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Abstract

Background: Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications

being demonstrated across various domains of medicine. However, there are currently limited examples of such

techniques being successfully deployed into clinical practice. This article explores the main challenges and

limitations of AI in healthcare, and considers the steps required to translate these potentially transformative

technologies from research to clinical practice.

Main body: Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of

machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the

necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled

trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always

be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to

intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-

market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access

to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use

of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers,

including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation

to new populations, and the unintended negative consequences of new algorithms on health outcomes.

Conclusion: The safe and timely translation of AI research into clinically validated and appropriately regulated systems

that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally

go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is

required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to

reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine

learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.
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Background

The exciting promise of artificial intelligence (AI) in

healthcare has been widely reported, with potential

applications across many different domains of medi-

cine [1, 2]. This promise has been welcomed as health-

care systems globally struggle to deliver the ‘quadruple

aim’, namely improving experience of care, improving the

health of populations, reducing per capita costs of health-

care [3], and improving the work life of healthcare pro-

viders [4].

Nevertheless, the potential of AI in healthcare has not

been realised to date, with limited existing reports of the

clinical and cost benefits that have arisen from real-

world use of AI algorithms in clinical practice. This

article explores the main challenges and limitations of

AI in healthcare, and considers the steps required to

translate these potentially transformative technologies

from research to clinical practice.

The potential of artificial intelligence in healthcare

A rapidly accelerating number of academic research

studies have demonstrated the various applications of AI

in healthcare, including algorithms for interpreting chest
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radiographs [5–9], detecting cancer in mammograms

[10, 11], analysing computer tomography scans [12–15],

identifying brain tumours on magnetic resonance images

[16], and predicting development of Alzheimer’s disease

from positron emission tomography [17]. Applications

have also been shown in pathology [18], identifying

cancerous skin lesions [19–22], interpreting retinal im-

aging [23, 24], detecting arrhythmias [25, 26], and even

identifying hyperkalaemia from electrocardiograms

[27]. Furthermore, AI has aided in polyp detection from

colonoscopy [28], improving genomics interpretation

[29], identifying genetic conditions from facial appear-

ance [30], and assessing embryo quality to maximise

the success of in vitro fertilisation [31].

Analysis of the immense volume of data collected from

electronic health records (EHRs) offers promise in extract-

ing clinically relevant information and making diagnostic

evaluations [32] as well as in providing real-time risk

scores for transfer to intensive care [33], predicting in-

hospital mortality, readmission risk, prolonged length of

stay and discharge diagnoses [34], predicting future deteri-

oration, including acute kidney injury [35], improving

decision-making strategies, including weaning of mechan-

ical ventilation [36] and management of sepsis [37], and

learning treatment policies from observational data [38].

Proof-of-concept studies have aimed to improve the clin-

ical workflow, including automatic extraction of semantic

information from transcripts [39], recognising speech in

doctor–patient conversations [40], predicting risk of

failure to attend hospital appointments [41], and even

summarising doctor–patient consultations [42].

Given this impressive array of studies, it is perhaps

surprising that real world deployments of machine learn-

ing algorithms in clinical practice are rare. Despite this,

we believe that AI will have a positive impact on many

aspects of medicine. AI systems have the potential to re-

duce unwarranted variation in clinical practice, improve

efficiency and prevent avoidable medical errors that will

affect almost every patient during their lifetime [43]. By

providing novel tools to support patients and augment

healthcare staff, AI could enable better care delivered

closer to the patient in the community. AI tools could

assist patients in playing a greater role in managing their

own health, primary care physicians by allowing them to

confidently manage a greater range of complex disease,

and specialists by offering superhuman diagnostic per-

formance and disease management. Finally, through the

detection of novel signals of disease that clinicians are

unable to perceive, AI can extract novel insights from

existing data. Examples include the identification of

novel predictive features for breast cancer prognosis

using stromal cells (rather than the cancer cells them-

selves) [44], predicting cardiovascular risk factors and

sex from a fundus photograph [45], inferring blood flow

in coronary arteries from cardiac computed tomography

[46], detecting individuals with atrial fibrillation from

ECG acquired during normal sinus rhythm [26], and

using retinal imaging to assist an earlier diagnosis of de-

mentia [47].

The challenge of translation to clinical practice
Retrospective versus prospective studies

While existing studies have encompassed very large num-

bers of patients with extensive benchmarking against ex-

pert performance, the vast majority of studies have been

retrospective, meaning that they use historically labelled

data to train and test algorithms. Only through prospect-

ive studies will we begin to understand the true utility of

AI systems, as performance is likely to be worse when en-

countering real-world data that differ from that encoun-

tered in algorithm training. The limited number of

prospective studies to date include diabetic retinopathy

grading [48–50], detection of breast cancer metastases in

sentinel lymph node biopsies [51, 52], wrist fracture detec-

tion [53], colonic polyp detection [28, 54], and detection

of congenital cataracts [55]. Consumer technology is enab-

ling enormous prospective studies, in relation to historical

standards, through the use of wearables; for example,

there is an ongoing study to detect atrial fibrillation in

419,093 consenting Apple watch owners [56].

Peer-reviewed randomised controlled trials as an

evidence gold standard

As is common in the machine learning community,

many studies have been published on preprint servers

only and are not submitted to peer-reviewed journals.

Peer-reviewed evidence will be important for the trust

and adoption of AI within the wider medical commu-

nity. There are very few randomised controlled trials

(RCTs) of AI systems to date; these include an algorithm

to detect childhood cataracts with promising perform-

ance in a small prospective study [55] but less accurate

performance compared to senior clinicians in a diagnostic

RCT [57]; a single-blind RCT that showed a significantly

reduced blind-spot rate in esophagogastroduodenoscopy

[58]; an open, non-blinded randomised trial of an auto-

matic polyp detection algorithm for diagnostic colonos-

copy demonstrating a significant increase in detection of

diminutive adenomas and hyperplastic polyps [59]; a sim-

ulated prospective, double-blind RCT of an algorithm to

detect acute neurologic events [60]; and an unmasked

RCT of a system to provide automated interpretation of

cardiotocographs in labour that found no improvement in

clinical outcomes for mothers or babies [61]. The final

study is a cautionary example of how higher accuracy

enabled by AI systems does not necessarily result in better

patient outcomes [61]. Future studies should aim to use

clinical outcomes as trial endpoints to demonstrate
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longer-term benefit, while recognising that algorithms are

likely to result in changes of the sociocultural context or

care pathways; this may necessitate more sophisticated

approaches to evaluation [62].

High quality reporting of machine learning studies is

critical. Only with full and clear reporting of information

on all aspects of a diagnosis or prognosis model can risk

of bias and potential usefulness of prediction models be

adequately assessed. Machine learning studies should

aim to follow best practice recommendations, such as

the Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis (TRIPOD),

designed to assist the reporting of studies that develop,

validate or update a prediction model for either diagnostic

or prognostic purposes [63]. In addition, a new version of

the TRIPOD statement that is specific to machine learning

prediction algorithms (TRIPOD-ML) is in development

and will focus on the introduction of machine learning

prediction algorithms, establishing methodological and

reporting standards for machine learning studies in

healthcare [64].

Metrics often do not reflect clinical applicability

The term ‘AI chasm’ has been coined to reflect the fact

that accuracy does not necessarily represent clinical efficacy

[65]. Despite its universal use in machine learning studies,

area under the curve of a receiver operating characteris-

tic curve is not necessarily the best metric to represent clin-

ical applicability [66] and is not easily understandable by

many clinicians. As well as reporting sensitivity and specifi-

city at a selected model operating point (required to turn

the continuous model output into discrete decision cat-

egories), papers should include information about positive

and negative predictive values. As no single measure cap-

tures all the desirable properties of a model, several mea-

sures are typically reported to summarise its performance.

However, none of these measures ultimately reflect what is

most important to patients, namely whether the use of the

model results in a beneficial change in patient care [67].

Clinicians need to be able to understand how the pro-

posed algorithms could improve patient care within a

relatable workflow, yet most papers do not attempt to

present such information; potential approaches to this

have been suggested, including decision curve analysis,

which aims to quantify the net benefit of using a model

to guide subsequent actions [68]. To improve under-

standing, medical students and practising clinicians

should be provided with an easily accessible AI curricu-

lum to enable them to critically appraise, adopt and use

AI tools safely in their practice.

Difficulty comparing different algorithms

The comparison of algorithms across studies in an ob-

jective manner is challenging due to each study’s

performance being reported using variable methodolo-

gies on different populations with different sample distri-

butions and characteristics. To make fair comparisons,

algorithms need to be subjected to comparison on the

same independent test set that is representative of the

target population, using the same performance metrics.

Without this, clinicians will have difficulty in determin-

ing which algorithm is likely to perform best for their

patients.

The curation of independent local test sets by each

healthcare provider could be used to fairly compare the

performance of the various available algorithms in a rep-

resentative sample of their population. Such independent

test sets should be constructed using an unenriched rep-

resentative sample along with data that are explicitly not

available to train algorithms. A supplementary local

training dataset could be provided to allow fine tuning

of algorithms prior to formal testing.

For researchers, comparison will become easier with

the increasing availability of large, open datasets, allow-

ing studies to benchmark their performance in a consist-

ent manner.

Challenges related to machine learning science

AI algorithms have the potential to suffer from a host of

shortcomings, including inapplicability outside of the

training domain, bias and brittleness (tendency to be

easily fooled) [69]. Important factors for consideration

include dataset shift, accidentally fitting confounders

rather than true signal, propagating unintentional

biases in clinical practice, providing algorithms with

interpretability, developing reliable measures of model

confidence, and the challenge of generalisation to dif-

ferent populations.

Dataset shift

Particularly important for EHR algorithms, it is easy to

ignore the fact that all input data are generated within a

non-stationary environment with shifting patient popu-

lations, where clinical and operational practices evolve

over time [70]. The introduction of a new predictive

algorithm may cause changes in practice, resulting in a

new distribution compared to that used to train the

algorithm. Therefore, methods to identify drift and up-

date models in response to deteriorating performance

are critical. Mitigations to manage this effect include

careful quantification of performance over time to pro-

actively identify problems, alongside the likely require-

ment for periodical retraining. Data-driven testing

procedures have been suggested to recommend the most

appropriate updating method, from simple recalibration

to full model retraining, in order to maintain perform-

ance over time [71].
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Accidentally fitting confounders versus true signal

Machine learning algorithms will use whatever signals

are available to achieve the best possible performance in

the dataset used. This may include the exploitation of

unknown confounders that may not be reliable, impair-

ing the algorithm’s ability to generalise to new datasets.

For instance, in one classic example, a machine learning

model did not learn the intrinsic difference between

dogs and wolves, but instead learned that wolves are

usually pictured standing on snow, while dogs usually

appear on grass [72]. There are similar concerns in

healthcare. In one study, an algorithm was more likely to

classify a skin lesion as malignant if an image had a ruler

in it because the presence of a ruler correlated with an

increased likelihood of a cancerous lesion [19]. The pres-

ence of surgical skin markings have also been shown to

falsely increase a deep learning model’s melanoma prob-

ability scores and hence false positive rate [73]. In an-

other study, hip fracture detection was found to be aided

by confounders, including the scanner model and scans

marked ‘urgent’ [74]. Another algorithm for detection of

pneumonia on chest x-rays was able to accurately identify

hospital equipment and department, learning an associ-

ation between a portable x-ray machine and pneumonia

[75]. Ongoing work is required to understand the specific

features being learned by neural networks and will be crit-

ical for generalisation across multiple healthcare settings.

Challenges in generalisation to new populations and

settings

The majority of AI systems are far from achieving reli-

able generalisability, let alone clinical applicability, for

most types of medical data. A brittle model may have

blind spots that can produce particularly bad decisions.

Generalisation can be hard due to technical differences

between sites (including differences in equipment, cod-

ing definitions, EHR systems, and laboratory equipment

and assays) as well as variations in local clinical and ad-

ministrative practices.

To overcome these issues, it is likely that a degree of

site-specific training will be required to adapt an existing

system for a new population, particularly for complex

tasks like EHR predictions. Methods to detect out-of-

distribution inputs and provide a reliable measure of

model confidence will be important to prevent clinical

decisions being made on inaccurate model outputs. For

simpler tasks, including medical image classification, this

problem may be less crucial and overcome by the cur-

ation of large, heterogenous, multi-centre datasets [14].

Generalisation of model operating points may also prove

challenging across new populations, as illustrated in a

recent study to detect abnormal chest radiographs,

where specificity at a fixed operating point varied widely,

from 0.566 to 1.000, across five independent datasets [5].

Proper assessment of real-world clinical performance

and generalisation requires appropriately designed exter-

nal validation involving testing of an AI system using

adequately sized datasets collected from institutions

other than those that provided the data for model train-

ing. This will ensure that all relevant variations in pa-

tient demographics and disease states of target patients

in real-world clinical settings are adequately represented

in the system where it will be applied [76]. This practice

is currently rare in the literature and is of critical con-

cern. A recent systematic review of studies that evalu-

ated AI algorithms for the diagnostic analysis of medical

imaging found that only 6% of 516 eligible published

studies performed external validation [77].

Algorithmic bias

Intertwined with the issue of generalisability is that of

discriminatory bias. Blind spots in machine learning can

reflect the worst societal biases, with a risk of unin-

tended or unknown accuracies in minority subgroups,

and there is fear over the potential for amplifying biases

present in the historical data [78]. Studies indicate that,

in some current contexts, the downsides of AI systems

disproportionately affect groups that are already disad-

vantaged by factors such as race, gender and socioeco-

nomic background [79]. In medicine, examples include

hospital mortality prediction algorithms with varying ac-

curacy by ethnicity [80] and algorithms that can classify

images of benign and malignant moles with accuracy

similar to that of board-certified dermatologists [19, 81],

but with underperformance on images of lesions in skin

of colour due to training on open datasets of predomin-

antly fair skinned patients. The latter is particularly con-

cerning as patients with skin of colour already present

with more advanced dermatological diseases and have

lower survival rates than those with fair skin [82].

Algorithmic unfairness can be distilled into three com-

ponents, namely (1) model bias (i.e. models selected to

best represent the majority and not necessarily under-

represented groups), (2) model variance (due to inad-

equate data from minorities), and (3) outcome noise (the

effect of a set of unobserved variables that potentially in-

teracts with model predictions, avoidable by identifying

subpopulations to measure additional variables) [80]. A

greater awareness of these issues and empowering clini-

cians to participate critically in system design and devel-

opment will help guide researchers to ensure that the

correct steps are taken to quantify bias before deploying

models. Algorithms should be designed with the global

community in mind, and clinical validation should be

performed using a representative population of the

intended deployment population. Careful performance

analysis by population subgroups should be performed,

including age, ethnicity, sex, sociodemographic stratum
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and location. Analysis to understand the impact of a

new algorithm is particularly important, i.e. if the

spectrum of disease detected using the AI system differs

from current clinical practice, then the benefits and

harms of detecting this different spectrum of disease

must be evaluated. In mammography, this might be the

detection of less severe ductal carcinoma in situ, poten-

tially resulting in increased treatment with little benefit

in outcomes. Prospective pilots within healthcare sys-

tems should be undertaken to understand the product

characteristics and identify potential pitfalls in practical

deployment.

Susceptibility to adversarial attack or manipulation

Algorithms have been shown to be susceptible to risk of

adversarial attack. Although somewhat theoretical at

present, an adversarial attack describes an otherwise-

effective model that is susceptible to manipulation by in-

puts explicitly designed to fool them. For example, in

one study, images of benign moles were misdiagnosed as

malignant by adding adversarial noise or even just rota-

tion [83].

Logistical difficulties in implementing AI systems

Many of the current challenges in translating AI algo-

rithms to clinical practice are related to the fact that

most healthcare data are not readily available for ma-

chine learning. Data are often siloed in a multitude of

medical imaging archival systems, pathology systems,

EHRs, electronic prescribing tools and insurance data-

bases, which are very difficult to bring together. Adop-

tion of unified data formats, such as Fast Healthcare

Interoperability Resources [84], offer the potential for

better aggregation of data, although improved interoper-

ability does not necessarily fix the problem of inconsist-

ent semantic coding in EHR data [85].

Achieving robust regulation and rigorous quality control

A fundamental component to achieving safe and effect-

ive deployment of AI algorithms is the development of

the necessary regulatory frameworks. This poses a

unique challenge given the current pace of innovation,

significant risks involved and the potentially fluid nature

of machine learning models. Proactive regulation will

give confidence to clinicians and healthcare systems. Re-

cent U.S. Food and Drug Administration guidance has

begun developing a modern regulatory framework to

make sure that safe and effective artificial intelligence

devices can efficiently progress to patients [86].

It is also important to consider the regulatory impact

of improvements and upgrades that providers of AI

products are likely to develop throughout the life of the

product. Some AI systems will be designed to improve

over time, representing a challenge to traditional

evaluation processes. Where AI learning is continuous,

periodic system-wide updates following a full evaluation

of clinical significance would be preferred, compared to

continuous updates which may result in drift. The devel-

opment of ongoing performance monitoring guidelines

to continually calibrate models using human feedback

will support the identification of performance deficits

over time.

Human barriers to AI adoption in healthcare

Even with a highly effective algorithm that overcomes all

of the above challenges, human barriers to adoption are

substantial. In order to ensure that this technology can

reach and benefit patients, it will be important to main-

tain a focus on clinical applicability and patient out-

comes, advance methods for algorithmic interpretability,

and achieve a better understanding of human–computer

interactions.

Algorithmic interpretability is at an early stage but

rapidly advancing

While AI approaches in medicine have yielded some

impressive practical successes to date, their effective-

ness is limited by their inability to ‘explain’ their

decision-making in an understandable way [87]. Even if

we understand the underlying mathematical principles

of such models, it is difficult and often impossible to in-

terrogate the inner workings of models to understand

how and why it made a certain decision. This is poten-

tially problematic for medical applications, where there

is particular demand for approaches that are not only

well-performing, but also trustworthy, transparent, in-

terpretable and explainable [88].

Healthcare offers one of the strongest arguments in

favour of explainability [88, 89]. Given the combination

of the devastating consequences of unacceptable results,

the high risk of unquantified bias that is difficult to iden-

tify a priori, and the recognised potential for models to

use inappropriate confounding variables, explainability

enables system verification. This improves experts’ abil-

ity to recognise system errors, detect results based upon

inappropriate reasoning, and identify the work required

to remove bias. In addition, AI systems are trained using

large numbers of examples and may detect patterns in

data that are not accessible to humans. Interpretable

systems may allow humans to extract this distilled

knowledge in order to acquire new scientific insights.

Finally, recent European Union General Data Protection

Regulation legislation mandates a ‘right to explanation’

for algorithmically generated user-level predictions that

have the potential to ‘significantly affect’ users; this

suggests that there must be a possibility to make results

re-traceable on demand [88].
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At present, a trade-off exists between performance and

explainability. The best performing models (e.g. deep

learning) are often the least explainable, whereas models

with poorer performance (e.g. linear regression, decision

trees) are the most explainable. A key current limitation

of deep learning models is that they have no explicit de-

clarative knowledge representation, leading to consider-

able difficulty in generating the required explanation

structures [90]. Machine learning methods that build

upon a long history of research in traditional symbolic

AI techniques to allow for encoding of semantics of data

and the use of ontologies to guide the learning process

may permit human experts to understand and retrace

decision processes more effectively [91, 92]. One recent

approach replaced end-to-end classification with a two-

stage architecture comprising segmentation and classifi-

cation, allowing the clinician to interrogate the segmen-

tation map to understand the basis of the subsequent

classification [24].

If ‘black box’ algorithms are to be used in healthcare,

they need to be used with knowledge, judgement and

responsibility. In the meantime, research into explain-

able AI and evaluation of interpretability is occurring at

a rapid pace [93]. Explainable AI approaches are likely to

facilitate faster adoption of AI systems into the clinical

healthcare setting, and will help foster vital transparency

and trust with their users.

Developing a better understanding of interaction

between human and algorithm

We have a limited but growing understanding of how

humans are affected by algorithms in clinical practice.

Following the U. S. Food and Drug Administration ap-

proval of computer-aided diagnosis for mammography

in the late 1990s, computer-aided diagnosis was found

to significantly increase recall rate without improving

outcomes [94]. Excessive warnings and alerts are known

to result in alert fatigue [94, 95]. It has also been shown

that humans assisted by AI performed better than either

alone in a study of diabetic retinopathy screening [96, 97].

Techniques to more meaningfully represent medical know-

ledge, provide explanation and facilitate improved inter-

action with clinicians will only improve this performance

further. We need to continue gaining a better understand-

ing of the complex and evolving relationship between clini-

cians and human-centred AI tools in the live clinical

environment [98].

Conclusion
Recent advances in artificial intelligence present an ex-

citing opportunity to improve healthcare. However, the

translation of research techniques to effective clinical

deployment presents a new frontier for clinical and ma-

chine learning research. Robust, prospective clinical

evaluation will be essential to ensure that AI systems

are safe and effective, using clinically applicable per-

formance metrics that go beyond measures of technical

accuracy to include how AI affects the quality of care,

the variability of healthcare professionals, the efficiency

and productivity of clinical practice and, most import-

antly, patient outcomes. Independent datasets that are

representative of future target populations should be

curated to enable the comparison of different algo-

rithms, while carefully evaluating for signs of potential

bias and fitting to unintended confounders. Developers

of AI tools must be cognisant of the potential unin-

tended consequences of their algorithms and ensure

that algorithms are designed with the global community

in mind. Further work to improve the interpretability of

algorithms and to understand human–algorithm inter-

actions will be essential to their future adoption and

safety supported by the development of thoughtful

regulatory frameworks.
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