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ABSTRACT This article surveys emerging technologies related to pervasive edge computing (PEC) for

industrial internet-of-things (IIoT) enabled by fifth-generation (5G) and beyond communication networks.

PEC encompasses all devices that are capable of performing computational tasks locally, including those at

the edge of the core network (edge servers co-located with 5G base stations) and in the radio access network

(sensors, actuators, etc.). The main advantages of this paradigm are core network offloading (and benefits

therefrom) and low latency for delay-sensitive applications (e.g., automatic control). We have reviewed the

state-of-the-art in the PEC paradigm and its applications to the IIoT domain, which have been enabled

by the recent developments in 5G technology. We have classified and described three important research

areas related to PEC—distributed artificial intelligence methods, energy efficiency, and cyber security. We

have also identified the main open challenges that must be solved to have a scalable PEC-based IIoT

network that operates efficiently under different conditions. By explaining the applications, challenges,

and opportunities, our paper reinforces the perspective that the PEC paradigm is an extremely suitable and

important deployment model for industrial communication networks, considering the modern trend toward

private industrial 5G networks with local operations and flexible management.

INDEX TERMS Edge computing, industrial Internet of Things, 5G network, energy efficiency, artificial

intelligence, cyber security.

I. INTRODUCTION

Today, the Internet of Things (IoT) is a well-established

paradigm in modern wireless telecommunications with

numerous applications to society and the industry. IoT sys-

tems have radically evolved from simple solutions involving

single devices such as a single internet-connected video cam-

era to more advanced systems involving real-time analytics,

artificial intelligence, and hardware such as smart sensors and

actuators. IoT is also key for the so-called Industry 4.0, where

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaodong Xu .

‘‘smart’’ objects (machines and products) are leading to a new

paradigm shift in industrial production [1].

The application of IoT to the industrial sector is now gen-

erally called Industrial Internet of Things (IIoT) [2]. In IIoT,

a massive number of (smart) industrial machines, actuators,

and sensors connect to each other to form a network of smart

IoT-based devices with some computing power, communica-

tions capabilities, and data storage and caching [3], which

can be potentially shared to jointly perform computational

tasks. IIoT solutions can be used to improve connectivity,

efficiency, profits, scalability, and data speeds for indus-

trial applications, thereby enhancing predictive maintenance,

increasing safety, and boosting operational efficiencies.
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FIGURE 1. Schematic presentation of this paper’s structure and contributions.

Nevertheless, the full potential of IIoT can be realized

only if it is enabled by a flexible communication system

capable of supporting different requirements, from ultra-

reliable low-latency communications (URLLC) to massive

connectivity [4]. In this regard, recent advances in fifth-

generation (5G) communication technologies have emerged

at the center of IIoT applications [5] by offering greater

bandwidth, faster data transmission, and improved spectral

efficiency supported by localized private networks andmicro-

operators [6]. Nevertheless, new developments in both radio

access technologies and core network solutions are needed,

moving beyond the currently dominant design of cellular

systems based on human-type communications (i.e., long

data streams, with dominance of downlink) and cloud com-

puting (i.e., centralized data processing units working as

X-as-a-Service [7]) toward machine-type communications

and edge computing [4].

This article aims to systematically review the state-of-the-

art of edge computing enabled by 5G while indicating poten-

tial future developments beyond it in relation to IIoT. We will

especially focus on the emerging network architecture that is

based on pervasive edge computing (PEC), where virtually all

devices that compose the radio access network (from sensors

to edge servers co-located with the base stations/gateways)

perform computational tasks. As will be discussed in more

detail subsequently, the main advantages of edge computing

are related to the benefits of decreasing the traffic offered

to the core network (which is used to access the computa-

tional capabilities of the cloud) and providing low latency

for specific applications needed in industrial automation. It

is worth saying that while there are several surveys dealing

with edge computing and associated concepts (e.g., [8]–[10]),

they are not focused on the most recent developments related

to PEC in industrial applications. Our contribution (depicted

in Fig. 1) covers this current gap by articulating the recent

advances in radio access and network technologies, especially

those related to the important areas of artificial intelligence

(AI), federated learning (FL), energy efficiency, and cyber

security for different industrial applications.

The rest of this survey is organized as follows. In Section II,

we first clarify the meaning of PEC and elucidate its key

concepts, and then, we list some of its key applications to

5G, describing the recent advancements. Section III focuses

on machine learning (ML) tools that are used to enhance the

intelligence of IIoT processes enabled by PEC. Section IV

deals with the question of energy efficiency in PEC. Energy
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FIGURE 2. Cloud versus Edge Computing. (a) Typical cloud computing network where the end devices, which sense their
operation environments, forward the collected data to the cloud through the communication network for further
processing and inference. (b) Typical edge computing network where the edge devices in the network proximity of end
devices process the collected data, and the cloud acts as a complementary processing and storage unit.

efficiency is an important issue today since the large number

of distributed devices may lead to drastic increase in compu-

tational workloads and, in turn, energy usage. Further, cyber

security is imperative for industries to adopt 5G and PEC, and

hence, in SectionV,we discuss the challenges related to cyber

security and the research work addressing these challenges.

In each section from Section II–V, the most relevant research

works appropriate for the section are summarized in a table

(Tables 2–5, respectively). Finally, in Section VI, we discuss

the open challenges that still need to be addressed before we

have a 5G-based scalable PEC solution for IIoT.

II. PERVASIVE EDGE COMPUTING (PEC): KEY CONCEPTS

AND APPLICATIONS TO BEYOND 5G

The term edge computing has already been widely used by

the research and industrial community alike. However, a clear

definition is still lacking. In this section, we provide the defi-

nition of edge computing used throughout this article explain-

ing why we denominate it as pervasive edge computing.

The main idea behind the edge computing paradigm is to

exploit the storage and computing capabilities of different

devices at (or near) the network edge. A natural question

that arises is what is an edge? Edge can be defined as any

computing and networking resource, such as a smart phone

or a 5G base station, that lies between the data source and

the ‘‘cloud’’ (i.e., the core network). In other words, edge in

this article refers to the edge of the core network including

all the devices related to the radio access network. Since

these (potential) edge computing elements are widely spread,

we denominate this architecture as pervasive edge computing

(PEC), and it also incorporates the more restrictive (or fuzzy)

concepts of mobile edge computing (MEC), edge servers,

edge nodes, and fog network. Fig. 2 illustrates the process of

edge computing (which is decentralized with computational

tasks distributed among the nodes at the edge of the core

network) and contrasts it with cloud computing (which is

mainly centralized with computational tasks being performed

in the servers at the core network and the Internet).

PEC is beneficial as it moves data processes away from

centralized servers [11]. As a result, some IIoT applications

do not need to send their data through the core network,

avoiding congestion and potentially high delays. Moreover,

PEC can also pre-process data by filtering during the acquisi-

tion phase, thereby improving the speed of data analysis and

the decision-making processes [12]–[14]. Local processing

provided by PEC also helps to protect sensitive data that

are better processed on an edge device instead of send-

ing to a cloud. Note that although PEC provides signifi-

cant benefits to IIoT, cloud computing cannot be eliminated

completely because having a centralized location for the

data storage and analysis still has many benefits in differ-

ent industrial application. PEC is important for offloading

some tasks from the core network and also to fulfill strict

latency requirements, but the remaining data may still have

to be sent to the cloud for processing because of its better

processing capabilities. In the following section, we will

describe some of the tradeoffs of edge and cloud computing

architectures.
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A. CLOUD VERSUS EDGE COMPUTING: THE KEY

TRADEOFFS

As previously discussed, the edge computing paradigm has

emerged not to replace conventional local and cloud comput-

ing solutions, but to complement their capabilities. The truth

is that PEC alone cannot provide a universal solution that can

tackle all issues of future networks. Instead, it comes with

various tradeoffs that need to be investigated and well under-

stood. Cooperation among local, edge, and cloud computing

will be essential to meet the diverse requirements of IIoT.

Therefore, it is important to provide the readers with a funda-

mental understanding of the benefits and drawbacks that can

be potentially provided by the two architecture paradigms,

edge and cloud computing. In this subsection, we shed light

on themain tradeoffs of cloud computing and edge computing

solutions.

1) LATENCY

When PEC comes into play, the first benefit that one can

think of is the lower end-to-end latency that can be achieved.

Indeed, as widely demonstrated [15]–[19], in contrast to

cloud computing, the distances that data packets need to

travel are, in most cases, shortened with edge servers installed

closer to end-user applications; this can greatly contribute to

reducing latency. However, there are scenarios in which such

a benefit might not be attained. Latency does not depend only

on the distance between the user and the processing server.

It also depends on other factors such as the computational

complexity of tasks, processing power of edge servers, and

edge traffic. For instance, if the edge network is congested,

or if the time spent to process the offloaded computational

tasks is too high, it might be more advantageous to opt for

some cloud computing solution. This tradeoff can be visu-

alized in Fig. 3 that shows the latency versus the central

processing unit (CPU) cycles required per bit offloaded by

a single device in a wireless system assisted by either cloud

or edge computing. This simple example is generated based

on the system models proposed in [15], [16], in which the

total edge computing latency can be represented by

T Edge =
b

B Edge log2(1 + γ Edge)
+

bC

f Edge
, (1)

and the cloud computing latency by

T Cloud =
b

B Cloud log2(1 + γ Cloud)
+ τ

Cloud
, (2)

where b is the total number of bits of the offloaded task; C

is the number of CPU cycles required to compute one bit;

B Edge, B Cloud and γ
Edge, γ Cloud represent, respectively, the

bandwidths and signal-to-noise ratios (SNR) of the uplink

channels between device and edge server and device and

cloud gateway; f Edge denotes the CPU’s clock frequency in

the edge server; and τ
Cloud is a fixed latency due to the long

distance between the cloud gateway and the central cloud

server. As shown in Fig. 3, because cloud servers dispose

FIGURE 3. System latency versus required CPU cycles per bit in wireless
systems assisted by edge and cloud computing (b = 1 Mbit,
B Edge

= 10 MHz B Cloud
= 10 MHz, γ

Edge
= γ

Cloud
= 10 dB,

f Edge
= 6 GHz, τ

Cloud
= 100 ms).

of abundant computational resources, the latency in the sys-

tem assisted by cloud computing is not affected when the

task complexity increases. On the other hand, the latency

in the system assisted by edge computing escalates with

the increase in the number of CPU cycles, i.e., when the

computational complexity of the task becomes high.

A dynamic mobile scenario is another example where it

can be challenging to provide low end-to-end latency. This

is because mobile IIoT devices might not always be able to

fully use edge servers (which have a fixed location) in their

vicinity. As proposed in [20], a solution for this issue can be

achieved by employing some multi-hop strategy so that the

data can reach the nearest server. However, such an approach

comes also at the cost of increased communication latency.

In summary, to efficiently meet the latency requirements of

different IIoT applications, factors such as task complexities,

the processing power of servers, and the network topology

must be carefully taken into consideration when designing a

PEC-assisted network.

2) BACKHAUL BANDWIDTH

To satisfactorily attend a massive number of connections via

a centralized cloud architecture, stringent bandwidth require-

ments in the backhaul lines are needed. Otherwise, severe

congestion and packet losses could occur, resulting in unsta-

ble and unreliable cloud service provisioning. To alleviate

such an issue, cloud providers will have to make heavy

investments in communication infrastructures, which can be

financially unviable. Fortunately, PEC offers cheaper effi-

cient alternatives for reducing backhaul data traffic. By dis-

tributing the computational workload among different edge

servers, lower amounts of data are required to be exchanged

with the cloud. Edge data caching, data cleansing, and com-

pression are other efficient approaches for tackling the traffic

issue [21]–[23]. A combination of all these strategies can

effectively relax the backhaul bandwidth requirements and

decrease the costs of communication infrastructure.

The simulation examples illustrated in Fig. 4 show the

potential benefits that the cooperation between cloud and

VOLUME 8, 2020 206737
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FIGURE 4. Required backhaul bandwidth versus number of edge servers

for different values of b
Edge
max (D = 500 devices, γ

BH
= 30 dB,

T BH
= 100 ms).

edge computing can provide to reduce the required backhaul

bandwidth. In these examples, we consider a scenario with D

devices and N edge servers, in which the ith device offloads

bi bits to be computed in a cooperative manner by cloud and

edge servers. Specifically, bits are transmitted to the cloud

server only when the sum of the tasks exceeds the com-

bined computational capacity of the edge servers, i.e., when
∑D

i=1 bi > Nb
Edge
max , where b

Edge
max is the maximum number

of bits that each edge server is able to process. With these

assumptions, we compute the required backhaul bandwidth

by averaging 1 × 106 realizations of the following formula

B BH

=











∑D
i=1 bi − Nb

Edge
max

T BH log2(1 + γ BH)
, if

∑D

i=1
bi > NbEdgemax

0, otherwise,

(3)

where the number of bits bi is drawn from a uniform dis-

tribution between 100 kbit and 32 Mbit, and γ
BH and T BH

are, respectively, the backhaul SNR and the desired backhaul

latency. These results highlight the attractive capabilities of

edge computing to alleviate backhaul requirements. As one

can see, remarkable reductions in bandwidth are achieved

when increasing the number of edge servers. These savings

become even more prominent when the processing power of

edge servers gets high, i.e., when b
Edge
max is increased.

3) PRIVACY AND SECURITY

Privacy and security issues are critical concerns that arise

with PEC-assisted systems [24]–[32]. The pervasive deploy-

ment of edge servers, geographically distributed and closer

to the end users, can introduce numerous vulnerabilities to

the network; moreover, these vulnerabilities can be hard to

track. Edge servers may have limited computational capa-

bilities and might lack physical protection, which creates a

favorable scenario for hacker invasions and eavesdropping

[24]. On the other hand, the centralized architecture of the

FIGURE 5. Outage probability curves for wireless systems assisted by
cloud and edge computing considering different numbers of edge servers
(B BH

= 2 MHz, B Edge
= 50 kHz, R target

= 5 Mbit/s).

cloud computing paradigm together with the high compu-

tational power of its cloud servers enable the implemen-

tation of strong security measures, including sophisticated

encryption techniques and very safe physical infrastructures.

As a result, in general, it is more challenging to hack and to

physically violate cloud servers [33]. An in-depth discussion

highlighting important recent works on this topic is provided

in Section V.

4) ROBUSTNESS TO FAILURES

One strong aspect of PEC is that it enables robustness to

failures. Due to the branch architecture of PEC, it becomes

very hard to shut down the entire network. For instance, if an

electricity outage happens in a particular area of the grid,

the edge computing services of other areas will continue to

operate normally, unaffected. In contrast, if a given IIoT net-

work relies solely on centralized cloud computing, when the

electricity supply fails due to any natural disaster happening

in the cloud infrastructure, or the backhaul communication

link becomes unstable, the whole network will fail [34], [35].

To exemplify the robustness of PEC, in Fig. 5, we show

the outage probability curves experienced in two wireless

systems assisted by cloud and edge computing. In the first

system, we consider that one IIoT device is assisted by only

cloud computing, in which the device transmits its data to

a gateway, such as a base station, that communicates with

a central server through a wireless backhaul link with band-

width B BH. In particular, we assume that the cloud-assisted

IIoT device experiences outage if the data rate achieved in the

backhaul link is less than its target rate, R target. On the other

hand, the second system is assisted by only edge computing,

where one IIoT device offloads its data to N edge servers

through N wireless links, each with bandwidth B Edge, such

that B Edge
< B BH. Differently from the first scenario, in this

edge-assisted system, the IIoT device faces outage only if the

data rates achieved in all N links are less than R target. For

illustrative purposes, the SNR observed in the backhaul link

for the cloud-assisted system is defined by γ
BH =

|h BH|2

σn
,

206738 VOLUME 8, 2020
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and for edge-assisted system by γ
Edge
n =

|h
Edge
n |2

σn
, where

σn represents the noise variance, and h
BH and h

Edge
n denote,

respectively, the channel coefficients for backhaul link and

for the nth edge link, which are modeled by complex Gaus-

sian random variables with zero mean and unit variance.

Under these definitions, the outage probability for the cloud-

assisted system is calculated by

P Cloud = P[B BH log2(1 + γ
BH) < R target], (4)

and for the edge-assisted system by

P Edge =

N
∏

n=1

P[B Edge log2(1 + γ
Edge
n ) < R target]. (5)

As shown in Fig. 5, even though the system assisted by

cloud computing achieves the best performance when the

SNR is low, the one assisted by edge computing becomes

more robust in the moderate to high SNR regime as the

number of edge servers increases, outperforming the cloud-

assisted counterpart. These results provide a clear example

of the tolerance to failures of a PEC system. Nevertheless,

despite the resiliency that PEC can provide to IIoT, systemic

software failures can still happen, and this can result in a

generalized network collapse, as reported in [34], [36], [37].

5) MONETARY COST

Cloud computing providers usually charge the costumers

for data transmissions, storage, and computation services

[38]. Therefore, if the number of transmissions grows, if the

amount of data that needs to be stored increases, or if compu-

tation tasks become more complex (which is likely to happen

in IIoT), it can become excessively expensive to rely only

on cloud services [39]. On the other hand, by computing and

caching data and tasks at the edge, the PEC-assisted networks

can decrease the traffic to cloud servers and effectively reduce

the monetary costs with cloud services. However, note that

even though PEC can reduce the expenditure with cloud

services, shifting to a pervasive decentralized architecture can

also lead to an increase in costs for the installation of new

hardware and additional energy consumption [40].

These tradeoffs show that the design of a PEC-assisted

network should be optimized based on the characteristics

and requirements of each specific application. At the same

time, standardized flexible solutions, such as those offered

by 5G (and beyond) communication systems, are crucial for

guaranteeing the heterogeneous quality of services of the

future IIoT, making 5G a key enabler of PEC.

B. VIRTUALIZATION AS AN ENABLER FOR EDGE

COMPUTING

As we discussed earlier, edge and cloud, and the resources

in between, complement each other. Depending on an appli-

cation’s requirements, a service provider deploys its services

on the available network nodes considering their objectives,

tradeoffs, and constraints. In contrast to the mostly homoge-

neous resources of the cloud, the edge infrastructure might be

composed of multiple parties including end users in the case

of PEC; this leads to an infrastructure with very diverse node

properties. The challenges emerging due to this heterogeneity

can largely be mitigated by virtualization techniques.

Virtualization techniques, be it using a virtual machine

(VM) or a container, offer three key benefits for edge

computing [41]: (i) hiding of resource heterogeneity and

thus enabling of platform independence; (ii) ease of ser-

vice deployment and management via resource abstraction;

and (ii) isolation. First, virtualization hides the underlying

hardware heterogeneity by ensuring an identical execution

environment via the specification of a virtual environment

[41]. Second, virtualization facilitates resource abstraction

and hardware emulation, thereby simplifying the interaction

between the services and the underlying hardware. A hyper-

visor handles the resource management for the services run-

ning in a virtual machine. Finally, virtualization achieves

various levels of isolation, e.g., at hardware level or oper-

ating system level, among the different services hosted on

the same node. Note that virtualization approaches might

differ from each other in their storage overhead, memory

cost, and initialization latency according to the virtualization

is implemented; for example, a VM hosts its own OS and

therefore is considered heavyweight compared to a container

that uses the hardware and the kernel of its host machine [41].

Lightweight containers have gained higher support for edge

computing due to their lower resource footprint in compari-

son to VMs [42].

The deployment may become suboptimal with evolving

network dynamics, e.g., changes in the user or edge node

locations, or in the network conditions, leading to inefficient

operations. Hence, services need to be swiftly migrated to

other network locations, e.g., closer to the request locations.

Note that a service can consist of multiple tasks and the tasks

can be deployed on different nodes based on their computa-

tion and communication requirements as well as the depen-

dencies among the tasks. Hence, a service provider has to

profile the requirements of the sub-tasks of a service, decide

on which network nodes to deploy each task, and migrate the

tasks to the new locations seamlessly or withminimal impacts

on the ongoing sessions [43]. While computation offloading

offers many benefits to the resource-limited devices by aug-

menting themwith resourceful network nodes, it poses signif-

icant challenges such as smooth service migration especially

for mobile end users. Stateful service migration includes

transfer of both the execution environment, e.g., a VM or

container, and the application-related data such as runtime

memory states. Hence, when the data to be transmitted from

one host to another is large, it will result in a long migration

delay. To ensure service continuity, live migration is desirable

as opposed to cold migration which suspends a service during

the time the service is migrated to another host [44].

There is increasing literature on improving service migra-

tion performance, e.g., [45], [46], and [42]. Ma et al. [45],

[46] proposed to leverage the layered storage system of

Docker containers: the base image layers of a container can
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TABLE 1. Description of acronyms used in ‘‘PEC in 5G and Beyond: Applications’’ section .

be downloaded before migration from a cloud server while

the container layer and runtime data are transferred from

the source host to the destination host after initiating the

migration. The authors showed a significant decrease in the

migration time and transferred data size for an example sce-

nario and discussed that pipelining can also introduce further

improvements in the migration delay. Bellavista et al. [42]

proposed a flexible service migration framework that can

operate in various modes, e.g., application-agnostic vs.

application-aware. They showed that understanding the ser-

vice characteristics and leveraging certain properties helps

to migration latency. Please refer to [47] and [44] for an

elaborate discussion on service migration, [41] for virtual

machine management, and [43] for computation offloading

approaches.

C. PEC IN 5G AND BEYOND: APPLICATIONS

The discussions within 3rd Generation Partnership Project

(3GPP) indicate the path for current and future devel-

opments of 5G and beyond technologies. We identified

four types of PEC applications, which are enabled by

these technologies. For greater clarity, the abbreviations

used in this section are listed, expanded, and explained in

Table 1.

206740 VOLUME 8, 2020
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TABLE 2. Summary of the relevant research work related to Section II-C ‘‘PEC in 5G and Beyond: Applications’’.

1) MISSION-CRITICAL APPLICATIONS

An active PEC-related research field is concerned with mis-

sion critical settings that have strict requirements of latency,

availability, and reliability. For example, URLLC in 5G

aims to support mission-critical applications.Mission-critical

applications are almost always related to industrial applica-

tions that have greater emphasis on feedback control loop and

automation.

Different advanced multiple access techniques are being

proposed to improve the system performance in terms of

latency and reliability. Grant-free access and non-orthogonal

multiple access (NOMA) are examples of such promising

techniques. For instance, in [48], a closed-form expression

for the spectral efficiency of two preamble structures in

a multiple-input multiple-output (MIMO) based grant-free

random access (mGFRA) scenario was obtained. The first

preamble structure was named as concatenated orthogonal

preamble (COP) and the second as single orthogonal pream-

ble (SOP). The authors concluded that there is a threshold

between both preambles in terms of the number of anten-

nas in the massive MIMO (mMIMO) scheme. In [49], the

authors proposed a framework to treat collisions in a grant-

free NOMA (GF-NOMA) scheme. The authors used Pois-

son point processes and order statistics to derive simplified

expressions of the outage probability and throughput of the

system for both successive joint decoding (SJD) and succes-

sive interference cancellation (SIC).

Another key research area is the minimization of task exe-

cution latency. A mathematical model of the minimization of

the sum of task execution latencies of devices, which operate

under interference, was presented in [17]. Here, the authors

provided an integrated framework for partial offloading and

interference management using the orthogonal frequency-

division multiple access (OFDMA) scheme. They formulated

the total latency of minimization as a mixed integer nonlinear

programming (MINLP) problem, in which desired energy

consumption, partial offloading, and resource allocation con-

straints were considered. A novel iterative scheme named

joint partial offloading and resource allocation (JPORA)

on data segmentation was proposed to optimize the Qual-

ity of service(QoS)-aware communication. JPORA obtained

the lowest latency as compared to other baseline schemes,

while simultaneously reducing the energy consumption in the

devices.

2) AUGMENTED AND VIRTUAL REALITY APPLICATIONS

5G radio access and computational resources must be brought

closer to augmented reality (AR) and virtual reality (VR)

applications, which will also employ PEC. Since these

immersive media applications require very low latency,
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typically lower than 20 ms, the delay budget of the network to

deliver the requested content is very tight. Edge servers can

both reduce the computation time and energy consumption

on the end devices by performing computation-heavy tasks

such as rendering or object detection in AR. The authors

of [21] formulated a joint radio communication, caching,

and computing decision problem to optimize resource allo-

cation at edge access points and mobile VR devices. In

[50], the underlying dynamic rendering-module placement

problem on mobile VR group gaming services was studied

using model predictive control. Here, the authors proposed a

methodology based on graph theory to explore the connec-

tion between the placement problem and the minimal s-t cut

problem.

Since a ultra-high transmission rate is required for immer-

sive media applications, the authors of [51] formulated a

joint caching and computing optimization on a PEC-based

mobile VR delivery framework to support diverse fields

of view (FOVs) in advance. They proposed a closed-form

expression for the optimal joint policy that identifies key

tradeoffs in terms of computing, communication, and caching

capabilities, when FOV are homogeneous. In the case of het-

erogeneous FOVs, the framework considered a local optima

transformation into a linearly constrained quadratic problem.

It is important to remark that AR and VR applications are

very important to the field of intelligent machines and remote

control, which can, for example, can increase the safety of

operations in mining and maritime vessels.

3) NETWORK OPTIMIZATION APPLICATIONS

In 5G cellular networks, edge computing is a key enabler

to support specialized key performance indicators (KPIs)

such as low latency, high connection density, and bandwidth

efficiency. In addition, the evolution of virtual network func-

tions (VNF) running on general purpose edge infrastructure

creates novel technical possibilities, such as virtualization of

a portion of the access network with functionalities deployed

close to the end users. In the context of network slicing,

which facilitates the creation of a logical end-to-end isolated

network to support specific applications, the authors in [52]

established a combinatorial optimization model that natively

supports multiple network slices with different QoS require-

ments. The algorithm addressed a combinatorial problem that

was a multi-period variant of the generalized assignment

problem. They also showed that the network performance

benefits from a multi-sliced approach that is more suitable

for capturing the distinct spatiotemporal pattern of each slice

than conventional single-slice models.

The distributed network topology that characterizes PEC

and new improvements in software defined networks (SDN)

and software defined radio (SDR) will enable cutting-edge

technologies, with the potential to improve the performance

of wireless communication systems beyond the current KPI

requirements. One promising research topic is orchestration

on network slicing within private 5G networks with local

operators [6]. This featured approach, which is implemented

via advanced ML techniques, aims to optimize the perfor-

mance of complex systems such as the combination of dif-

ferent sub-slices on the end-to-end network slice. Shen et al.

has highlighted some benefits and potentials of AI-based

techniques on next-generation wireless networks [53]. Three

challenging scenarios were addressed using AI, including

flexible radio access network slicing, automated radio access

technology selection, and mobile edge caching and content

delivery.

A promising beyond 5G technology is cell-free massive

MIMO, which aims to deploy distributed access points in

contrast to the traditional cellular deployment of current

broadband wireless networks. In [54], a PEC implementation

was considered with a diversity of computational/processing

requirements of the users. The authors considered access

points with PEC servers and a central server with cloud

computing capability. It is also important to consider that

local industrial network operators for 5G are key enablers for

realizing the PEC to its fullest extent as the most suitable

way to flexibly manage the network resources in virtual

slices reserved to different applications [55]. Finally, PEC

is expected to support every layer of mobile networks to

renovate the common computing architecture, based on the

analysis of the wireless big data, as stated in [56].

4) VEHICULAR COMPUTING APPLICATIONS

The safe and efficient deployment of autonomous vehicles

is a key application area of PEC and 5G networks, and it

has been attracting strong research interest [57]. For exam-

ple, cooperative autonomous driving based on PEC was pro-

posed in [58]; here, the authors developed a prototype system

that was based on a 5G next-generation radio access net-

work, a PEC server providing high definition 3D dynamic

map service, and a cooperative driving vehicle platoon.

They also performed several field tests, where the results

indicated that the combination of 5G-vehicle-to-everything

(V2X), PEC, and cooperative autonomous driving can pro-

vide important improvements to the system. However, these

practical deployments also presented some challenges. To

address them, the authors proposed twoAI-based approaches.

The first one was a deep-learning-based tool called deep

spatio-temporal residual networks with a permutation oper-

ator (PST-ResNet), and the second was a swarm intelligence-

based optimization tool called subpopulation collaboration

based dynamic self-adaption cuckoo search (SC-DSCS).

In [20], the authors proposed a computation offloading

scheme for vehicles using the multi-hop vehicular ad hoc net-

work (VANET), called multi-hop VANETs-assisted (MHVA)

offloading strategy. A reliability model for multi-hop rout-

ing was developed using link correlation theory applied to

VANET. The offloading strategy based on a binary search

algorithm was optimized in order to identify the lowest

relaying and reduced computing cost. The simulation results

of multi-hop VANETs-assisted (MHVA) offloading strategy

showed better offloading performance in terms of delay and

cost, when compared to typical strategies. Although vehicular
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technologies are being studied in scenarios related to trans-

portation, similar solutions could be used in private industrial

networks considering mobile (autonomous) robots or large-

scale plants related to, for example, mining.

PEC will play a key role in beyond 5G technologies. As in

5G, it is expected that PEC will operate as an intermediate

layer providing low latency and local data processing for crit-

ical and resource constrained applications. AR, VR, network

optimization, V2X communication, energy efficiency, and

offloading for URLLC can be cited as particularly relevant

use cases [59].

III. ARTIFICIAL INTELLIGENCE IN PEC

IoT devices are normally heterogeneous devices and difficult

to coordinate. As a result, a major challenge in PEC is the

efficient resource co-ordination and communication between

different types of heterogeneous edge devices, from comput-

ers equipped with graphical processing units (GPUs) to smart

phones with mobile processors to devices with just small

single-board computers like Raspberry Pi [67]. Secondly,

edge devices have to coordinate with the cloud under dynamic

network conditions and different settings to ensure satisfac-

tory application-level performance. Several AI techniques

have been proposed to meet these challenges. Among them,

deep learning (DL) is very promising due to its potential

to create hybrid approaches that combine cloud and edge

computing.

In this section, we first briefly present the recent status

of DL research applied to PEC before moving to our major

focus, the relatively new concept of federated learning (FL).

FL is an extremely important technique that has a nearly sym-

biotic role with PEC for addressing privacy issues. Privacy is

a major concern with smart devices because of the need to

interact and share data with the cloud and third-party plat-

forms. FL takes advantage of PEC to maintain user privacy

while performing the required computations efficiently.

A. DEEP LEARNING AND APPLICATIONS TO PEC

The application of DL at the network edge offers many

improvements to PEC as DL and PEC together can sup-

port numerous applications, including computer vision, smart

surveillance, natural language processing, network functions,

and VR and AR. In a recent paper, Chen et al. surveyed

research literature at the confluence of DL and PEC [67].

They highlighted that the researches so far have been based on

three major architectures: (1) centralized edge server-based

architectures, where data from end devices are sent to one

or more edge servers for computation; (2) semi-distributed

architectures in which the computation is shared among end

devices, edge servers, and the cloud via a joint computation

mechanism; and (3) distributed architectures based on on-

device computations, where deep neural networks are exe-

cuted on the end device itself.

In the future, edge intelligence is expected to move DL

implementations from the cloud to the edge, forming the

so-called edge DL [68], [69]. Research into the industrial

applications of this convergence of DL and the edge is still

nascent but is expected to increase significantly, especially

with the implementation of 5G. In [70], the authors proposed

an edge computing-based DL model that migrates the DL

process from the cloud to the edge in an IIoT network using

edge computing concepts. The DLmodel is optimized so that

computational power requirements are reduced. By deploying

a testbed implementation with their proposed convolutional

neural networkmodel and real-world IIoT dataset, the authors

showed that network traffic overheads are reduced without

compromising the classification accuracy.

In another study, a DL-based method was used to detect

hazardous conditions in supermarkets, such as spilled liq-

uids or fallen items on floors [71]. They showed that their

lightweight DL model can be deployed on edge devices

for quick computations. Similar studies based on intelligent

visual recognition using DL implemented at the edge have

been applied to industrial electrical equipment [72], health

monitoring [73], and flat surface texture inspection [74].

B. FEDERATED LEARNING AND APPLICATIONS TO PEC

FL is a relatively recent ML paradigm that was motivated by

the need to protect user privacy. FL aims to train a centralized

model using training data that are distributed over a large

number of client devices that themselves are a part of the

training [66]. In other words, FL differs from classical ML

learning approaches such as DL in the fact that the model

training does not use a single processing device [75], [76].

In FL, end devices use their local data to cooperatively train

an ML model (using ML techniques such as DL, support

vector machines (SVM), artificial neural networks (ANN),

etc.) required by an FL server. They then send the model

updates to the FL server for aggregation. These steps are

repeated in multiple rounds until a desirable accuracy is

achieved [60]. Fig. 6 illustrates the difference between DL

and FL. In general, FL involves the training of statistical

models directly on remote devices, and it is motivated by the

need to maintain information privacy [77].

Such a decentralized approach facilitates collaborative

complex ML techniques while guaranteeing that the data will

remain in the personal devices, thereby preserving privacy.

Note that there is usually an underlying assumption that the

data owners are honest: they use their real private data to do

the training and submit the true local models to the FL server.

The main advantages of the FL approach are as follows:

• Bandwidth efficiency: Less data is required to be trans-

mitted to the cloud.

• Privacy: Raw (local) data need not be sent to the cloud

any more.

• Low latency: Real-time decisions can be made locally

instead of being made in the cloud.

An important question in FL research is whether its per-

formance is comparable to that of traditional DL-based

approaches for resource coordination. In [63], the authors

examined this question by employing FL for the joint
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TABLE 3. Summary of relevant research works on artificial intelligence in PEC.

FIGURE 6. (a) Traditional deep learning: end devices send their local data to a global server that collects all data and performs the complete model
training. (b) Federated learning: end devices use local data to cooperatively train a local model and then send it to the global server for aggregation.
These steps are repeated in multiple rounds until a desirable accuracy is achieved.

allocation of communication and computing resources by

guiding the training of deep reinforcement learning agents.

The IoT devices in their model harvested energy units from

edge nodes and stored them in their energy queue. The

authors demonstrated that the fluctuation range of FL-based

DL with respect to utility variation is bigger than that from

centralized training. Their results confirm that the perfor-

mance of FL-based DL training for computation offloading

approaches the results from centralized DL training.

The efficient utilization of limited computation and

communication resources to increase the optimal learning

performance of different applications was examined in [65].

The authors considered a typical edge computing architecture

where the edge nodes are interconnected with the remote

cloud via network elements such as gateways and routers.

The raw data was collected and stored at multiple edge nodes

and FL learning was performed. In the FL approach in this

work, the frequency of global aggregation was configurable;

that is, it was possible to aggregate at an interval of one or

multiple local updates. Each local update consumes com-

putation resources and each global aggregation consumes

communication resources of the network. The amount of
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consumed resources may vary over time, and there is a com-

plex relationship among the frequency of global aggregation,

the model training accuracy, and resource consumption. This

is a tradeoff between the model resource optimization and

precision. In this work, the convergence bound of gradient-

descent based FL was analyzed from a theoretical perspec-

tive, and a control algorithm that learns data distribution was

proposed. This algorithm was tested using real datasets both

on a hardware prototype and simulated environment.

Based on the distributed topology that characterizes the

PEC paradigm, different architectures are being considered

to deploy FL techniques in order to improve the trade-

off between energy consumption, computation capacity, and

training capabilities of distributed learning nodes connected

by a customized communication network. For instance,

in [61], a two-stage FL algorithm was proposed for a col-

laborative scenario between user equipment (UE), unmanned

aerial vehicles (UAV)/ base stations (BS), and a heteroge-

neous computing platform (HCP) to predict content caching.

Here, an asynchronous weight updating method was adopted

to reduce the effects of redundant learning in FL.

FL in PEC also increases the reliability and security for

some critical applications such as vehicular edge computing

(VEC). VEC faces a major challenge that the accuracy of

image quality can decrease during the model aggregation.

To address this, the authors in [64] proposed a selectivemodel

aggregation exploiting a geometric model that illustrates the

relationship between the object of interest and the camera in

each vehicular agent. FL was used to train image classifica-

tion and to tackle the asymmetry caused by it, and a model

selection procedure was formulated as a two-dimensional

contract theory problem. Then, the contract problem was

transformed into a problem that can be tracked by relaxing

and simplifying the complicated constraints. In [62], FL was

applied to urban informatics tasks where the vehicular net-

work consisted of a macro base station, a number of road-

side units, and moving vehicles. The authors focused on three

aspects: enhancing the privacy of the updated models in FL,

development of a new asynchronous FL architecture by lever-

aging distributed peer-to-peer update schemes, and boosting

the proposed FL process. The proposed FL method not only

gave higher accuracy than the compared methods such as

convolution networks, GraphStar, and text graph convolution

networks, but it could also execute parallel local training;

moreover, increasing the number of data providers did not

affect the accuracy.

IV. ENERGY EFFICIENCY IN PEC

Despite the benefits of PEC, this new computing paradigm

also raises concerns such as energy efficiency. To accom-

modate the massive number of IIoT connections efficiently,

a large number of distributed servers must be installed.

As a result, energy consumption can increase drastically

if the resources and computational workload are not well

distributed within the PEC-assisted IIoT network. More-

over, as illustrated in Fig. 7, in contrast to the conventional

FIGURE 7. Energy consumption in industrial IoT (IIoT) deployments. Edge
computing can provide remarkable energy savings to IIoT devices, and
the cooperation with cloud computing can reduce energy consumption at
the edge servers.

remote cloud servers that possess abundant energy resources,

IIoT devices and edge serves may have access to only lim-

ited power supplies and limited computational capabilities.

Therefore, energy efficiency has become a critical concern

calling for an energy-centric design of PEC solutions.Wewill

now present and discuss the most recent literature that is

relevant to energy efficiency.

A. CLOUD-EDGE COOPERATION FOR REDUCED ENERGY

CONSUMPTION

The work in [78] addressed an industrial scenario where

multiple IIoT devices are assisted by both edge and remote

central servers. Aiming to minimize the energy consumption

at the edge, the authors developed two optimal dynamic algo-

rithms for offloading the computation-intensive tasks from

the edge nodes to the remote server. Specifically, the first

algorithm used an improved gradient method for achieving

faster convergence, while the second one employed the con-

cept of dynamic voltage scaling for further maximizing the

energy gains at the edge servers. Simulation studies in [78]

showed that the proposed algorithms outperform the conven-

tional approaches both in terms of energy consumption and

convergence time.

In [15], the authors studied a heterogeneous network con-

sisting of a macro base station equipped with a central server,

multiple multi-antenna small base stations equipped with

edge servers, and multiple single-antenna energy-constrained

devices with low computational capabilities. The authors pro-

vided an optimization approach to minimize the energy con-

sumption of the network by jointly optimizing the devices’

transmit powers, server selection, and edge servers’ receive
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beamformers. To solve the non-convex formulated problem,

the authors proposed an iterative algorithm based on decom-

position and successive pseudo-convex approach.

In some IIoT settings such as in hard-to-reach mining sites,

it might be very challenging to provide single-hop connec-

tivity. Hence, enabling PEC also for multi-hop networks is

necessary for IIoT. Reference [79] focused on such a setting

where IIoT devices can operate as relays in a distributed

cooperative edge–cloud network. This work applied game-

theoretic concepts to develop two distributed offloading algo-

rithms forminimizing the tasks’ computation time and energy

consumption. The authors showed that their proposal can

ensure the required QoS of each IIoT device and achieve

the Nash equilibrium. Their numerical results demonstrated

the superiority of the developed algorithms over benchmark

schemes in terms of stability, scalability, time processing, and

energy gains. With the idea of distributing the computational

tasks among the local edge server, neighbor edge servers, and

cloud, the authors of [80] formulated an optimization problem

for minimizing the network’s energy consumption under per-

task time processing constraints. To solve the problem, the

authors devised an optimal task allocation algorithm based

on Lyapunov drift-plus-penalty theory for queuing systems.

The obtained solution showed significant energy efficiency

gains and improvements in end-to-end latencies.

B. REDUCED ENERGY CONSUMPTION IN IIoT DEVICES

While the researches discussed in the previous subsection

focused on enhancing the energy efficiency of the entire

network and is mainly concentrated on the servers, in this

subsection, we survey important contributions that optimize

the energy consumption at the IIoT devices. For instance,

the work in [81] employed a task caching strategy at the

edge servers to avoid unnecessary offloading transmissions

and computations of repeated tasks. Based on the proposed

caching-enabled system design, and aiming to minimize the

devices’ energy consumption under delay constraints, the

authors formulated a problem to jointly optimize caching,

computation, and communication resources. The problem

turned out to be a mixed-integer non-convex optimization

formulation, which is difficult to solve optimally. To tackle

the complex formulation, block coordinate descent and con-

vex optimization techniques were explored and a sub-optimal

iterative algorithm was developed. The simulation results

showed that substantial energy efficiency gains and a signif-

icant reduction in processing time can be achieved with the

proposed solution.

The energy efficiency of IIoT devices with multitask capa-

bilities was studied in [82]. In the proposed system model,

each device was able to simultaneously offload multiple

tasks with different requirements to the edge servers using

a NOMA technique. Specifically, a two-step optimization

approach was proposed for minimizing the total energy con-

sumption at the IIoT devices, i.e., energy spent with NOMA

transmissions and local task computations. In the first step,

a problem was formulated for jointly optimizing the number

of bits to be offloaded, the computation rate, and the transmis-

sion time for each task. Even though the original problemwas

non-convex, after several simplifications, the authors devel-

oped a layered algorithm for computing the optimal solution.

In the second step, for further minimizing the devices’ energy

consumption, an index-swapping algorithm was developed

for determining the optimal assignment of the tasks to the

most suitable edge servers. Numerical results revealed the

effectiveness of the proposed algorithms for improving the

energy efficiency of IIoT devices.

PEC-assisted vehicular networks with device-to-device

offloading capabilities were investigated in [83]. In this

work, by modeling both the network mobile traffic and the

computational workload, the authors investigated the trade-

offs between energy consumption and system delay. In the

considered network design, smart vehicles were capable

of optimizing their energy consumption and computation

time by properly offloading their most demanding tasks to

edge servers or to neighboring vehicles that were willing to

share their computational resources. To find such an optimal

offloading strategy, the concepts of Markov decision pro-

cesses were exploited to formulate an energy/time cost min-

imization problem. Then, two reinforcement learning-based

algorithms were proposed to compute the optimal solution of

the formulated problem. Simulation results showed that the

energy and delay performances achieved with the developed

solutions were remarkably superior to those observed with

the considered benchmark schemes.

The work in [97] also studied the energy efficiency of

PEC in a vehicular network. However, differently from the

previous reference, the authors focused on reducing the

energy consumption of in-vehicle battery-powered devices

and not on the vehicle itself. Specifically, a task offload-

ing optimization problem was formulated to minimize the

energy consumption of in-vehicle devices under energy and

latency constraints. Due to the fractional form of the objective

function and the complicated constraints, the optimization

problem turned out to be NP-hard. To tackle such a chal-

lenge, the complex original problem was transformed into an

equivalent consensus problem with separable objectives. The

transformed problem was further decomposed into multiple

tractable sub-problems, which allowed the authors to achieve

a low complexity solution based on the alternating direction

method of multipliers. The obtained solution enabled the in-

vehicle devices to solve the sub-problems simultaneously in

a distributed fashion. To demonstrate the effectiveness of the

developed solution, the authors provided simulation results

based on a real-world topology. The results showed that

significant reductions in energy consumption were achieved

with the proposed approach.

V. CYBER SECURITY CHALLENGES IN PEC

Despite the rapid growth in research and many technologi-

cal advancements, PEC still faces numerous problems with

respect to security risks and privacy challenges, as discussed

in [24]–[32]. These challenges are particularly critical in
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TABLE 4. Summary of relevant research works on energy efficiency in PEC.

TABLE 5. Summary of relevant research works on cyber security in PEC.

industry applications. In this section, we overview the studies

focusing on the security and privacy aspects of PEC from

a holistic perspective, keeping in mind that the discussions

apply also to industrial applications.

To systematically investigate the security aspects and to

identify potential security risks of PEC, Xiao et al. [24]

provided a four-layer architecture as follows: edge server

security, network security, devices security, and infrastruc-

tural security. On the edge server side, the security concern

could be, for example, that adversaries attempt to access the

edge servers and manipulate the services or that they control

the edge servers and exploit their privileges even as legitimate

administrators. Subsequently, attackers can execute attacks

such as denial of service, man in the middle, etc. Similarly,

edge devices could be infected by adversaries with a malware

injection, with these malicious devices consequently posing

security challenges to edge servers, edge networks, and core

infrastructure.

In this vein, Zhang et al. [25] elaborated on the secu-

rity challenges faced by edge computing and their defense
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mechanisms. The authors inferred the root cause of security

threats and challenges and explained the question of why are

these attacks more common in edge computing than tradi-

tional cloud computing? The key reasons discussed in the

paper are as follows: (i) weak or low power computation,

(ii) resource constraints, (iii) protocol heterogeneity, and (iv)

distributed access control.

In a similar vein, Yahuza et al. [26] thoroughly reviewed

the cyber security aspects in PEC and pointed out the vari-

ous possible cyberattacks in the edge computing paradigm,

including message alteration, camouflaging, networking

attacks, physical attacks, and reputation tarnishing. Also, the

authors discussed two types of methods to evaluate these

attacks—‘‘with tools’’ including algorithmic proofs, simu-

lations, and prototype implementations, etc., and ‘‘without

tools’’ including mathematical analysis and informal secu-

rity proofs. Further, many other works have highlighted the

aforementioned discussion from different perspectives, for

instance, edge security in terms of data analytics [27], secure

IoT services [28], and others [29]–[32]. It is worthmentioning

that such challenges could be due to misconfiguration, design

flaws, implementation bugs, data correlations, and missing

fine-grained access controls.

The four most important state-of-art security challenges

in PEC are distributed denial of service (DDoS) attacks,

malware injection attacks, side-channel attacks, and authenti-

cation & authorization attacks. Next, we explain each of these

attacks.

A. DDoS ATTACKS

DDoS attacks are a type of cyberattack in which an attacker

attempts to distort normal services by flooding the internet

traffic and making the service temporarily unavailable to the

end users [84]. This type of attack is broadly classified into

two types—flooding attack and logical attack. In a flood-

ing attack, an attacker frequently sends malicious packets to

edge devices or servers (victims) from (an electronic) source

and makes the victims unable to handle these packets. As a

result, the victims cannot respond to any legitimate requests

on time [85], [86]. In a logical attack, the attacker sends

malicious packets and misleads the application/protocol of

the target machine by reflecting that all resources are fully

occupied.

In comparison to cloud computing, PEC is more prone

to such attacks as it provides services to edge devices that

cannot maintain a strong defense system because of het-

erogeneous malware and computational limitations. More-

over, the DDoS attacker often intends to attack edge devices

and then use them as a weapon against (edge) servers. In

this aspect, a prominent example is Mirai botnet, which

infected 65000 IoT devices and then exploited these devices;

this DDoS attacker launched attacks against well-known ser-

vices such as OVH, Dyn, and Krebs [87]. Bhardwaj et al. [88]

demonstrated a proactive strategy to limit the impact of DDoS

attacks by leveraging a proposed ShadowNet approach.

The proposed approach consists of three components—edge

function, locally derived information, web service—and is

unique in terms of the fast detection of the attack and defense

responses. The authors presented that the proposed approach

detects IoT DDoS attacks up to 10 times faster and enables

reductions in the impacts of the damage by 82% of the

internet traffic. Similarly, Zhou et al. [86] analyzed the DDoS

attack mitigation in IIoT under the fog computing concept.

The authors addressed the requirements of response time

and the constraints related to the computational capabilities

of devices in the IIoT network. A three-level architecture

was proposed to mitigate the DDoS attack, which was then

implemented in the Mero control system to yield effective

results.

B. MALWARE INJECTION ATTACKS

In malware injection attacks, the attacker aims to access

the victim’s service requests and to transfer malware into

the network or computing systems [89]. Such attacks pose

significant threats to data integrity and system security. In par-

ticular, (low level) edge servers and edge devices are more

prone to such types of attacks. The injection of malware or

malicious code at the edge server end is termed as server-side

injection (SSI). SSI is classified into four types—SQL injec-

tion, extensible markup language (XML), server-side request

forgery (SSRF), cross-site request forgery (CSRF), and cross-

site scripting (XSS). The injection at the user side, in which

an attacker injects malicious code into IoT devices, is termed

as device-side injection (DSI). Examples of such attacks are

remote code execution (RCE) and reaper [24], [90].

C. SIDE-CHANNEL ATTACKS

In the side-channel attack, the attacker exploits publicly

available data (not sensitive data) and correlates it with

the user’s private data ‘‘secretly’’ to infer confidential data.

In this attack, an attacker continuously seizes the informa-

tion from PEC infrastructure and uses it as an input to the

ML/DL models or anonymous algorithms that produce the

desired output (sensitive information). This type of adver-

sarial attack can happen at any node of the network, and

attackers exploit multiple techniques for side-channel attacks,

for example, cache attack, timing attack, and electromagnetic

attack [91]–[93]. The susceptibility of DL or ML-based sys-

tems and devices with edge intelligence to adversarial attacks

is well known and has been studied intensely [94], [95].

In [96], the authors described a framework for edge learning

as a service (EdgeLaaS) for healthcare infrastructures and

emphasized the need for securing such data-sensitive systems

against adversarial attacks. In [94], the authors exhaustively

reviewed the fundamental methods to generate adversarial

examples—intentionally designed inputs to ML models con-

stituting an attack to force the model to make errors—and

proposed a taxonomy for these methods. Additionally, the

authors provided insights into adversarial attacks’ applica-

tions to reinforcement learning, generative models, malware

detection, etc. State-of-the-art approaches (e.g., input recon-

struction, network verification, network distillation, etc.) to
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FIGURE 8. An overview of cyber security and cyberattacks in pervasive edge computing.

cope with such adversarial attacks are also discussed. In [95],

Li et al. proposed a defensive framework (decentralized

swift vigilance) in industrial systems to detect adversarial

attacks swiftly and eliminate the risk failure without relying

on complex reinforcement models. Concurrently, their work

incorporated MEC and generative adversarial networks to

achieve ultra low latency and privacy protections in industrial

scenarios.

D. AUTHENTICATION AND AUTHORIZATION ATTACKS

Authentication refers to the confirmation or verification of

the identity of the entity who requests for certain services.

And authorization refers to the process of ensuring the rights

and access of an entity that should be within certain con-

straints and boundaries. In authentication and authorization

attacks, the adversary aims to achieve access to the desired

resources with fake credentials. Generally, PEC authentica-

tion is often accomplished among edge devices and servers,

while authorization is the permission that edge servers grant

to certain edge devices or its services/applications. The work

in [24] classifies such attacks into four categories—dictionary

attacks, authentication protocols attacks, authorization proto-

cols attacks, and over-privileged attacks. Table 5 summarizes

research works that have been cited in Section V, and Fig. 8

presents the aforementioned state of the art of cyber security

attacks in PEC.

In addition to cyber security, there are still several open

challenges that need to be solved to have a 5G-based PEC

solution for IIoT, and these will be discussed in the next

section.

VI. FUTURE DIRECTIONS AND OPEN CHALLENGES

In addition to the IIoT-related challenges [98], [99], there

are various other roadblocks to overcome for PEC to

become a mainstream and widely adopted solution. Below,

we list these open research directions that merit further

investigation.

A. COMPUTATION PLACEMENT

While PEC offers numerous benefits discussed throughout

this article, how to place the computation tasks on the avail-

able PEC nodes has to be determined considering the various

tradeoffs discussed in Section II-A. Moreover, computation

tasks such as ML processes might consist of multiple com-

ponents with certain input-output dependencies. Hence, the

computation tasks should be placed accordingly in the con-

tinuum of the pervasive edge and the cloud considering the

tradeoffs, available resources, and the dependency among the

computation tasks. Prior researches on edge service place-

ment mostly consider smaller scale settings, and security

aspects are largely overlooked, making such solutions ill-

suited for IIoT settings where scalability and security are

crucial. Moreover, the IIoT devices might consist of low-end

sensors with limited uplink bandwidth and energy resources.

Hence, the computation placement should take these pecu-

liarities into account. For large-scale IoT solutions where the

data produced by smart objects might be requested by many

consumers, the efficiency of the communication between

data producers and the consumers needs special attention,

in particular, with respect to the existence of low-end data

producers. In this respect, broker-based communication,

also known as Pub/Sub architecture, facilitates transparency,

mobility of data providers and consumers, scalability, and

energy savings at the low-end data producers by decou-

pling the data producers and consumers. An emerging ques-

tion is the placement of the brokers and computation tasks

jointly.
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B. SPECTRUM MANAGEMENT

Data collection from the devices toward the PEC nodes

results in increased uplink traffic in an industrial network.

Moreover, given that some computations might be offloaded

to the fog or cloud, there will be network traffic from the

access network toward the core network and the Internet. As a

result, the PEC policies will affect the amount of spectrum

resources needed for the radio access network in the uplink

and downlink as well as in the backhaul. Given that 5G envi-

sions self-backhauling for small cells [100], there is a need

for spectrum management schemes that dynamically allocate

resources based on the needed capacity in each segment of an

industrial network.

C. EDGE INTELLIGENCE

Recent advances in communication systems have opened

a path for FL in edge computing. However, several major

challenges remain to be addressed for the edge intelligence

to be offered ubiquitously. In particular, the deployment of

FL at scale is not straightforward. Some of the key concerns

are as follows. First, the learning framework needs to be

robust against disruptions. That is, it should be able to handle

cases where some nodes performing the computation lose

connectivity temporarily or go completely offline due to,

e.g., energy failures. Second, even if the nodes are reachable

and perform their tasks, the results from each participating

node need to be communicated efficiently, e.g., within certain

delay bounds, to the rest of the nodes that rely on these nodes.

Under dense deployments and low spectrum reuse factor,

interference management plays a key role in ensuring the per-

formance guarantees of FL. Third, due to the heterogeneity of

the data produced by a variety of devices, the data that has to

be processed and fed into learning schemes is mostly non-

standardized. Finally, since some critical decisions about the

operation of an industrial system for automation might rely

on the outputs of the learning schemes, it is paramount that

communication security is ensured and that learning schemes

are robust against malicious or noisy inputs.

Significant research efforts are being made to deal with

these problems across the world, and communication secu-

rity, asynchronous FL techniques, improved ML algorithms,

statistical analysis, and algorithms for communication reduc-

tion are some of the candidate solutions that will eventually

accelerate the use of FL in edge computing.

D. COMPUTATION OVER ENCRYPTED DATA

Even when the data to be processed is sensitive, there might

be cases where a remote cloud is a favorable computation

location due to the ample computation resources available for

this sensitive data. To unlock the performance benefits offered

by the cloud while preserving the data confidentiality, there is

a need for performing computations over the encrypted input.

There is a growing interest in privacy-preserving approaches

such as solutions in [101] or [102]. However, to the best of

our knowledge, it is still a widely unexplored research area.

E. NETWORK MANAGEMENT

Due to the stringent performance and security requirements

of IIoT networks, it is widely argued that industry plant own-

ers would not prefer to outsource the control of their network

to a third party, i.e., a 5G operator [98]. Private cellular

networks aim to address this concern. However, there are

many open questions such as the operation and deployment

models, dynamic provisioning of the spectrum resources for

the radio access network and the backhaul, as well as the

deployment of computation units to meet the performance

requirements of a particular vertical industry [103].

VII. CONCLUSION

In this article, we have surveyed emerging technologies

related to industrial internet-of-things (IIoT) enabled by

5G and beyond communication networks. We have dis-

cussed the main advantages of this paradigm—core net-

work offloading (and benefits therefrom) and low latency

for delay-sensitive applications (e.g., automatic control)—

and reviewed the state-of-the-art in the PEC paradigm and

its applications to the IIoT domain. We have also surveyed

and described researches on distributed artificial intelligence

methods, energy efficiency, and cyber security, which are

three important research areas related to PEC. We identified

the main open challenges that must be solved to have a

scalable PEC-based IIoT network that operates efficiently

under different conditions.

PEC deployments clearly have several interesting future

directions, and academic and industrial researches into PEC

are ongoing at a fast pace. This is motivated by the fact that

PEC provides an extremely suitable and important deploy-

ment model for industrial communication networks, espe-

cially considering the recent trends of private industrial 5G

networks incorporating local operations and flexible manage-

ment. Nevertheless, PEC deployments also face many chal-

lenges that still need to be solved in order to have an effective

solution that could be deployed in larger scales across differ-

ent industrial domains, especially in terms of computational

performance, energy efficiency, and cyber security.
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