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ABSTRACT: Premature infants experience untreated repetitive pain

that may alter their brain development. Effects of ketamine and

repetitive pain on cellular death and subsequent behavior were studied in

neonatal rats. Rat pups were randomized to undisturbed controls (C), 4%

formalin injection (F), ketamine alone (K, 5 mg/kg) or formalin plus

ketamine (KF) and were assessed for neuroactivation with Fos protein,

cellular death with FluoroJade-B, cognition with the radial arm maze,

and pain thresholds with the hot-plate. Greater Fos expression and cell

death occurred in F vs. C groups in defined brain areas at 1 and 4 h in

F compared with other groups. Cell death was accentuated 3.3-fold in

cortical areas and 1.6-fold in subcortical areas in the F compared with the

C group following repetitive pain and sacrifice 18–20 h later. These

effects were ameliorated by ketamine. Compared with the F group, all

other groups demonstrated greater exploratory and rearing behaviors and

decreased time for bait consumption at 1-h and 3-h intervals. Signifi-

cantly greater thermal pain latencies occurred in the KF and F groups.

Repetitive neonatal pain accentuates neuronal excitation and cell death

in developmentally regulated cortical and subcortical areas, which de-

creases the acquisition of visual-spatial clues, short-term and long-term

memory, and increases pain latencies. Ketamine analgesia mitigates

most of these effects. (Pediatr Res 62: 283–290, 2007)

Clinical studies indicate that exposure to adverse experi-

ences in early life alters brain function and behavior in

childhood (1), perhaps related to neuroplasticity of the devel-

oping nervous system. Adverse experiences during early de-

velopment alter neuronal activity patterns and may perma-

nently alter the functional wiring of immature neurons.

Epidemiologic associations occur relating perinatal or neona-

tal complications with behavioral and emotional problems in

childhood (2), altered pain responses (1,3,4), anxiety, depres-

sion (2,5), or suicidal tendencies (6,7).

Preterm infants experience repetitive pain during critical peri-

ods of brain development (8), concurrent with rapid brain growth,

exuberant synaptogenesis, increased expression of excitatory re-

ceptors (9), and developmentally regulated neuronal cell death

(10). Repetitive neonatal pain persistently alters pain processing,

in rats (11), mice (12), and humans (3,4), and glucocorticoid

responses in older infants (13). Conversely, prolonged treatment

of infant rats with high doses of analgesic or anesthetic agents

triggers widespread neurodegeneration in their brain (14). This

vulnerability coincides with the developmental growth spurt in

the brain, occurring postnatally in rodents, prenatally in full-term

and postnatally in preterm neonates (15). Thus, neuronal activity

in the neonatal brain may be required for cell survival and factors

that regulate neuronal activity or cell death would play important

roles in brain development. This study examines whether repet-

itive neonatal pain alters neuronal activation or cell death and if

these cellular changes are associated cognitive or behavioral

sequelae.

METHODS

All experiments were consistent with National Institutes of Health animal use
guidelines and approved by the Animal Care and Use Committee. Timed-
pregnant Long-Evans hooded rats were moved into cages with increased bedding
(3-in layer) in a noise-free parturition room on embryonic (E) day 18 (E18).
Pregnant females were handled daily by personnel who provided the animal
husbandry. Birthing cages were not changed after nesting occurred and the litters
were left undisturbed. Environmental noise, changes in temperature or humidity,
or changes in husbandry staff were strictly controlled, maintaining a 12:12-h
light-dark cycle, with food and water ad lib. On the day of birth (P0), rat pups
were randomly cross-fostered and culled to eight pups per dam.

Single inflammatory pain. Rat pups were randomly assigned to experimental
groups killed at 1 h or 4 h after 4% formalin injections into the right forepaw on
postnatal day 1 (P1, n � 11), P7 (n � 10), P14 (n � 10), or control groups that
remained undisturbed until sacrifice on P1 (n � 10), P7 (n � 6), or P14 ( n � 6).

Repetitive inflammatory pain. Rat pups were randomly assigned to un-
disturbed controls (C, n � 15), or receiving subcutaneous injections of 4%
formalin (F, n � 11), ketamine alone (K, n � 12), or ketamine and formalin
(KF, n � 10). Formalin (5 �L) was injected at hourly intervals into each paw
once daily from P1 to P4; ketamine (2.5 mg/kg � 2) was injected under the
interscapular skin, 5 min before the first and third formalin injections. All rats
were killed on P5 to harvest brain tissues at the peak period of neuronal cell
death, 18–20 h after the last injection (16).

Cellular staining. Infant rats from all groups were anesthetized with ether
and perfused with freshly made, ice-cold 4% paraformaldehyde. Brains were
harvested, immersed in paraformaldehyde, then 20% sucrose, and frozen in
cryoprotectant. Cryostat (Leica-3050, Wetzler, Germany) sections (20 �m
thick) were mounted on positively charged slides and stained with Fos
antibody (Oncogene, San Diego, CA) or FluoroJade-B (FJB) (Histo-Chem,
Jefferson, AR). FJB staining, a marker for neurodegeneration, and Fos
immunohistochemistry were conducted as reported previously (11,17). Two
observers, blinded to study group assignment, counted the stain-positive cells
in the cortex, hippocampus, amygdala, thalamus, hypothalamus, and habe-
nula. All cell counts were repeated for differences �8% and statistical
analyses included ANOVA, followed by Dunn’s or Tukey-Kramer post hoc

tests, with significance set at p � 0.01.
Radial arm maze test. Visual-spatial learning and memory were measured

using standard procedures for the radial 8-arm maze (RAM) in adult rats (18).
Before testing, neonatally treated adult rats (C � 27, K � 24, KF � 21, F �

20) were diet-restricted to 85% of baseline body weight and received training
for 5 d (19). A delayed nonmatch to sample (DNMS) paradigm was used with
initial exposure to the radial maze (4 lanes open) followed by a second
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exposure (all 8 lanes open) after intervals of 1 h (on P63) or 3 h (on P64).
Within the time required to consume all bait, we measured the frequency and
duration of behaviors, including rearing, re-entry into bait eaten arm, time
required to eat bait, and incomplete consumption of bait. Data analysis used
factorial ANOVA, with significance levels at p � 0.05.

Hot-plate test. Hot plate (HP) testing for thermal pain thresholds was
performed using an analgesiometer (Omnitech, Dartmouth, NS, Canada) as
described previously (11,20). Pain thresholds were measured by the latency to
limb shaking or paw lick with a maximum exposure time of 30 s. HP latency
was averaged from three trials with 15-min intervals between each trial.

RESULTS

Single Inflammatory Pain

Bilateral expression of fos protein occurs following for-

malin injection. Bilateral increases in Fos protein expression

occurred following unilateral inflammation in the right fore-

paw in P1, P7, and P14 rat pups, mostly limited to the

amygdala, hypothalamus, thalamus, and piriform cortex.

Compared with age-matched controls, P1 rats showed tran-

sient Fos expression in the amygdala and piriform cortex;

P7 rats showed transient increases in the amygdala and

thalamus (Fig. 1A and B). Fos expression at P14 was

developmentally distinct from P1 and P7, with prolonged

increases in the amygdala, hypothalamus, hippocampus,

and multiple cortical areas (including somatosensory cor-

tex) compared with controls.

Neuronal cell death following inflammatory pain is devel-

opmentally regulated. Compared with age-matched control

rats, cell death at P1 occurred bilaterally in the cortical,

thalamic, hypothalamic, amygdaloid, and hippocampal areas.

Figure 1. (A) Neuronal Fos expression differences (blue p � 0.05, green p � 0.01, red p � 0.001) between control groups (P1: n � 10, P7: n � 6, P14: n �

6) and those at 1 h and 4 h after formalin injection (P1: n � 11, P7: n � 10, P14: n � 10). P1 rats: Fos expression increased at 1 h in the ipsilateral basomedial

amygdaloid nucleus and contralateral piriform cortex; no differences occurred at 4 h. P7 rats: Fos expression increased at 1 h in the cortical amygdaloid nuclei

bilaterally and ipsilateral reuniens thalami, with no differences at 4 h. P14 rats: At 1 h, Fos expression increased bilaterally in lateral/basolateral amygdaloid

nuclei, parietal cortex areas 1 and 2, frontal and piriform cortex; hypothalamic paraventricular and periventricular nuclei. Fos expression increased ipsilaterally

in the basomedial amygdaloid nucleus, anterior hypothalamic nucleus; contralaterally in the cortical amygdaloid and medial amygdaloid nuclei. At 4 h,

hippocampal, anterodorsal and central medial thalamic nuclei showed greater Fos expression. (B) Photomicrographs (scale bar � 50 �m) from selected nuclei

at P1 (basomedial amygdaloid), P7 (cortical amygdaloid), and P14 (cortical amygdaloid), showing Fos expression at 1 h and 4 h after formalin injection.
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Widespread cell death also occurred in P7 rats, bilaterally

affecting multiple cortical areas and unilaterally the hippocam-

pus, amygdala, habenular, and hypothalamic nuclei. Minimal

cell death occurred at P14, only localized to the retrosplenial

cortex and the hippocampus (Figure. 2).

Repetitive Inflammatory Pain

Ketamine blocks the cell death following repeated forma-

lin injections. Compared with controls (C group), cell death in

the F group following repetitive pain from P1 to P4 was

accentuated 3.3-fold in cortical areas and 1.6-fold in subcor-

tical areas. These effects were ameliorated in the ketamine-

treated groups (KF or K) (Fig. 3A). Minimal or no differences

occurred in the thalamic nuclei or habenula, suggestive of low

NMDA receptor activity (21). Post hoc analyses showed that

cell death increased significantly in the F group, with no

differences between the C, KF, and K groups.

Reduced fos expression occurs following repetitive pain.

Fos expression at 18 h after the last injection serves as a

marker for neuronal viability and environmental inputs, rather

than pain-induced activation (11). Significant differences oc-

curred in the habenula, hippocampus, amygdala and thalamus,

but not in the hypothalamus (Fig. 3B). Fos expression patterns

between randomized groups showed post hoc differences as:

C � KF � K � F.

Ketamine reduces neuronal cell death in anatomically

defined areas. Adjacent sections stained for cell death and Fos

expression showed significant group differences within ana-

tomically defined cortical and subcortical areas (Table 1).

Most of the differences occurred between the C and F groups,

with increased cell death in cortical, hippocampal, and other

subcortical areas and reduced Fos expression in the limbic,

thalamic, and hypothalamic areas (Fig. 4 and Table 1). No

differences in cell death occurred between the C and KF

groups, whereas the K group showed reduced cell death and

reduced Fos expression in isolated thalamic and amygdalar

nuclei (Fig. 4).

Impaired visual-spatial cues occur in adult rats neonatally

exposed to repetitive pain. Short-term memory tested at 1-h

intervals showed lower frequencies of rearing or arm entries in

the F group (Fig. 5A and B), with reduced time for exploratory

behaviors (Fig. 5C). Exploratory and rearing behaviors in-

creased in the ketamine-treated groups (K, KF), implying

greater acquisition of visual-spatial cues. Following 3-h inter-

vals for testing long-term memory, the F group required

longer times for bait consumption (Fig. 5D). This, with a

Figure 2. (A) Pictograms of differences in cell death from control group, at 1 h and 4 h following 4% formalin injection (blue p � 0.05, green p � 0.01, red

p � 0.001). P1 rats: Cell death increased bilaterally at 1 h in the parietal cortex (area 1), contralateral hippocampus, lateral and periventricular hypothalamic

nuclei. Greater cell death at 4 h following 4% formalin injection occurred in the ipsilateral basomedial amygdaloid nucleus (also illustrated in the

photomicrographs magnified 20-fold). P7 rats: Neuronal cell death increased following 4% formalin injection in the ipsilateral hippocampus at 1 h. At 4 h, cell

death increased bilaterally in the frontal, hind limb, and granular retrosplenial cortex; ipsilaterally in parietal cortex (area 1), agranular retrosplenial cortex,

piriform cortex, lateral habenula and lateral hippocampus; and contralaterally in intercalated amygdaloid and parietal cortex (area 2). P14 rats: Neuronal cell

death increased at 1 h only in the retrosplenial cortex (granular, agranular) and ipsilateral hippocampus, but occurred at 4 h bilaterally in the retrosplenial cortex

and the contralateral hippocampus. (B) Photomicrographs (scale bar � 50 �m) from basomedial amygdaloid nuclei in P1 rats, showing greater cell death at 1 h

and 4 h after formalin injection.
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higher incidence of uneaten bait, implies impaired learning in

a DNMS paradigm.

Ketamine treatment ameliorates pain threshold changes

in adult females but not in males. Thermal pain latencies were

significantly reduced in the C and K groups compared with F and

KF groups, confirming long-term effects of neonatal inflamma-

tory pain (20). Ketamine appeared to ameliorate these long-term

effects in adult females, but not in males (Fig. 6).

DISCUSSION

Exposure to repetitive or prolonged pain occurs during

critical periods of brain development in preterm neonates

(8,22), which may alter the structure and function of their

developing brains (23,24). Brief inflammatory pain in the right

forepaw led to bilateral increases in neuronal activation, with

a shift from subcortical to cortical processing between P7 and

P14, and to increased cell death occurring more prominently at

P1 and P7 than at P14. Repetitive inflammatory pain from P1

to P4 accentuated cell death 3.3-fold in cortical areas and

1.6-fold in subcortical areas; these effects were blocked by

analgesic doses of ketamine (5 mg/kg). Increased cell death in

multiple cortical and limbic areas, may reduce neuronal via-

bility and activation in widespread subcortical areas. These

effects were largely blocked in rat pups given ketamine anal-

gesia, suggesting a neuroprotective role in newborn rats ex-

posed to repetitive inflammatory pain. Diminished cognitive

function and higher pain thresholds occurred in adult rats

following neonatal inflammatory pain, but only the cognitive

effects were ameliorated by ketamine analgesia.

Multiple follow-up studies of ex-preterm children have

reported developmental deficits (25,26), with greater needs

for special education (27) and health care (28). Repetitive

pain or maternal separation, both occurring routinely in

preterm babies, may lead to abnormal pain processing,

increased anxiety/stress disorders, attention deficit disor-

der, cognitive and behavioral sequelae (2,26,29,30). Rats

exposed to repetitive neonatal pain also develop increased

anxiety, hypervigilance, and exaggerated startle responses

(11), possibly mimicking some of the behaviors of ex-

preterm children (2,26,29,30).

Preterm neonates are exposed to acute and inflammatory

pain from frequent heelsticks, localized infections, indwelling

catheters and drains, postsurgical infections, venipunctures,

extravasation or phlebitis, or chemical or thermal burns. The

frequency and duration of these stimuli cannot be replicated in

animal models because of ethical constraints; therefore, we

developed a model using short-term inflammatory pain. We

chose 4% formalin injected subcutaneously, producing in-

flammation for 3–4 h, rather than prolonged inflammation

caused by carrageenan or CFA (which also leads to chronic

autoimmune arthritis in adult rats). Further, the formalin test

has been well-studied in newborn rats (31,32), but with lim-

ited data on its long-term effects (20). The biphasic response

to formalin in adult rats, occurs as a uniphasic pattern lasting

2–4 h in neonatal rats (33). Since each paw was injected only

once a day, little or no inflammation remained when subse-

quent injections were given.

Significant age-dependent patterns occurred in neuronal

Fos expression, with bilateral activation following unilateral

pain, consistent with cortical activation in human preterm

neonates (23). Neuronal activation at P1 and P7 was distinct

from that at P14 (Fig. 1), with limbic system activation at the

earlier ages, extending to the cortical, hippocampal, and hy-

pothalamic areas by P14. Fos expression patterns were mostly

transient (occurring at 1 h, but not at 4 h), confirming the

limited duration of formalin-induced pain (33) compared with

other models (34). Unilateral injection was also associated

with bilateral cell death, accentuated in the younger rats (P1,

P7), primarily affecting subcortical areas in P1 rats and corti-

cal areas in P7 rats (35).

Our repetitive pain paradigm, designed to examine the most

vulnerable period of rat brain development, showed markedly

Figure 3. (A) Neuronal cell death was significantly different between groups

in the cortex, hippocampus, amygdala, hypothalamus, and thalamus, but not

in the habenula. Cell death was significantly increased in the cortex, amyg-

dala, and hypothalamus (p � 0.001) in the formalin (F, black, n � 11) group

compared with all other groups [controls (C, white, n � 15), ketamine (K,

dark grey, n � 12), and ketamine-formalin (KF, light gray, n � 10)]. In the

hippocampus, greater cell death occurred in the F group compared with the K

group (p � 0.01); in the thalamus, greater cell death occurred in the F group

compared with the C group (p � 0.05). No differences in cell death occurred

between the C, K, or KF groups in any brain region. (B) Significant group

differences occurred for neuronal Fos expression in cortex, hippocampus,

amygdala, thalamus, and habenula, but not hypothalamus. Post hoc analyses

showed no differences in Fos expression between C and KF groups. F group

showed lower Fos expression in the cortex, hippocampus, amygdala, thalamus

(all p � 0.001) and habenula (p � 0.01), whereas the K group showed lower

Fos expression in the cortex, amygdala, thalamus (all p � 0.001), and

hippocampus (p � 0.01), compared with the C and KF groups. Greater Fos

expression occurred in the K vs. F groups, in the hippocampus (p � 0.01),

amygdala (p � 0.05) and thalamus (p � 0.001). (*p � 0.05; **p � 0.01;

‡p � 0.001).
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Table 1. Cellular staining in brain regions and nuclei (sum of cell counts from anterior, intermediate, and posterior sections from
P5 rat brains)

Brain regions

and subregions

Labels for brain subregions

(also apply to Figures 1, 2, 4)

Neuronal cell death

(FJB staining)

Neuronal activation

(Fos expression)

K-W ANOVA Dunn’s test K-W ANOVA Dunn’s test

Habenula:

LHbL Lateral habenular nucleus, lateral NS C vs F, p � 0.01

LHbM Lateral habenular nucleus, medial NS p � 0.043 C vs F, p � 0.05

MHb Medial habenular nucleus NS p � 0.001 C vs F, p � 0.01

Cortex:

Fr Frontal cortex p � 0.0018 C vs F, p � 0.05 NS

HL Hind limb area of the cortex p � 0.0001 C vs F, p � 0.001 NS

Oc Occipital cortex p � 0.0072 C vs F, NS NS

Te1 Temporal cortex, area 1 p � 0.0001 C vs F, NS NS

Te3 Temporal cortex, area 3 p � 0.0001 C vs F, NS NS

Den Dorsal endopiriform nucleus p � 0.0188 C vs F, NS p � 0.0001 C vs F, p � 0.001

Pir Piriform cortex p � 0.0001 C vs F, NS p � 0.0001 C vs F, p � 0.001

RSA Retrosplenial agranular cortex p � 0.0015 C vs F, p � 0.05 p � 0.0016 C vs F, NS

RSG Retrosplenial granular cortex p � 0.0001 C vs F, p � 0.05 p � 0.0001 C vs F, p � 0.001

Par1 Parietal cortex, area 1 p � 0.0001 C vs F, p � 0.05 NS

Par2 Parietal cortex, area 2 p � 0.0001 C vs F, p � 0.001 p � 0.0166 C vs F, NS

Amygdala:

AAD Anterior amygdaloid area, dorsal p � 0.0003 C vs F, p � 0.01 p � 0.0001 C vs F, p � 0.001

AAV Anterior amygdaloid area, ventral p � 0.0004 C vs F, NS p � 0.0001 C vs F, p � 0.001

ACo Anterior cortical amygdaloid nucleus p � 0.0001 C vs F, p � 0.001 p � 0.0001 C vs F, p � 0.001

AStr Amygdalostriatal transition area p � 0.0002 C vs F, p � 0.01 p � 0.0388 C vs F, NS

BL Basolateral amygdaloid nucleus NS p � 0.0002 C vs F, p � 0.001

BM Basomedial amygdaloid nucleus p � 0.0001 C vs F, NS p � 0.0134 C vs F, p � 0.01

BMA Basomedial amygdaloid nucleus, anterior

part

p � 0.0003 C vs F, p � 0.05 p � 0.0001 C vs F, p � 0.001

BSTIA Bed nucleus of the stria terminalis NS p � 0.0001 C vs F, p � 0.001

Ce Central amygdaloid nucleus p � 0.0002 C vs F, NS p � 0.0008 C vs F, p � 0.05

IM Intercalated nuclei of the amygdala NS p � 0.0001 C vs F, p � 0.001

La/BL Lateral amygdaloid nucleus p � 0.0004 C vs F, NS p � 0.0001 C vs F, p � 0.001

Me Medial amygdaloid nucleus p � 0.0035 C vs F, NS p � 0.0065 C vs F, p � 0.01

MeAV Medial amygdaloid nucleus, anteroventral

part

p � 0.0001 C vs F, p � 0.001 p � 0.0001 C vs F, p � 0.001

MePV Medial amygdaloid nucleus,

posteroventral part

p � 0.0001 C vs F, p � 0.05 p � 0.0001 C vs F, p � 0.001

PLCo Posterolateral cortical amygdaloid

nucleus

p � 0.0002 C vs F, p � 0.05 p � 0.0001 C vs F, p � 0.001

PMCo Posteromedial cortical amygdaloid

nucleus

p � 0.0002 C vs F, p � 0.05 p � 0.0001 C vs F, p � 0.001

St Stria terminalis p � 0.0005 C vs F, NS NS

Hippocampus:

DG Hippocampus, dentate gyrus p � 0.0078 C vs F, NS p � 0.0001 C vs F, p � 0.001

CA1 Area CA1 p � 0.0043 C vs F, NS p � 0.0001 C vs F, p � 0.001

CA3 Area CA3 p � 0.0035 C vs F, NS p � 0.0001 C vs F, p � 0.001

Hypothalamus:

AH Anterior hypothalamic nucleus p � 0.0001 C vs F, p � 0.01 p � 0.0149 C vs F, p � 0.05

AHP Anterior hypothalamic area, posterior p � 0.0010 C vs F, NS p � 0.0234 C vs F, NS

Arc Arcuate hypothalamic nucleus p � 0.0001 C vs F, p � 0.001 NS

LH Lateral hypothalamic area p � 0.0001 C vs F, NS p � 0.0246 C vs F, p � 0.05

LH/MTu Medial tubular nucleus NS p � 0.0104 C vs F, NS

Pa Paraventricular hypothalamic nucleus p � 0.0006 C vs F, p � 0.01 p � 0.0002 C vs F, p � 0.01

Pe Periventricular hypothalamic nucleus NS p � 0.0001 C vs F, p � 0.01

Sch/ox Suprachiasmatic nucleus p � 0.0002 C vs F, p � 0.01 NS

VMH Ventromedial hypothalamic nucleus NS p � 0.0049 C vs F, p � 0.05

Thalamus:

AD Anterodorsal thalamic nucleus NS p � 0.0001 C vs F, p � 0.001

AV/Rt Anteroventral thalamic nucleus p � 0.0269 C vs F, p � 0.01 p � 0.0003 C vs F, p � 0.001

CL Centrolateral thalamic nucleus NS p � 0.0001 C vs F, p � 0.001

CM Central medial thalamic nucleus NS p � 0.0001 C vs F, p � 0.001

G Gelatinosus thalamic nucleus NS p � 0.0007 C vs F, p � 0.01

IMD Intermediodorsal thalamic nucleus NS p � 0.0001 C vs F, p � 0.001

(Continued)
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accentuated cell death in the F group, associated with reduced

neuronal Fos expression. Glial activation, expression of proin-

flammatory cytokines, prolonged pain facilitation and hyper-

algesia (36–38) are likely to produce prolonged neuronal

hyperexcitability in cortical and subcortical areas. Cell death

in these areas may occur from such prolonged excitation,

reduced glutamate re-uptake at NMDA synapses, or direct

excitotoxicity via microglial activation (39). We speculate

that reduced cell death in the ketamine-treated rats resulted

from its analgesic effects, blockade of long-term pain fa-

cilitation (40), or its anti-inflammatory effects inhibiting

neutrophil activation and migration (41), although direct

evidence for these mechanisms are lacking (42). Ketamine

shows similar neuroprotective effects in experimental mod-

els of brain injury (43), infection (44), seizures (45), or

heart-lung bypass (46).

Since infant rats were killed at 18–20 h after the last

formalin injection, the reduced activation of neuronal Fos may

reflect a diminished viability of cortical, hippocampal, and

other neurons, coupled with reduced activation via environ-

mental stimuli. In contrast, neuronal activation in the hypo-

thalamus was relatively spared, perhaps mediating stress re-

sponses and maintaining bodily functions during this period of

repeated stress (47).

Figure 4. Pictograms of cellular differences from the control group, noted in anterior, intermediate, and posterior sections of the forebrain (red p � 0.001, green

p � 0.01). Differences between individual nuclei and cortical areas from the C group (labels in Table 1), show widespread increases in cell death and decreases

in Fos expression in the Formalin (F) group, which were blocked in the KF group. Significantly reduced Fos expression occurred in the F group compared with

C group in the thalamic, hypothalamic, amygdalar, and hippocampal regions, but not in cortical areas. No differences occurred in the Fos expression between

the C group and K or KF groups, except for reduced Fos expression in anterior basomedial amygdalar nucleus in the K group (p � 0.01).

Table 1. Continued

Brain regions

and subregions

Labels for brain subregions

(also apply to Figures 1, 2, 4)

Neuronal cell death

(FJB staining)

Neuronal activation

(Fos expression)

K-W ANOVA Dunn’s test K-W ANOVA Dunn’s test

MD Mediodorsal thalamic nucleus NS p � 0.0054 C vs F, p � 0.01

PC Paracentral thalamic nucleus p � 0.0014 C vs F, NS p � 0.0001 C vs F, p � 0.001

Po Posterior thalamic nuclear group p � 0.0001 C vs F, p � 0.001

PT Paratenial thalamic nucleus NS p � 0.0001 C vs F, p � 0.001

PV Paraventricular thalamic nucleus NS p � 0.0001 C vs F, p � 0.001

Re Reuniens thalamic nucleus p � 0.0256 C vs F, NS p � 0.0001 C vs F, p � 0.001

RH Rhomboid thalamic nucleus NS p � 0.0095 C vs F, p � 0.01

VL Ventrolateral thalamic nucleus p � 0.0037 C vs F, NS NS

Summed cell counts for Fos or FJB-positive cells were compared between groups; Pictograms in Figure 4 display group differences in cell counts obtained

from anterior, intermediate and posterior cryosections.
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Ketamine is widely used for producing anesthesia in human

neonates, although high doses of ketamine trigger widespread

neurodegeneration in newborn rats (16). The therapeutic rel-

evance of these findings remains unclear because these studies

used repeated, high-dose ketamine in the absence of surgical

stimulation, which does not reflect clinical practice (48–50).

Similar concerns plague the clinical applicability of in vitro

data from a primate model (51). In contrast, the cell death

induced by repetitive pain is ameliorated, at least partially, by

clinically relevant doses of ketamine.

Rat pups from all experimental groups were raised to

adulthood to assess thermal pain thresholds and visual-spatial

learning. Exposure to neonatal inflammatory pain raised sub-

sequent thermal pain thresholds, reminiscent of pain behaviors

reported by parents of ex-preterm children (1,52). Strikingly,

morphine treatment in neonatal rats ameliorated the long-term

effects of inflammatory pain in adult males but not in females

(20); whereas ketamine ameliorates these long-term effects in

female rats, but not in males.

The DNMS paradigm specifically tests the integrity of

hippocampal function, whereas the frequency of rearing and

exploratory behaviors denotes attentional processes (18,19).

Attentional processing, learning, and memory may be im-

paired following premature birth (26). Hippocampal cell death

in was highest in the F group, less in the C and KF groups, and

lowest in the K group, possibly associated with changes in

perception and discrimination of spatial or ordinal cues (53).

Areas showing enhanced cell loss in these experiments may

overlap with some of the brain regions showing volumetric

reductions in prematurely born children (54).

Reduction in pain-induced cell death by clinical doses of

ketamine analgesia should prompt studies investigating its

safety and efficacy in the preterm neonates exposed to pro-

longed pain.
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Figure 5. Visual-spatial learning in adult rats was examined in the radial 8-arm maze test (C � 27, K � 24, KF � 21, F � 20), with inter-exposure intervals

of 1 h (P63) and 3 h (P64). (A) and (B): After the 1-h interval, the frequency and duration of rearing, and the frequency and duration of exploratory behaviors

were reduced in the F group. (C) The F group also had a lower frequency of re-entry and time spent in the bait eaten arms. Greater exploratory and rearing

behaviors occurred in the ketamine-treated groups (K, KF) implying greater acquisition of visual-spatial cues. (D) Following a 3-h interval, the F group required

longer durations for bait consumption, suggestive of impaired learning in a delayed nonmatch to sample (DNMS) paradigm. *p � 0.05; **p � 0.01.

Figure 6. Hot plate latencies were measured at P74, after adult rats had

recovered from diet restriction. Responses to thermal pain were dampened in

formalin-treated animals, with longer latencies in the F and KF groups for

males (ANOVA, p � 0.001), for females (p � 0.003), and combined groups

(p � 0.001). Ketamine treatment in neonatal rats appears to ameliorate these

long-term changes in adult females, but not in males. *p � 0.05; **p � 0.01;

‡p � 0.001.
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