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Abstract
Ketamine, a noncompetitive, voltage-dependent N-Methyl-
D-aspartate receptor (NMDAR) antagonist, has been shown 
to have a rapid antidepressant effect and is used for patients 
experiencing treatment-resistant depression. We carried out 
a time-dependent targeted mass spectrometry-based me-
tabolomics profiling analysis combined with a quantitative 
based on in vivo 15N metabolic labeling proteome compari-
son of ketamine- and vehicle-treated mice. The metabolo-
mics and proteomics datasets were used to further elucidate 
ketamine’s mode of action on the gamma-aminobutyric acid 

(GABA)ergic and glutamatergic systems. In addition, myelin 
basic protein levels were analyzed by Western Blot. We 
found altered GABA, glutamate and glutamine metabolite 
levels and ratios as well as increased levels of putrescine and 
serine – 2 positive modulators of the NMDAR. In addition, 
GABA receptor (GABAR) protein levels were reduced, where-
as the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropi-
onic acid receptor (AMPAR) subunit Gria2 protein levels 
were increased upon ketamine treatment. The significantly 
altered metabolite and protein levels further significantly 
correlated with the antidepressant-like behavior, which was 
assessed using the forced swim test. In conclusion and in line 
with previous research, our data indicate that ketamine im-
pacts the AMPAR subunit Gria2 and results in decreased  
GABAergic inhibitory neurotransmission leading to in-
creased excitatory neuronal activity. © 2018 S. Karger AG, Basel
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Introduction

In 2000, Berman et al. [1] demonstrated for the first 
time a rapid antidepressant effect of a low dose of keta
mine, 2 and 4 h after administration of the drug and this 
effect lasted up to 10 days. Ketamine, a drug usually used 
for anesthesia, is a noncompetitive, voltage-dependent, N-
Methyl-D-aspartate receptor (NMDAR) antagonist that 
equally blocks the NMDAR subtype 2A- and 2B-contain-
ing receptors in the presence of Mg2+ [2–7]. An antidepres-
sant effect of ketamine is observed in patients experiencing 
treatment-resistant depression [8, 9]. Moreover, ketamine 
diminishes suicidal ideation [10]. Ketamine is not used as 
a first-line drug due to its psychomimetic side effects [11–
13]. The fact that ketamine is an NMDAR antagonist sug-
gests that the glutamatergic system of the brain including 
receptors, modulators, and associated pathways is tightly 
linked to its mechanism of action. Ketamine’s antidepres-
sant activity results from its action on the gamma-amino-
butyric acid (GABA)ergic and glutamatergic systems. Syn-
aptic plasticity, especially long-term potentiation (LTP), is 
promoted by glutamate that is released into the synaptic 
cleft upon neuronal activity. Once released, glutamate 
binds and activates alpha-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptors (AMPARs) and 
NMDARs. In contrast, GABA release into the synaptic 
cleft by GABAergic inhibitory interneurons inhibits neu-
ronal activity and synaptic plasticity. Glutamine is metabo-
lized to glutamate and GABA in neurons [14–17]. 

A low dose of ketamine (5 and 10 mg kg–1) seems to 
act through the activation of a mammalian target of ra-
pamycin and has been shown to cause an increased ex-
pression of synaptic proteins including postsynaptic den-
sity protein-95, synapsin1, and the AMPAR subunit 
Gria1 in the medial prefrontal cortex of rats (10 mg kg–1 
of ketamine) and AMPAR subunits Gria1 and Gria2 lev-
els in the hippocampus of mice (10 mg kg–1 of ketamine). 
Moreover, an elevated number of spines and spine activ-
ity in the medial prefrontal cortex of rats (10 mg kg–1 of 
ketamine) have been observed in response to the drug 
[18, 19]. Ketamine’s antidepressant-like effects are de-
pendent on AMPARs. Blocking AMPARs with 2,3-Dihy-
droxy-6-nitro-7-sulfamoyl-benzochinoxaline-2,3-dione 
(NBQX) reverses the antidepressant-like behavioral ef-
fects in mice (3 mg kg–1 of ketamine) and rats (10 mg 
kg–1 of ketamine) [18, 20]. Recently, Zanos et al. [19] dis-
covered that the fast antidepressant-like effects of keta
mine seem to be dependent on ketamine’s metabolism.  
In mice, the ketamine metabolite (2R, 6R)-hydroxynor-
ketamine exhibits an antidepressant-like effect similar to 

ketamine that is independent of NMDAR binding, but 
dependent on AMPAR activity. Pretreatment of the ani-
mals with NBQX prevented the antidepressant-like effect 
of (2R, 6R)-hydroxynorketamine [19].

A dose-response study in rats using microdialysis re-
vealed that low doses of ketamine (10, 20, and 30 mg kg–1) 
augment glutamate outflow in the prefrontal cortex and 
increase glutamatergic neurotransmission. In contrast, 
an intermediate dose of ketamine (50 mg kg–1) has no ef-
fect and an anesthetic dose of ketamine (200 mg kg–1) 
decreases extracellular glutamate levels, which is blocked 
when the AMPA/kainite receptor antagonist 6-cyano-
7-nitroquinoxaline-2,3-dione was applied to the intra-
prefrontal cortex [21]. 

A more detailed study on the glutamatergic and  
GABAergic system including receptors, modulators, and 
affected pathways is critical for the identification of new 
therapeutic targets for MDD drug development efforts 
with the goal of avoiding undesired side effects.

In the present study, we performed metabolomics and 
proteomics analyses in mice that revealed hippocampal 
alterations of GABA, glutamate, and glutamine metabo-
lite levels and ratios as well as GABAR and AMPAR pro-
tein levels in response to a low dose of ketamine. 

We chose the hippocampus as a relevant brain region 
for studying MDD and ketamine’s antidepressant-like ef-
fects [22–26]. Magnetic resonance imaging analyses re-
vealed hippocampal volume reduction during acute de-
pressive episodes that are believed to be involved in the 
pathobiology of MDD [27–29]. The volume changes are 
already apparent during the first depressive episode and 
are present during an acute episode of MDD [30]. Hip-
pocampal volume reduction might result from neuronal 
cell loss, pruning of apical dendrites in the hippocampal 
CA3 subregion, decreased dentate gyrus neurogenesis, 
and a loss of glial cells [31–33]. These effects can be re-
versed by antidepressant treatment, and hippocampal 
volume reduction seems to be less prominent or even ab-
sent in phases of remission [28]. Patients with MDD ex-
hibit memory impairments – which is dependent on the 
hippocampus – as well as a dysregulated connectivity net-
work of several brain regions including the hippocampus 
[34, 35].

Material and Methods

Animals and Ketamine Treatment 
Eight-week-old male C57BL/6 mice (Charles River Laborato-

ries, Maastricht, The Netherlands) were first singly housed for 2 
weeks under standard conditions (12 h) light/dark cycle, lights on 
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at 06.00 a.m., room temperature 23 ± 2  ° C, humidity 60%, tap wa-
ter and food ad libitum) in the facilities of the Max Planck Institute 
of Psychiatry. After habituation, the mice were treated intraperi-
toneally with S-ketamine (3 mg kg–1, Pfizer, Karlsruhe, Germany) 
or vehicle (0.9% saline solution) and a forced swim test (FST) was 
performed 2, 14, 24, and 72 h after ketamine treatment and animals 
were killed by an overdose of isoflurane (Forene, Abbott, Wies-
baden, Germany). The animals were subsequently perfused with 
0.9% ice-cold saline solution, decapitated, and brains were dissect-
ed, shock-frozen in liquid nitrogen, and stored at –80  ° C until fur-
ther analyses. The experiments were performed in accordance 
with the European Communities Council Directive 86/609/EEC. 
The protocols were approved by the committee for the Care and 
Use of Laboratory Animals of the Government of Upper Bavaria, 
Germany.

Forced Swim Test
Each mouse was put into a 2-L glass beaker (diameter: 13 cm, 

height: 24 cm) filled with tap water (21 ± 1  ° C) to a height of 15 cm, 
so that the mouse could not touch the bottom with its hind paws 
or tail. Testing duration was 6 min and at the end of the test the 
animals were immediately dried with a towel and returned to their 
home cage. The floating time was scored 2 h (ketamine-treated 
animals: n = 33, vehicle-treated animals: n = 33), 14 h (ketamine-
treated animals: n = 31, vehicle-treated animals: n = 29), 24 h (keta
mine-treated animals: n = 33, vehicle-treated animals: n = 33), and 
72 h (ketamine-treated animals: n = 31, vehicle-treated animals:  
n = 29) after ketamine treatment by an experienced observer, blind 
to the condition of the animals.

Isolation of Membrane-Associated (MF) Proteins 
MF proteins were prepared by repeated tissue homogenization 

and extraction of non-membrane-associated proteins and solubi-
lization of MF proteins with sodium dodecyl sulfate (SDS). For this 
purpose, tissues were homogenized for 30 s in 1 mL of 2 M NaCl, 
10 mM Hepes/NaOH, pH 7.4, containing 1 mM EDTA, phospha-
tase inhibitor cocktail 2 and 3 (Sigma-Aldrich, Munich, Germany), 
protease inhibitor cocktail Tablets “cOmplete” (Roche Diagnos-
tics, Mannheim, Germany), then incubated for 10 min and ho-
mogenized again for 30 s and further with a ultrasonicator for 3 × 
10 s on ice. The homogenates were centrifuged at 16,100 g at 4  ° C 
for 20 min. The supernatant contained the cytoplasmic (CF) pro-
teins. The pellets were rehomogenized in 1 mL of 0.1 M Na2CO3 
and 1 mM EDTA containing 1mM EDTA, phosphatase inhibitor 
cocktail 2 and 3 (Sigma-Aldrich, Munich, Germany), protease in-
hibitor cocktail Tablets “cOmplete” (Roche Diagnostics, 
Mannheim, Germany), pH 11.3, mixed at 4  ° C for 30 min and col-
lected by centrifugation (16,100 g at 4  ° C for 20 min). Subsequent-
ly, the pellets were extracted with 5 M urea, 100 mM NaCl, 10 mM 
HEPES, pH 7.4, and 1 mM EDTA containing 1 mM EDTA, phos-
phatase inhibitor cocktail 2 and 3 (Sigma-Aldrich, Munich, Ger-
many), protease inhibitor cocktail Tablets “cOmplete” (Roche Di-
agnostics, Mannheim, Germany) and then washed twice with 0.1 
M Tris/HCl, containing 1 mM EDTA, phosphatase inhibitor cock-
tail 2 and 3 (Sigma-Aldrich, Munich, Germany), protease inhibitor 
cocktail Tablets “cOmplete” (Roche Diagnostics, Mannheim, Ger-
many) pH 7.6. The pellets were solubilized in 20–50 µL of 2% SDS, 
50 mM dithiothreitol, and 0.1 M Tris/HCl, containing 1 mM EDTA, 
phosphatase inhibitor cocktail 2 and 3 (Sigma-Aldrich, Munich, 
Germany), protease inhibitor cocktail Tablets “cOmplete” (Roche 

Diagnostics, Mannheim, Germany) pH 7.6, at 90  ° C for 1 min and 
stored at –20  ° C until further analysis.

Western Blot 
Hippocampal MF proteins from 8-week-old male C57BL/6 

mice treated with ketamine for 2, 14, 24, and 72 h were fraction-
ated by SDS-polyacrylamide gel electrophoresis, and Western Blot 
was performed based on standard protocols. After electrophoresis, 
proteins were transferred to PVDF membranes (Immobilon-P, 
Millipore, Billerica, MA, USA). Primary antibodies were against 
myelin basic protein (MBP, Abcam, Cambridge, UK). Anti-rabbit, 
anti-mouse ECL horseradish peroxidase-linked secondary anti-
bodies (GE Healthcare Life Sciences, Little Chalfont, Buckingham-
shire, UK) were used. The densitometric analyses were performed 
with the Image Lab software (Bio-Rad, Munich, Germany).

Sample Preparation for Liquid Chromatography-ESI-Mass 
Spectrometry Analyses
Protein Sample Preparation for Quantitative Proteomics 
Analyses
Hippocampal CF and MF proteins were mixed 1: 1 with CF and 

MF 15N-labeled internal standards respectively. In vivo 15N-la-
beled hippocampal proteins were derived from C57BL/6 mice that 
were fed with a 15N diet (Silantes, Munich, Germany) for 12 weeks. 
50 μg of the 14N/15N protein mixture were separated by SDS-poly-
acrylamide gel electrophoresis. Separated proteins were stained 
with Coomassie Brilliant Blue for 20 min and destained overnight. 
Each gel lane was cut into 16 2.5 mm slices per biological replicate 
and each slice further cut into smaller pieces.

In-Gel-Trypsin Digestion and Peptide Extraction
The gel pieces were covered with 100 µL of 25 mM Na4H-

CO3/50% ACN for complete destaining and mixed for 10 min at 
room temperature. The supernatant was discarded and this step 
repeated twice. Proteins were reduced with 75 L 1× DTT/25 mM 
NH4HCO3 and incubated at 56 C for 30 min in the dark. The su-
pernatant was discarded and for alkylation, 100 µL IAM was added 
to the gel pieces and mixed for 30 min at room temperature. The 
supernatant was discarded and the gel pieces washed twice with 
100 µL 25 mM Na4HCO3/50% ACN and incubated for 10 min at 
room temperature. The supernatant was discarded and gel pieces 
dried for approximately 20 min at room temperature. Proteins 
were digested with 50 µL trypsin solution (5 ng/µL trypsin/25 mM 
NH4HCO3) overnight at 37  ° C. Peptides were extracted from the 
gel pieces by incubating them in 50 µL of 2% FA/50% ACN for 20 
min at 37  ° C followed by 5 min sonication. This step was repeated 
twice with 50 µL of 1% FA/50% ACN. The supernatants were then 
combined and dried (Speed Vac Plus, SC 210 A, Savant). The pel-
let was stored at –20  ° C.

Quantitative Proteomics Analyses by Liquid Chromatography 
Tandem Mass Spectrometry
Hippocampal MF and CF proteins were identified and quanti-

fied with a Dionex Ultimate 3000 RSLC nanoUPLC (Thermo Fish-
er Scientific, Waltham, MA, USA) system and a Q ExactiveTM Or-
bitrapTM mass spectrometer. Separation of peptides was performed 
by reversed-phase chromatography at a flow rate of 300 nL/min 
(Thermo Scientific PepMap C18, 2 µm particle size, 100A pore 
size, 75 µm × 50 cm length). Peptides were loaded onto a pre-col-
umn (Thermo Scientific PepMap 100 C18, 5 µm particle size, 100A 
pore size, 300 µm × 5 mm length) in 0.1% FA for 3 min at a flow 
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rate of 10 µL/min. Chromatography was performed using the fol-
lowing solvents: solvent A water + 0.1% FA, solvent B 80% ACN, 
20% water + 0.1% FA. A linear gradient of 2–40% B for 30 min was 
used. The liquid chromatography (LC) eluant was sprayed into the 
mass spectrometer by means of an easy-spray source (Thermo 
Fisher Scientific). All m/z values of eluting ions were measured in 
an Orbitrap mass analyzer, set at a resolution of 70,000. Data-de-
pendent scans (Top 20) were employed to automatically isolate 
and generate fragment ions by high-energy collisional dissociation 
in the quadrupole mass analyzer and measurement of the resulting 
fragment ions was performed in the Orbitrap analyser, set at a res-
olution of 17,500. Peptide ions with charge states of 2+ to 4+ and 
above were selected for fragmentation.

OrbitrapTM raw files were converted to mzXML files using 
MSConvert software. The in-house software package iSPY, which 
was adapted from an earlier version of a peptide quantitation pro-
gram known as iTracker, was used to identify and quantify pep-
tides [36]. The software was used to convert mzXML to mgf files 
that were then finally imported into Mascot and searched against 
the SwissProt Mouse database and a decoy database. The databas-
es were searched using the following settings: variable modifica-
tions of carbamidomethyl (cys), oxidation (met); 20 ppm peptide 
tolerance, 0.1 Da MS/MS tolerance, 2 missed cleavages and peptide 
charge state of +2, +3, or +4. In iSPY, Mascot dat output files were 
run through Percolator for improved identification. Non-unique 
peptides were discarded. Only peptides with a protein type 1 error 
of less than 0.01 were kept in the final dataset. The heavy and light 
peak intensities for each peptide were calculated in iSPY using re-
tention time and sequence information from the MS1 spectra and 
Mascot search respectively. The intensities for a pre-specified 

number of isotopomeric peaks were calculated by scanning 
through a retention window spanning a set distance either side of 
the maximum intensity value. The 14N and 15N peptide isotopic 
peaks from the MS1 dataset were used to compare the theoretical 
mass difference between the heavy and light peptides, and the typ-
ical isotopic distribution patterns. Only quantifiable peptides 
(those for which both a heavy and a light peak intensity were iden-
tified in 5 replicates) were included in the dataset.

Isolation of Polar Metabolites from Mouse Tissue
Mouse tissues were homogenized (2 min × 1,200 min–1, ho-

mogenizer PotterS, Sartorius, Göttingen, Germany) in 30-fold ice-
cold 80% methanol. Samples were centrifuged (14,000 g, 10 min, 
4  ° C) and the supernatants were incubated on dry ice. Afterwards, 
the pellets were incubated in six-fold ice-cold 80% methanol and 
then combined with the previous supernatants. The metabolite ex-
tracts were vortexed, centrifuged (14,000 g, 10 min, 4  ° C), and the 
solution was dried (Speed Vac Plus, SC 210 A, Savant). Samples 
were stored at –80  ° C. 

Targeted Metabolomics Analysis
Samples were resuspended using 20 μL LC-mass spectrometry 

(MS/MS) grade water, of which 10 µL were injected and analyzed 
using a 5500 QTRAP triple quadrupole mass spectrometer (AB/
SCIEX, Framingham, MA, USA) coupled to a Prominence UFLC 
high-performance LC system (Shimadzu, Columbia, SC, USA) via 
selected reaction monitoring (SRM) of a total of 293 endogenous 
water-soluble metabolites for steady-state analyses of samples.

Samples were delivered to the mass spectrometer via normal 
phase chromatography using a 4.6 mm × 10 cm Amide Xbridge 

Table 1. Hippocampal glutamatergic and GABAergic system-related (a) metabolite and (b) protein alterations after a single injection of 
a low dose of ketamine (3 mg kg–1); n = 5 per group and time point
a

Metabolite HMBD FC Time 
point, h

PLS-DA, 
VIP-score

SAM, 
p value

SAM, 
q value

SAM, 
FDR

GABA HMDB00112 1.13 72 1.57 0.044 0.22 ≤0.15
Glutamate HMDB00148 0.90 14 1.40 0.041 0.14 ≤0.10
Glutamine HMDB00641 0.77 14 1.87 0.002 0.07 ≤0.05
Putrescine HMDB01414 3.32 2 1.49 0.020 0.07 ≤0.10
Serine HMDB00187 1.14 2 1.32 0.049 0.08 ≤0.10

b

Protein ID Protein name FC Time
point, h

PLS-DA, 
VIP-score

SAM, 
p value

SAM, 
q value

SAM, 
FDR

GABAAR GABA receptor subunit α1 0.33 2 1.66 0.00882 0.095 ≤0.10
Gria2 AMPA receptor subunit 2 1.61 2 1.66 0.00789 0.073 ≤0.10
Gria3 AMPA receptor subunit 3 0.65 2 1.67 0.00756 0.071 ≤0.10

PLS-DA, partial least square-discriminant analysis; FC, fold change; SAM, significance analysis of microarrays (and proteins, me-
tabolites); VIP, variable importance in projection; FDR, false discovery rate; ID, identification; HMDB, human metabolome database; 
AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; GABA; gamma-aminobutyric acid.
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HILIC column (Waters, Milford, CT, USA) at 350 μL min–1. Gra-
dients were run starting from 85% buffer B (high-performance LC 
grade ACN) to 42% B from 0 to 5 min; 42% B to 0% B from 5 to 16 
min; 0% B was held from 16 to 24 min; 0% B to 85% B from 24 to 

25 min; 85% B was held for 7 min to re-equilibrate the column. 
Buffer A comprised 20 mM ammonium hydroxide/20 mM ammo-
nium acetate (pH 9.0) in 95: 5 water:ACN. Some metabolites were 
targeted in both positive and negative ion modes for SRM transi-
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Fig. 1. Hippocampal metabolite level, ratio, and correlation analy-
ses upon a single injection of a low dose of ketamine (3 mg kg–1). 
a Time-dependent metabolite levels of GABA, glutamate, and glu-
tamine. b Glutamate/GABA, glutamate/glutamine and GABA/
glutamine metabolite ratios determined by time-dependent me-
tabolomics analyses. c Time-dependent metabolite level changes 
of NMDAR positive modulators putrescine and serine. d Correla-

tion analyses of GABA, glutamate, glutamine, putrescine, and ser-
ine metabolite intensities with the FST floating time. * p ≤ 0.05, 
** p ≤ 0.01. p values were determined by SAM. Error bars represent 
SEM. The correlation coefficient, r, was calculated by Pearson. The 
linear regression line is shown only for significant (p ≤ 0.05) cor-
relation coefficients. 
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tions using positive/negative polarity switching. Electrospray ion-
ization voltage was +4,900 V in the positive ion mode and –4,500 
V in the negative ion mode. The dwell time was 4ms per SRM tran-
sition and the total cycle time was 1.89 s. Approximately 9–12 data 
points were acquired per detected metabolite. Peak areas from the 
total ion current for each metabolite-SRM transition were inte-
grated using the MultiQuant version 2.0 software (AB/SCIEX) 
[37]. Animals from the same cohort were used for all metabolo-
mics analyses.

Statistics and Data Analyses 
Identification of Significant Metabolite and Protein Level 
Alterations 
Metabolite intensities as well as protein ratios were median-

normalized and autoscaled for statistical analysis. Significant me-
tabolite and protein level changes upon ketamine treatment were 
identified by multivariate partial least squares-discriminant anal-
yses and high-dimensional feature selection significance analysis 
of microarrays and other – omics datasets (SAM) using Metabo-
Analyst [38]. The quality of the partial least squares-discriminant 
analyses models was assessed for R2, Q2 and accuracy values with 
variable influence of projection-score and for SAM with q value 
and false discovery rate [39]. We improved the robustness of our 
data analyses and increased confidence in significantly altered 
metabolites and proteins by considering the 2 different statistical 
methods.

Calculation of Metabolite Pair Ratios 
The median-normalized metabolite intensities before auto-

scaling of selected pairs of metabolites were used to calculate me-
tabolite ratios. For statistical analyses, Student’s t test was per-
formed by using the metabolite ratio of interest for each ketamine- 
and vehicle-treated animal (e.g., metabolite x/metabolite y of one 
ketamine-treated animal) calculated by dividing the metabolite 
intensity of metabolite x by the intensity of metabolite y for each 
time point. The final metabolite ratio of interest (e.g., metabolite 
x/metabolite y for all ketamine- and vehicle-treated animals) was 

then calculated by dividing the average metabolite intensities of all 
ketamine-treated animals by the average metabolite intensities of 
all vehicle-treated animals [40].

Results

In the present study, C57BL/6 wild-type mice were 
treated with a single injection of a low dose of ketamine 
(3 mg kg–1) for 24 h and the antidepressant-like behavior 
was assessed using the FST. To address the molecular ef-
fects of ketamine (3 mg kg–1) on the glutamatergic and 
GABAergic system, we analyzed the hippocampal metab-
olome and proteome of ketamine- and vehicle-treated 
mice by an SRM-based, targeted metabolomics platform 
and a proteomics workflow based on in vivo 15N meta-
bolic labeling and quantitative MS/MS. 

We analyzed glutamatergic and GABAergic metabo-
lites and proteins of ketamine- and vehicle-treated mice. 
GABA, glutamate, glutamine, putrescine, serine, 
GABAARα1, AMPAR subunit 2 (Gria2), and AMPAR 
subunit 3 (Gria3) levels were significantly altered (Table 
1).

We further examined the levels of the 3 amino acids 
and the GABA/glutamate, glutamate/glutamine, and 
GABA/glutamine ratios. GABA levels were upregulated 
at 72 h, whereas glutamate and glutamine levels were sig-
nificantly decreased 14 h after a single injection of a low 
dose of ketamine (Fig. 1a and Table 1). In addition, the 
GABA/glutamate ratio at 72 h and the glutamate/gluta-
mine and GABA/glutamine ratios at 14 h were increased 
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Fig.  2. Hippocampal protein level and  
correlation analyses after a single injec- 
tion of a low dose of ketamine (3 mg kg–1). 
a Alterations of GABAA receptor α1 
(GABAARα1), and AMPA receptor sub-
units Gria2 and Gria3 protein levels deter-
mined by quantitative mass spectrometry 
analyses 2 h after ketamine treatment.  
b Correlation analyses of GABAARα1, 
Gria2 and Gria3 protein intensities with 
the FST floating time (p ≤ 0.05). ** p ≤ 0.01. 
p values were determined by SAM. Error 
bars represent s.e.m. The correlation coef-
ficient, r, was calculated by Pearson. The 
linear regression line is shown only for sig-
nificant (p ≤ 0.05) correlation coefficients. 
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after a single injection of ketamine (Fig. 1b). Interesting-
ly, metabolite levels of 2 positive modulators of the  
NMDAR – putrescine and serine – were elevated already 
2 h after a single injection of ketamine (Fig. 1c and Table 
1). Furthermore, GABA, glutamate, glutamine, putres-
cine, and serine metabolite levels correlated statistically 
and significantly with the behavioral FST floating time 
(Fig. 1d).

Next, we analyzed proteins relevant for the glutama-
tergic and GABAergic systems, whereas GABAARα1 and 
AMPAR subunit Gria3 protein levels were downregulat-
ed. We observed increased AMPAR subunit Gria2 pro-
tein levels 2 h after ketamine administration (Fig. 2a and 
Table 1). Moreover, levels for all 3 proteins significantly 
correlated with the FST floating time (Fig. 2b). 

Ours as well as previous results on ketamine’s effects 
on the glutamatergic and GABAergic system as well as 
on neuronal plasticity, respectively, led us to analyze  
ketamine’s potential on myelination. The myelin sheath 
is a protective lipid layer around axons produced by glial 

cells [41]. Our proteomics data indicated increased (how-
ever, not significant) MBP levels 2 h after ketamine treat-
ment (see online supplementary Figure  1, available at  
www.karger.com/doi/10.1159/000493425). We decided 
to further analyze MBP levels by Western blot – addi-
tionally for the 14 and 72 h time points. Interestingly, 
ketamine treatment results in an increase of MBP levels 
already 2 and 24 h after a single injection (Fig. 3a). More-
over, MBP levels also correlated statistically and signifi-
cantly with the behavioral FST floating time at the 2 and 
24 h time point (Fig. 3b). 

Discussion/Conclusion

In the mammalian central nervous system, AMPARs 
mediate the majority of fast excitatory synaptic transmis-
sion. Gria2 is a critical subunit that determines mamma-
lian AMPAR function. It dictates the critical biophysical 
properties of the receptor, influences receptor assembly 
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shown only for significant (p ≤ 0.05) correlation coefficients.
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and trafficking, and plays a pivotal role in long-term syn-
aptic plasticity [42]. 

Homeostatic synaptic plasticity is distinct from input-
specific Hebbian forms of synaptic plasticity such as LTP, 
and is induced by chronically blocking neuronal activity 
or glutamatergic transmission in cultured neurons [43–
45]. Previous studies had shown that ketamine increases 
AMPAR subunits Gria1 and Gria2 as well as other synap-
tic protein levels. Furthermore, ketamine induces LTP 
and increases the number of spines in the prefrontal cor-
tex of rats [18, 19]. In the present study, ketamine was 
found to decrease GABAARα1 and AMPAR subunit 
Gria3 levels and elevate AMPAR subunit Gria2 levels, 
changing AMPAR composition in favor of Gria2. Fur-
thermore, all 3 protein levels significantly correlated with 
the FST floating time. 

Glutamate and GABA metabolite levels decreased  
14 h and increased again 72 h after ketamine injection. 
GABA and glutamate levels correlated with the FST float-
ing time indicative of the antidepressant-like effects. Glu-
tamine is metabolized to glutamate and GABA and then 
recycled in the respective glutamate/glutamine and 
GABA/glutamine pathways [46–48]. Glutamine metabo-
lite levels decreased and glutamate/glutamine and GABA/
glutamine ratios increased 14 h after ketamine treatment. 
These results appear to be contradictory to previous data 
where increased glutamate outflow in the prefrontal cor-
tex was found after ketamine treatment. A possible expla-
nation is that prefrontal cortex glutamate levels in the ear-
lier study were measured extracellularly, whereas our 
data reflect total cellular metabolite levels. Glutamate and 
GABA release is dependent on inhibitory and excitatory 
neuron activities. The observed neurotransmitter level 
changes represent the total pool and not the released lev-
els of glutamate, GABA, and glutamine.

Interestingly, levels for 2 positive modulators of the 
NMDAR – serine and putrescine – are elevated and sig-
nificantly correlate with the FST floating time 2 h after a 
single injection of ketamine. We speculate that the fast 
antidepressant-like effects of ketamine could be even 
more pronounced by an augmentation therapy with these 
NMDAR modulators. In this regard, putrescine has al-
ready been shown to exhibit a fast antidepressant effect in 
the FST [49].

A loss of hippocampal volume has been observed for 
a subset of MDD patients. This process can be reversed 
by AD treatment, which also results in symptom reduc-
tion. The volume decline by neuronal atrophy is due to 
weakened and shrunk synaptic connections and seems to 
be caused by stress. The observed reversal of the volume 

reduction in MDD patients might be the result of in-
creased synaptic plasticity [50–54]. A low dose of keta
mine has previously been shown to induce synaptic plas-
ticity that was apparent by newly formed spines in the 
prefrontal cortex of rats [18]. However, when applied at 
higher doses, ketamine (6 mg kg–1) results in a loss of the 
myelin sheath [12, 13, 55]. At higher, but still subanes-
thetic doses, ketamine (6 mg kg–1) results in a schizo-
phrenia-like phenotype in rodents with loss of the myelin 
sheath. We found that ketamine treatment at low doses 
(3 mg kg–1) results in increased MBP protein levels at the 
2 and 24 h time points. This rules out that the drug dose 
we used in this study produces molecular alterations that 
were observed in the ketamine-induced mouse models of 
schizophrenia, which show decreased myelin protein 
levels.

Taken together and in line with previous research, our 
data indicate that ketamine impacts the AMPAR sub- 
unit Gria2 and results in decreased GABAergic inhibi-
tory neurotransmission leading to increased excitatory 
neuronal activity. The increased levels of the positive 
NMDAR modulators putrescine and serine following 
ketamine treatment are in line with this finding. Our 
finding of elevated MBP protein levels is consistent with 
the enhanced axonal outgrowth and/or strengthening of 
the axonal signal transmission after ketamine treatment 
found in earlier studies. We submit that the observed in-
creased AMPAR subunit Gria2 and reduced GABAAR 
protein levels in combination with higher MBP protein 
levels are critical for the fast antidepressant-like effect of 
ketamine.
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