells, and input and output vector components

crossing in perpendicular directions alternating from one stage

to the next. This style of scalable architecture also supports the

integration of learning functions, through local outer product

parameter updates [13], compatible with the recently developed

incremental SVM learning rule [12]. The architecture maintains

low input–output data rate. Digital inputs are fed into the

processor through a properly sized serial/parallel converter

shift register. A unit shift of a scanning moving window in an

image corresponds to one shift of a new pixel per classification

cycle, while a single scalar decision is produced at the output.

The classification decision is obtained in digital domain by

thresholding the weighted sum of kernels. The kernels are ob-

tained by mapping the inner-products through the func-

tion stored in a lookup table.

By virtue of the inner-product form of the kernel, the com-

putation can be much simplified without affecting the result.

Since both the wavelet feature extraction and the inner-product

computation represent linear transformations, they can be col-

lapsed into a single linear transformation by multiplying the two

matrices

(6)

Therefore, the architecture can be simplified to one that omits

the (explicit) wavelet transformation, and instead transforms the

support vectors.2 For simplicity of the argument, we proceed

with the inner-product architecture excluding the overcomplete

wavelet feature extraction stage, bearing in mind that the ap-

proach extends to include wavelet extraction by merging the two

matrices.

2Referred to the input prior to wavelet transformation, support vectors s

need to be transformed twice: W = A A s .

GENOV AND CAUWENBERGHS: KERNELTRON: SUPPORT VECTOR “MACHINE” IN SILICON 1429

(a) (b)

Fig. 3. (a) CID computational cell with integrated DRAM storage. Circuit diagram, and charge transfer diagram for active write and compute operations.
(b) Micrograph of the Kerneltron prototype, containing containing an array of 256� 128 CID/DRAM cells, and a row-parallel bank of 128 algorithmic ��
ADCs. Die size is 3 mm� 3 mm in 0.5 �m CMOS technology.

B. Internally Analog, Externally Digital Computation

Computing inner-products between an input vector and

template vectors in parallel is equivalent to the operation

of matrix-vector multiplication (MVM)

(7)

with -dimensional input vector -dimensional output

vector , and matrix of coefficients . The matrix

elements denote the support vectors , or the wavelet

transformed support vectors (6) for convenience of notation.3

The approach combines the computational efficiency of

analog array processing with the precision of digital processing

and the convenience of a programmable and reconfigurable

digital interface. The digital representation is embedded in the

analog array architecture, with matrix elements stored locally

in bit-parallel form

(8)

and inputs presented in bit-serial fashion

(9)

3In the wavelet transformed case, s should be substituted forX in what fol-
lows.

where the coefficients are assumed in radix two, depending

on the form of input encoding used. The MVM task (7) then

decomposes into

(10)

with MVM partials

(11)

(12)

The binary-binary partial products (12) are conveniently

computed and accumulated, with zero latency, using an analog

MVM array [15]–[18]. For this purpose, we developed a 1-bit

multiply-and-accumulate CID/DRAM cell.

C. CID/DRAM Cell and Array

The unit cell in the analog array combines a charge injection

device (CID) [19] computational element [17], [18] with a

DRAM storage element. The cell stores one bit of a matrix

element , performs a one-quadrant binary-unary (or binary-

binary) multiplication of and in (12), and accumulates

the result across cells with common and indexes. The circuit

diagram and operation of the cell are presented in Fig. 3(a). An

active charge transfer from M2 to M3 can only occur if there

is nonzero charge stored, and if the potential on the gate of M2

drops below that of M3 [17]. The cell performs nondestructive

computation since the transferred charge is sensed capacitively

1430 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

(a)

(b)

Fig. 4. (a) Two charge-mode AND cells configured as an exclusive-OR (XOR)
multiply-and-accumulate gate. (b) Measured linearity of the computational
array configured for signed multiplication on each cell (XOR configuration).

Waveforms shown are, top to bottom: the analog voltage output, V , on the
sense line (2 V dynamic range); input data (in common for both input, x ,
and weight, w , shift register); and input shift register clock.

at the output. Thus, an array of cells performs (unsigned)

binary-unary multiplication (12) of a matrix with elements

and a vector with elements yielding , for values of

in parallel across the array, and values of in sequence over

time. A 256 128 array prototype using CID/DRAM cells is

shown in Fig. 3(b).

To improve linearity and to reduce sensitivity to clock

feedthrough, we use differential encoding of input and stored

bits in the CID/DRAM architecture using twice the number

of columns and unit cells as shown in Fig. 4(a). This amounts

to exclusive-OR (XOR), rather than AND, multiplication on the

analog array, using signed, rather than unsigned, binary values

for inputs and weights, and .

In principle, the MVM partials (12) can be quantized by a

bank of flash analog-to-digital converters (ADCs), and the re-

sults accumulated in the digital domain according to (11) and

(10) to yield a digital output resolution exceeding the analog

precision of the array and the quantizers [20]. Alternatively, an

oversampling ADC accumulates the sum (11) in the analog do-

main, with inputs encoded in unary format . This avoids

the need for high-resolution flash ADCs, which are replaced

with single-bit quantizers in the delta-sigma loop.

D. Oversampling Mixed-Signal Array Processing

The precision of computation is limited by the resolution of

the analog-to-digital converters (ADCs) digitizing the analog

array outputs. The conventional delta-sigma ADC design

paradigm allows to reduce requirements on precision of analog

circuits to attain high resolution of conversion, at the expense

of bandwidth. In the presented architecture a high conversion

rate is maintained by combining delta-sigma ADC with over-

sampled encoding of the digital inputs, where the delta-sigma

modulator integrates the partial multiply-and-accumulate out-

puts (12) from the analog array according to (11).

Fig. 5 depicts one row of matrix elements in the

oversampling architecture, encoded in bit-parallel rows

of CID/DRAM cells. One bit of a unary-coded input vector is

presented each clock cycle, taking clock cycles to complete

a full computational cycle (7). The data flow is illustrated for a

digital input series of unary bits.

Over clock cycles, the oversampling ADC integrates the

partial products (12), producing a decimated output

(13)

where for unary coding of inputs. Decimation for a first-

order delta-sigma modulator is achieved using a binary counter.

E. Row-Parallel Algorithmic ADC

Higher precision can be obtained in the same number

of cycles by using a higher order delta-sigma modulator

topology. However this drastically increases the implementa-

tion complexity. Instead, we use a modified topology shown in

Fig. 6 that resamples the residue of the integrator after initial

conversion. A sample-and-hold resamples the residue voltage

of the integrator and presents it to the modulator input for

continued conversion at a finer scale. The principle is analogous

to extended counting [21] but avoids additional hardware by

reusing the same modulator to quantize the residue.

Similar to residue resampling in an algorithmic (or cyclic)

ADC, for each resampling the scale of conversion subranges

to the LSB level of the previous conversion. For a first-order

incremental ADC [22], resampling of the residue scales

the range by a factor , where is the number of modulation

cycles. If is of radix two, i.e., , then the subranging

is conveniently accomplished in the architecture of Fig. 6 by

shifting the bits in the decimating counter by positions for

every resampling of the residue.

Every resampling improves the output resolution by a factor

, or bits, limited by noise and mismatch in the implementa-

tion. The effect of capacitance mismatch is minimized by using

a ratio-insensitive scheme for resampling the residue [23]. The

presented scheme is equivalent to algorithmic ADC, but avoids

interstage gain errors without the need for precisely ratioed

analog components.

The resampling of the residue in the oversampled ADC can be

combined with correspondingly rescaling the coefficients in

the input encoding. In principle, higher resolution digital inputs

can be presented by unary encoding bits in groups of , each

covering modulation cycles of the subranging oversampled

ADC [23]. In Fig. 5, only the first four bits are unary encoded

and presented in the first algorithmic cycle, with . With

a single resampling of the residue, the modulator obtains

bit effective resolution in cycles.

GENOV AND CAUWENBERGHS: KERNELTRON: SUPPORT VECTOR “MACHINE” IN SILICON 1431

Fig. 5. Block diagram of one row of the matrix with binary encoded elements w , for a single m and I = 4. Data flow of bit-serial unary encoded inputs x
and corresponding partial product outputs Y , with J = 16 bits. The full product for a single row Y is accumulated and quantized by a delta-sigma ADC.
The final product is constructed in the digital domain according to (10).

Fig. 6. Block diagram of �� algorithmic ADC with residue resampling,
including decimator. One ADC is provided for each row in the array
architecture.

Additional gains in precision can be obtained by exploiting

binomial statistics of binary terms in the analog summation (12)

and [24]. In the present scheme, this would entail stochastic

encoding of the digital inputs prior to unary oversampled

encoding.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Measured Performance

A prototype Kerneltron was integrated on a 3 3 mm die

and fabricated in 0.5 m CMOS technology. The chip con-

tains an array of 256 128 CID/DRAM cells, and a row-par-

allel bank of 128 algorithmic ADCs. Fig. 3(b) depicts the

micrograph and system floorplan of the chip.

The processor interfaces externally in digital format. Two

separate shift registers load the templates (support vectors)

along odd and even columns of the DRAM array. Integrated

refresh circuitry periodically updates the charge stored in

the array to compensate for leakage. Vertical bit lines extend

across the array, with two rows of sense amplifiers at the top

and bottom of the array. The refresh alternates between even

and odd columns, with separate select lines. Stored charge

corresponding to matrix element values can also be read and

shifted out from the chip for test purposes. All of the supporting

digital clocks and control signals are generated on-chip.

Fig. 4(b) shows the measured linearity of the computational

array, configured differentially for signed (XOR) multiplication.

The case shown is where all complementary weight storage el-

ements are actively set, and an alternating sequence of bits in

blocks is shifted through the input register.4 For every shift

in the input register, a computation is performed and the result is

observed on the output sense line. The array dissipates 3.3 mW

for a 10 s cycle time. The bank of ADCs dissipates 2.6 mW

yielding a combined conversion rate of 12.8 Msamples/s. Table I

summarizes the measured performance.

4w = 1; x = �1 for n = 1; . . .N ; and x = 1 for n = N +
1; . . . 2N .

1432 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

TABLE I
SUMMARY OF CHARACTERISTICS

B. System-Level Performance

Fig. 7 compares template matching performed by a floating

point processor and by the Kerneltron, illustrating the effect of

quantization and limited precision in the analog array architec-

ture. An “eye” template was selected as a 16 16 fragment from

the Lena image, yielding a 256-dimensional vector. Fig. 7(c)

depicts the two-dimensional convolution (inner-products over a

sliding window) of the 8-bit image with the 8-bit template com-

puted with full precision. The same computation performed by

the Kerneltron, with 4-bit quantization of the image and tem-

plate and 8-bit quantization of the output, is given in Fig. 7(d).

Differences are relatively small, and both methods return peak

inner-product values (top matches) at both eye locations in the

image.5 The template matching operation is representative of a

support vector machine that combines nonlinearly transformed

inner-products to identify patterns of interest.

C. Large-Scale Computation

The design is fully scalable, and can be expanded to any

number of input features and support vectors internally as lim-

ited by current fabrication technology, and externally by tiling

chips in parallel.

The dense CID/DRAM multiply-and-accumulate cell (

, where is the technology scaling parameter) supports the

integration of millions of cells on a single chip in deep sub-

micron technology, for thousands of support vectors in thou-

sand dimensional input space as the line-width of the fabrication

technology continues to shrink. The quantizer area overhead is

less than 75% and becomes insignificant with larger array sizes

for the same output resolution. In 0.18 m CMOS technology

(with m), 64 computational arrays with 256 128

cells each can be tiled on a 8 mm 8 mm silicon area, with two

million cells integrated on a single chip.

Distribution of memory and processing elements in a fine-

grain multiply-and-accumulate architecture, with local bit-

parallel storage of the coefficients, avoids the memory

bandwidth problem that plagues the performance of CPUs and

DSPs. Because of fine-grain parallelism, both throughput and

power dissipation scale linearly with the number of integrated

elements, so every cell contributes one kernel unit operation

and one fixed unit of dissipated energy per computational

cycle. Let us assume a conservative cycle time of 10 s. With

two million cells, this gives a computational throughput of

5The template acts as a spatial filter on the image, leaking through spectral
components of the image at the output. The Lena image was mean-subtracted.

(a) (b)

(c) (d)

Fig. 7. Convolution of fragments of Lena (a) and the eye template (b)
computed by a 32-bit floating point processor with 8-bit encoded inputs (c) and
by Kerneltron with 8-bit quantization and 4-bit encoded inputs (d).

200 GOPS, which is adequate for the task described in Sec-

tion II-B. The (dynamic) power dissipation is estimated6 to

be less than 50 mW which is significantly lower than that of a

CPU or DSP processor even though computational throughput

is many orders of magnitude higher.

D. Training

Training of a support vector machine entails a quadratic pro-

gramming problem of dimensions square in the number of data

points. In principle, the training can be formulated as a con-

strained Hopfield neural network, with a natural analog circuit

implementation [25]. The problem with this approach is that the

area of the implementation scales with the square of the number

of data points, which becomes impractical for very large data

sets or a real-time (online) setting.

The incremental SVM learning approach in [12] allows

on-line training of the Kerneltron with minimal overhead in

implementation resources. Every misclassified training vector

is stored as a (margin or error) support vector in the array,

and the corresponding (nonzero) coefficient is computed

using a recursive matrix operation of dimensions square in

the number of margin (not error) support vectors. Since the

number of margin vectors is usually very small compared with

the number of training vectors, computational savings can be

significant. Recursive computation of the coefficient is

conveniently implemented off-chip, using the inner-products

computed efficiently on the array.

6The parameters of the estimate are � = 0:1 �m; 3 V power supply;
10 �s cycle time.

GENOV AND CAUWENBERGHS: KERNELTRON: SUPPORT VECTOR “MACHINE” IN SILICON 1433

The limited number of templates on the Kerneltron

requires a trimming scheme to eliminate (most) inactive support

vectors to make room for new support vectors. Estimations

of the coefficients can further be simplified for integrated

implementation as reported in [26]. A decomposition algorithm

such as [27] or [28] offers an equally efficient realization in

hardware, but requires multiple passes through the data for

proper convergence of the coefficients.

E. Applications

The Kerneltron benefits real-time applications of object

detection and recognition, particularly in artificial vision and

human-computer interfaces. Applications extend from SVMs

to any pattern recognition architecture that relies on computing

a kernel distance between an input and a large set of templates

in large dimensions.

Besides throughput, power dissipation is a main concern

in portable and mobile applications. Power efficiency can be

traded for speed, and a reduced implementation of dimensions

similar to the version of the pedestrian classifier running on a

Pentium PC (27 input features) [4], [5] could be integrated on

a chip running at 100 W of power, easily supported with a

hearing aid type battery for a lifetime of several weeks.

One low-power application that could benefit a large group

of users is a navigational aid for visually impaired people.

OpenEyes, a system developed for this purpose [8] currently

runs a classifier in software on a Pentium PC. The software

solution offers great flexibility to the user and developer,

but limits the mobility of the user. The Kerneltron offers the

prospect of a low-weight, low-profile alternative.

V. CONCLUSION

A massively parallel mixed-signal VLSI processor for kernel-

based pattern recognition in very high dimensions has been

presented. Besides support vector machines, the processor is

capable of implementing other architectures that make intensive

use of kernels or template matching. An internally analog,

externally digital architecture offers the best of both worlds:

the density and energetic efficiency of a charge-mode analog

VLSI array, and the convenience and versatility of a digital

interface.

An oversampling configuration relaxes precision require-

ments in the quantization while maintaining 8-bit effective

output resolution, adequate for most vision tasks. Higher reso-

lution, if desired, can be obtained through stochastic encoding

of the digital inputs [24].

A 256 128 cell prototype was fabricated in 0.5 m CMOS.

The combination of analog array processing, oversampled input

encoding, and delta-sigma analog-to-digital conversion yields a

computational throughput of over 1 GMACS per milliwatt of

power. The architecture is scalable and capable of delivering

200 GOPS at 50 mW of power in a 0.18 m technology—a

level of throughput and efficiency suitable for real-time SVM

detection of complex objects on a portable platform.

REFERENCES

[1] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifier,” in Proc. 5th Annu. ACM Workshop Computational

Learning Theory, 1992, pp. 144–52.
[2] V. Vapnik, The Nature of Statistical Learning Theory. New York:

Springer-Verlag, 1995.
[3] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines:

An application to face detection,” Comput. Vis. Pattern Recogn., pp.
130–136, 1997.

[4] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, “Pedes-
trian detection using wavelet templates,” Comput. Vis. Pattern Recogn.,
pp. 193–199, 1997.

[5] C. Papageorgiou, M. Oren, and T. Poggio, “A general framework for
object detection,” in Int. Conf. Computer Vision ICCV, 1998.

[6] H. Sahbi, D. Geman, and N. Boujemaa, “Face detection using
coarse-to-fine support vector classifiers,” presented at the IEEE Int.
Conf. Image Processing, Rochester, NY, 2002.

[7] R. Genov, “Massively Parallel Mixed-Signal VLSI Kernel Machines,”
Ph.D. dissertation, Johns Hopkins Univ., Baltimore, MD, 2002.

[8] S. Kang and S.-W. Lee, “Handheld computer vision system for the vi-
sually impaired,” in Proc. 3rd Int. Workshop Human-Friendly Welfare

Robotic Syst., Daejeon, Korea, 2002, pp. 43–48.
[9] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural

networks architectures,” Neural Comput., vol. 7, pp. 219–269, 1995.
[10] M. Pontil and A. Verri, “Properties of support vector machines,” Neural

Comput., vol. 10, pp. 977–996, 1998.
[11] C. Burges, “A tutorial on support vector machines for pattern recog-

nition,” in Proc. Data Mining Knowledge Discovery, U. Fayyad, Ed.,
1998, pp. 1–43.

[12] G. Cauwenberghs and T. Poggio, “Incremental and decremental support
vector machine learning,” in Proc. IEEE Advanced Neural Information

Processing Systems, Conf., NIPS, 2001.
[13] G. Cauwenberghs and M. Bayoumi, Learning on Silicon, Analog VLSI

Adaptive Systems. Norwell, MA: Kluwer, 1999.
[14] B. Schölkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V.

Vapnik, “Comparing support vector machines with Gaussian kernels to
radial basis functions classifiers,” IEEE Trans. Signal Processing, vol.
45, pp. 2758–2765, Nov. 1997.

[15] A. Kramer, “Array-based analog computation,” IEEE Micro Mag., vol.
16, pp. 40–49, May 1996.

[16] A. Chiang, “A programmable CCD signal processor,” IEEE J. Solid-

State Circuits, vol. 25, pp. 1510–1517, Nov. 1990.
[17] C. Neugebauer and A. Yariv, “A parallel analog CCD/CMOS neural net-

work IC,” in Proc. IEEE Int. Joint Conf. Neural Networks, vol. 1, Seattle,
WA, 1991, pp. 447–451.

[18] V. Pedroni, A. Agranat, C. Neugebauer, and A. Yariv, “Pattern matching
and parallel processing with CCD technology,” Proc. IEEE Int. Joint

Conf. Neural Networks, vol. 3, pp. 620–623, 1992.
[19] M. Howes and D. Morgan, Eds., Charge-Coupled Devices and Sys-

tems. New York: Wiley, 1979.
[20] R. Genov and G. Cauwenberghs, “Charge-mode parallel architecture for

matrix-vector multiplication,” IEEE Trans. Circuits Syst. II, vol. 48, pp.
930–936, Oct. 2001.

[21] R. Harjani and T. A. Lee, “FRC: A method for extending the resolution
of Nyquist rate converters using oversampling,” IEEE Trans. Circuits

Syst. II, vol. 45, pp. 482–494, Apr. 1998.
[22] O. J. A. P. Nys and E. Dijkstra, “On configurable oversampled A/D

converters,” IEEE J. Solid-State Circuits, vol. 28, pp. 736–742, July
1993.

[23] G. Mulliken, F. Adil, G. Cauwenberghs, and R. Genov, “Delta-sigma al-
gorithmic analog-to-digital conversion,” in Proc. IEEE Int. Symp. Cir-

cuits Systems, Scottsdale, AZ, May 26–29, 2002.
[24] R. Genov and G. Cauwenberghs, “Stochastic Mixed-Signal VLSI

Architecture for High-Dimensional Kernel Machines,” in Proc. IEEE

Advanced Neural Information Processing Systems, Conf., NIPS, 2002.
[25] D. Anguita, S. Ridella, and S. Rovetta, “Circuital implementation of sup-

port vector machines,” Electron. Lett., vol. 34, no. 16, 1998.
[26] R. Genov, S. Chakrabartty, and G. Cauwenberghs, “Silicon support

vector machine with on-line learning,” Int. J. Pattern Recognition

Artificial Intell., vol. 17(3), pp. 385–404, 2003.
[27] J. Platt, “Fast training of support vector machines using sequential min-

imal optimization,” in Advances in Kernel Methods—Support Vector

Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge,
MA: MIT Press, 1999, pp. 185–208.

[28] S. Keerthi, C. Bhattacharyya, and K. Murthy, “A Fast Iterative Nearest
Point Algorithm for Support Vector Machine Classifier Design,” Dept.
CSA, IISc, Bangalore, India, Tech. Rep. TR-ISL-99-03, 1999.

1434 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Roman Genov (S’96–M’02) received the B.S.
degree with highest honors in electrical engineering
from Rochester Institute of Technology, Rochester,
NY, in 1996 and the M.S. and Ph.D. degrees in
electrical and computer engineering from the Johns
Hopkins University, Baltimore, MD, in 1998 and
2002, respectively.

He held engineering positions at Atmel Cor-
poration, Columbia, MD, in 1995 and Xerox
Corporation, Rochester, NY, in 1996. He was a
Visiting Researcher with the Robot Learning Group

at Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
in 1998 and in the Center for Biological and Computational Learning at
Massachusetts Institute of Technology, Cambridge, in 1999. He is currently an
Assistant Professor in the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON, Canada. His research interests include
analog and digital VLSI circuits, systems and algorithms for parallel signal
processing and adaptive neural computation with application to pattern
recognition, focal-plane imaging, autonomous system design, and low-power
instrumentation.

Dr. Genov is a Member of the IEEE Circuits and Systems Society and
Solid-State Circuits Society. He received a Best Presentation Award at IEEE
IJCNN’2000 and a Student Paper Contest Award at IEEE MWSCAS’2000.

Gert Cauwenberghs (S’89–M’94–SM’03) received
the Ph.D. degree in electrical engineering from Cali-
fornia Institute of Technology, Pasadena, in 1994.

He is presently Professor of Electrical and Com-
puter Engineering at the ‘ ohns Hopkins University,
Baltimore, MD. He was a Visiting Professor of Brain
and Cognitive Science at Massachusetts Institute
of Technology, Cambridge, in 1999. His research
covers VLSI circuits, systems and algorithms for
parallel signal processing, adaptive neural compu-
tation, and low-power coding and instrumentation.

He recently co-edited a book on Learning on Silicon (Norwell, MA: Kluwer,
1999).

Dr. Cauwenberghs was a Francqui Fellow of the Belgian American Educa-
tional Foundation in 1988, and received the National Science Foundation Ca-
reer Award in 1997, the Office of Naval Research Young Investigator Award
in 1999, and the Presidential Early Career Award for Scientists and Engineers
in 2000. He is Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS II, and the IEEE SENSORS JOURNAL. He was Publication Chair at IEEE
MWSCAS’2000, Analog Track Chair at IEEE ISCAS’2002, and Invited Ses-
sions Co-Chair at ISCAS 2003. He chaired the Analog Signal Processing Tech-
nical Committee of the IEEE Circuits and Systems Society in 2001.

