
Kerrighed: A Single System Image Cluster
Operating System for High Performance

Computing

Christine Morin1, Renaud Lottiaux1, Geoffroy Vallée2, Pascal Gallard1,
Gaël Utard1, R. Badrinath1,3, and Louis Rilling4

1 IRISA/INRIA – PARIS project-team
2 EDF

3 IIT Kharagpur
4 ENS-Cachan, antenne de Bretagne

Abstract. Kerrighed is a single system image operating system for clus-
ters. Kerrighed aims at combining high performance, high availability
and ease of use and programming. Kerrighed implements a set of global
resource management services that aim at making resource distribution
transparent to the applications, at managing resource sharing in and be-
tween applications and at taking benefit of the whole cluster resources
for demanding applications. Kerrighed is implemented as a set of mod-
ules extending the Linux kernel. Legacy multi-threaded applications and
message-passing based applications developed for an SMP PC running
Linux can be executed without re-compilation on a Kerrighed cluster.
The proposed demonstration presents a prototype of Kerrighed running
on a cluster of four portable PCs. It shows the main features of Ker-
righed in global memory, process and stream management by running
multi-threaded and MPI applications on top of Kerrighed.

1 Topics

We propose to demonstrate a prototype of Kerrighed1, a single system image
operating system for clusters. The research work presented in this prototype has
been carried out in the PARIS project-team at IRISA/INRIA and relates to
several topics:

Topic 01: Support Tools and Environments. A single system image oper-
ating system like Kerrighed can be considered as a tool or an environment
to conveniently and efficiently execute parallel applications on clusters.

Topic 03: Scheduling and Load Balancing. Kerrighed’s prototype imple-
ments a configurable global scheduler to balance the load on cluster nodes.
Kerrighed’s global scheduler is based on novel efficient process management
mechanisms.

1 Kerrighed (previously named Gobelins) has been filed as a community trademark.

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 1291–1294, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



1292 C. Morin et al.

Topic 09: Distributed Algorithms. The prototype of Kerrighed implements
the container concept for efficient global memory management. Based on
containers, Kerrighed provides shared virtual memory segments to threads
executing on different cluster nodes, a cooperative file cache and remote
memory paging.

Topic 14: Routing and Communication in Interconnection Networks.
Kerrighed’s prototype implements a portable high performance reliable com-
munication system providing a kernel level interface for the implementation
of Kerrighed’s distributed system services. The standard communication in-
terface used by communicating Linux processes (pipe, sockets, etc. . . ) is also
available in Kerrighed on top of this communication system. In Kerrighed,
communicating processes can be transparently migrated and can still effi-
ciently communicate with other processes after migration.

2 Originality of the Demonstrated Prototype

The main originality of the prototype we propose to present is that it is a single
system image operating system for clusters. Kerrighed provides the same inter-
face as the standard operating system running on each cluster node. The current
prototype has been implemented as a set of Linux modules and a small patch to
the kernel (less than 200 lines of code, mainly for exporting kernel functions).
Hence, existing applications that have been developed for an SMP PC running
Linux can be executed on a cluster without even being recompiled. Unix appli-
cations can be easily ported on Kerrighed by recompiling them. So, sequential
processes requiring huge processing and/or memory resources, multi-threaded
applications and parallel applications based on message passing can be easily
and efficiently executed on a cluster running Kerrighed. Unlike other systems
Kerrighed supports efficiently both the message-passing and the shared memory
programming models on clusters.

There are very few other research projects working on the design and imple-
mentation of a single system image operating system for clusters. Mosix [3] and
Genesis [1] are examples of operating systems targeting the single system image
properties. Mosix offers processor load balancing on top of a cluster. However,
it does not support memory sharing between threads or processes executing on
different cluster nodes unlike Kerrighed. A process which has migrated in Mosix
cannot communicate efficiently with other processes after migration as messages
are forwarded to it by the node on which it was created. Moreover, processes in
Mosix cannot take benefit of the local file cache of their current execution node
after migration, leading to poor performance for file accesses. Kerrighed has none
of these drawbacks as it preserves direct communications between processes even
after migration and as it implements a cooperative file cache.

Genesis is a single system image operating system for clusters which, in con-
trast to Kerrighed, has been developed from scratch and is based on the micro-
kernel technology. As Kerrighed it supports both the shared memory and the
message-passing programming paradigms. However, it implements a distributed



Kerrighed: A Single System Image Cluster Operating System 1293

shared memory system which does not provide a standard interface. Thus, legacy
shared memory parallel applications (such as Posix multi-threaded applications)
cannot be executed on Genesis without a substantial porting effort. To our knowl-
edge, Genesis only supports PVM for message-passing parallel applications.

3 Mechanisms for Demonstrating the Prototype

We will show a cluster of five portable PCs interconnected by a Fast Ethernet
network. Four nodes of the cluster will run Linux and the Kerrighed modules. On
this cluster, we will show the execution of instances of two parallel applications,
one being a multi-threaded application, Volrend, the other one being an MPI ap-
plication. Volrend is a multi-threaded application which implements ray-tracing
to display 3D images. The fifth node executes a standard Linux system and is
used to display the applications’ results and to show some performance values
(processor load, memory occupation and network throughtput for instance) as
well as the location of all applications’ threads and processes on the cluster’s
nodes (graphical interface with different colors for the different applications).

Kerrighed’s features that are demonstrated are the container concept for
memory sharing between threads (Volrend), the process migration mechanism
which allows to migrate any process or thread even if it communicates with
other threads or processes by shared memory (Volrend) or by message-passing
(Mandelbrot fractal), the configurable global scheduler in which the scheduling
policy can be changed without stopping Kerrighed and the applications currently
running on top of it.

Note that a demonstration of an initial prototype of Kerrighed (not includ-
ing process management and global scheduling features) has been successfully
demonstrated at Supercomputing in Baltimore (USA) in November 2002 and at
Linux Expo in Paris in February 2003 on the same cluster of portable PCs. The
demonstration is stand-alone and does not require an Internet access.

4 Scientific Content

Our goal in designing Kerrighed is to combine high performance, high availabil-
ity and ease of use [5]. Kerrighed performs global resource management. With
a set of global resource management services, Kerrighed aims to make resource
distribution transparent to the applications, to manage resource sharing in and
between applications and to take benefit of the whole cluster resources for de-
manding applications. These services are distributed and each of them is in
charge of the global management of a particular resource (memory, processor,
disk).

Global memory management in Kerrighed is based on the container concept
[4]. In modern operating systems, block devices and memory are managed on
page granularity. A container is a software object allowing to store and share
pages cluster wide. Containers are managed in a software layer in between high
level services of the node’s standard operating system (virtual memory, virtual



1294 C. Morin et al.

file system) and its device managers. Thus, the standard user interface is kept
while Kerrighed offers virtual shared memory segments, a cooperative file cache
and remote paging, all based on containers.

Kerrighed’s global process management service consists in a global scheduler
based on efficient process state management mechanisms. As characteristics of
the workloads executed on clusters may differ from one environment to another,
Kerrighed’s global scheduler has been designed to allow the specialization of the
scheduling policy [6]. Changing the global scheduling policy can be done dynam-
ically without rebooting the cluster nodes. The description of the scheduler to
be used in a particular environment need only be described using XML config-
uration files. Kerrighed implements a basic primitive to extract the state of a
process from the kernel. This primitive is exploited to perform process duplica-
tion, migration and check-pointing [7,2]. Processes exchanging messages can also
be efficiently migrated as Kerrighed implements migrable sockets that ensure a
direct communication between two communicating processes even after migra-
tion of one of them. These sockets are implemented on top of a dynamic stream
service that allows processes to attach or detach from a stream.

Kerrighed is an open source software distributed under the GNU GPL license.
Scientific publications and a first (demonstration) version can be downloaded at
http://www.kerrighed.org.

References

1. M.J. Hobbs A.M. Goscinski and J. Silock. Genesis : The operating system managing
parallelism and providing single system image on cluster. Technical Report TR
C00/03, School of Computing and Mathematics, Deakin University, February 2000.

2. Ramamurthy Badrinath and Christine Morin. Common mechanisms for supporting
fault tolerance in DSM and message passing systems. Rapport de recherche 4613,
INRIA, November 2002.

3. Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX Distributed Op-
erating System, volume 672 of Lecture Notes in Computer Science. Springer, 1993.

4. Renaud Lottiaux and Christine Morin. Containers: A sound basis for a true single
system image. In Proceeding of IEEE International Symposium on Cluster Com-
puting and the Grid (CCGrid ’01), pages 66–73, Brisbane, Australia, May 2001.

5. Christine Morin, Pascal Gallard, Renaud Lottiaux, and Geoffroy Vallée. Towards
an efficient single single system image cluster operating system. In ICA3PP, 2002.

6. Geoffroy Vallée, Christine Morin, Jean-Yves Berthou, and Louis Rilling. A new
approach to configurable dynamic scheduling in clusters based on single system
image technologies. In International Parallel and Distributed Processing Symposium,
April 2003.

7. Geoffroy Vallée, Christine Morin, Jean-Yves Berthou, Ivan Dutka Malen, and Re-
naud Lottiaux. Process migration based on Gobelins distributed shared memory. In
Proc. of the workshop on Distributed Shared Memory (DSM’02) in CCGRID 2002,
pages 325–330, Berlin, Allemagne, May 2002. IEEE Computer Society.


	Topics
	Originality of the Demonstrated Prototype
	Mechanisms for Demonstrating the Prototype
	Scientific Content

