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Abstract. We present a method for key compression in quantum-resistant isogeny-
based cryptosystems, which allows a reduction in and transmission costs of per-party
public information by a factor of two, with no effect on security. We achieve this
reduction by associating a canonical choice of elliptic curve to each j-invariant, and
representing elements on the curve as linear combinations with respect to a canonical
choice of basis. This method of compressing public information can be applied to nu-
merous isogeny-based protocols, such as key exchange, zero-knowledge identification,
and public-key encryption. We performed personal computer and ARM implemen-
tations of the key exchange with compression and decompression in C and provided
timing results, showing the computational cost of key compression and decompression
at various security levels. Our results show that isogeny-based cryptosystems achieve
by far the smallest possible key sizes among all existing families of post-quantum
cryptosystems at practical security levels; e.g. 3073-bit public keys at the quantum
128-bit security level, comparable to (non-quantum) RSA key sizes.
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1 Introduction

Traditional elliptic curve cryptography is based on the intractability of the elliptic
curve discrete logarithm problem. These systems are not safe to use in a post-
quantum world, since on a quantum computer, Shor’s algorithm [16] can compute
solutions to the discrete logarithm problem in any group (including elliptic curve
groups) in polynomial time. In 2009 Stolbunov [19] created an encryption scheme
relying on the computational difficulty of finding isogenies between ordinary elliptic
curves. Soon after it was shown that one could determine the private keys of this
system in subexponential time with a quantum attack [4]. Recent work of De Feo,
Jao, and Plût [6] proposes to use isogenies (i.e. maps) between supersingular elliptic
curves as the basis for quantum-safe elliptic curve cryptosystems. Unlike with dis-
crete logarithms, there is no known polynomial-time algorithm to compute isogenies
between elliptic curves in the general case, even on a quantum computer [2,4]. Imple-
mentation results [8] have shown that isogeny-based cryptosystems exhibit practical
performance characteristics at standard security levels. Isogeny-based cryptography
thus represents a promising and attractive candidate for constructing post-quantum
cryptosystems.

We propose new methods for reducing the cost of transmitting and storing pub-
lic keys and per-party public information in the isogeny-based cryptosystems of [6].
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Table 1. Elliptic Curve Notations

Sym Meaning

Z The set of integers
Fpn A finite field of size pn

Fpn The algebraic closure of the field Fpn

| · | The cardinality of the enclosed set
〈·〉 The orbit of the enclosed group element
⊕ The bitwise exclusive-OR (XOR) operation

Our approach takes advantage of algebraic properties of elliptic curves to reduce the
amount of bits the two communicating parties must publish, while only incurring
the computational costs of compression and decompression once per key. Our algo-
rithm compresses keys to half their original size, with no effect on security (Section
5.1). We explain the mathematical techniques that we use for key compression (Sec-
tion 3), and give a detailed outline of our modified key-exchange, zero-knowledge
identification, and public-key encryption protocols using compressed keys (Sections
4.1, 4.2, and 4.3). We present theoretical running times and empirical cost measure-
ments for our implementation (Section 5.3), along with a discussion of applications
(Section 6). We present the extension of a previous implementation of isogeny-based
key exchange, [6], to include compression and decompression, written in C (Section
5.4). Finally, we compare compressed key sizes with those of other major families of
post-quantum cryptographic encryption schemes (Section 5.2).

2 Preliminaries

In this section, we provide required mathematical background to help understanding
the proposed contributions. Notations that will be used throughout the paper can
be found in Table 1.

2.1 Elliptic curve invariants

Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 be an elliptic curve defined over

a finite field Fpn . When p 6= 2, 3, we can always write the elliptic curve in short
Weierstrass form E : y2 = x3 + Ax + B. The points (x, y) ∈ Fpn × Fpn that satisfy
the above equation together with the identity point ∞ form a group denoted by
E(Fpn). For any m ∈ N, the subgroup E[m] = {P ∈ E(Fpn) : mP = ∞} is called
the m-torsion subgroup of E(Fpn). This subgroup is the kernel of the multiplication-
by-m map, [m] : E → E, which maps P to mP . An important torsion subgroup
is E[pr], for any r ≥ 1. If E[pr] = {∞}, then we say the curve E is supersingular.
Otherwise E[pr] ∼= Z/prZ, for all r ≥ 1, in which case we say E is ordinary. A useful
property of supersingular elliptic curves is that they are always defined over Fp2 .
Our compression algorithm applies to the cryptosystems described in [6], which use
supersingular curves.
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The following invariants will be useful later in this work. Define the b-invariants
and the c-invariants of this curve:

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6.

Finally, define the j-invariant by

j(E) = 1728
c34

c34 − c26
= 1728

4A3

4A3 + 27B2
∈ Fpn .

Two elliptic curves are isomorphic over Fp if and only if they have the same j-
invariant [17].

2.2 Two-dimensional discrete log problem

In this work we consider the following generalization of the discrete logarithm prob-
lem on elliptic curves: Given an elliptic curve, E, defined over the finite field Fp2 ,
for some prime number p, together with two points {R1, R2} generating a subgroup
S of E(Fp2), and an element h ∈ S, the two-dimensional discrete log problem is to
determine e1, e2 ∈ N such that h = e1R1 + e2R2.

If we denote the largest prime dividing |S| by pmax, then there is a variation
of the Pohlig-Hellman algorithm [21] that solves this problem with time complexity
O(

√
pmax log p). In the case where |S| is smooth, this algorithm is efficient and

practical. The smooth case is sufficient for our needs.

2.3 Isogenies

Two elliptic curves are defined to be isogenous if and only if there is a non-trivial
isogeny between them. For every subgroup S of E(Fpn), there is up to isomorphism
a unique separable isogeny having S as its kernel. The standard way of computing
the codomain of such an isogeny or the action of that isogeny on points is to use
Vélu’s formulas [22], which involves calculating a summation over all the elements
of that subgroup S. In isogeny-based cryptography, such subgroups must be large
for security purposes, but also must have smooth order in order to allow efficient
calculation. In [6], it was shown how to apply Vélu’s formulas to compute isogenies
efficiently in such cases.

2.4 Twists of elliptic curves

Two elliptic curves E1 : y2 = x3 + A1x + B1 and E2 : y2 = x3 + A2x + B2 are
isomorphic over Fpn if and only if there is some u ∈ Fpn\{0} such that A1 = u4A2
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and B1 = u6B2. It is possible for two elliptic curves each defined over Fpn to be
isomorphic over Fpn but not over Fpn ; in such cases, we say that the curves are
twists. In particular, for p 6= 2, 3, a quadratic twist of E : y2 = x3 + Ax + B is
any curve of the form Ed : y2 = x3 + d2Ax + d3B for d ∈ Fpn\F2

pn with d 6= 0.

The curves E and Ed are isomorphic over the field extension Fpn(
√
d). Note that

Fpn ( Fpn(
√
d) since d /∈ F2

pn . The cases for j(E) = 1728 or j(E) = 0 are treated

separately. If j(E) = 1728, then the twist Ed : y2 = x3 + dAx is quartic, and if
j(E) = 0 the twist Ed : y2 = x3 + dB is sextic.

2.5 Weil pairing

For m ∈ N and E[m] = {P ∈ E(Fpn) : mP = ∞}, recall that the Weil pairing is a
map e : E[m]× E[m] → Fpn , satisfying bilinearity and non-degeneracy:

e(P1 + P2, Q) = e(P1, Q)e(P2, Q)

e(P,Q1 +Q2) = e(P,Q1)e(P,Q2)

∀P ∈ E[m]\{∞}, ∃Q ∈ E[m] such that e(P,Q) 6= 1.

Miller’s algorithm [11] provides an efficient way to compute the Weil pairing.

2.6 Curve Conversions

Since the formulas for compression primarily involve short Weierstrass curves and
[6] performs isogeny computations in the Montgomery domain, this section will dis-
cuss the conversion between the Montgomery curve and short Weierstrass curves to
perform the key exchange with compression and decompression, even if the start-
ing basis is a Montgomery curve. We use the formulas given in [6]. For background
information on Montgomery curves, refer to [5] or [13]. The conversion between
Montgomery curves and short Weierstrass curves utilize points of orders 2 and or-
der 4. A Montgomery curve always has an equivalent short Weierstrass curve, but
the opposite is not necessarily true. A short Weierstrass curve will have an equivalent
Montgomery curve as long as there are points of order 2 and 4. The Montgomery
curve is defined as follows:

E : By2 = x3 +Ax2 + x (1)

Montgomery to Short Weierstrass As mentioned in [6], the change of coordi-
nates x = x̄B, y = ȳB converts from Montgomery form to long Weierstrass form:

Ē : B3ȳ2 = B3x̄3 +B2Ax̄2 +Bx̄

Ē : ȳ2 = x̄3 +
Ax̄2

B
+

x̄

B2



Key Compression for Isogeny-Based Cryptosystems 5

To convert from long Weierstrass to short Weierstrass, the additional change of
coordinates x̄ = x̃−A/3B, ȳ = ỹ is made:

Ẽ : ỹ2 = (x̃− A

3B
)3 +

A(x̃− A
3B )2

B
+

(x̃− A
3B )

B2

Ẽ : ỹ2 = x̃3 +
3−A2

3B2
x̃+

2A3 − 9A

27B3
(2)

Therefore, the total change of coordinates from Montgomery curves to short
Weierstrass curves is x̃ = x/B + A/3B, ỹ = y/B. The change of curve coefficients
is a = (3−A2)/(3B2), b = (2A3 − 9A)/(27B3). Overall, the conversion from Mont-
gomery coordinates to short Weierstrass curves is relativley cheap. The conversion
requires inversions, multiplications, and squarings, but is constant time complexity.

Short Weierstrass to Montgomery A short Weierstrass curve requires a point
of order 2 and a point of order 4 for the conversion to Montgomery coordinates, and
by our choice of prime p, these points will always exist. To find a point of order 4,
P4 = (x̃4, ỹ4), we use the same approach to calculate a basis, which is discussed in
Section 3.2. The point of order 4 is doubled to find a corresponding point of order
2, P2 = 2P4 = (x̃2, ỹ2). Since 2P2 = O = 2(−P2), P2 = −P2, ỹ2 = −ỹ2,so ỹ2 = 0.
Therefore, x̃32+ax̃2+ b = 0. From this notion, the change of coordinates x̃ = x̄+ x̃2,
ỹ = ȳ can be used as a way to convert from short Weierstrass to long Weierstrass:

Ē : ȳ2 = (x̄+ x̃2)
3 + a(x̄+ x̃2) + b

Ē : ȳ2 = x̄3 + 3x̃2x̄
2 + (3x̃22 + a)x̄+ (x̃32 + ax̃2 + b)

The inverse of the difference between the x coordinates of the points of order 4
and order 2 is used as a major conversion factor between the two curve domains:

β =
1

x̃4 − x̃2
(3)

With this value, the final change of coordinates x̄ = x/β, ȳ = y/β to convert the
corresponding Montgomery curve:

E :
y2

β2
=
x3

β3
+

3x̃2βx
2

β2
+
x

β
+ (x̃32 + ax̃2 + b)

E : βy2 = x3 + 3x̃2βx
2 + x (4)
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Therefore, the total change of coordinates from short Weierstrass curves to Mont-
gomery curves is x = β(x̃ − x̃2), y = βỹ. The corresponding curve coefficients are
A = 3x̃2β, B = β. The above conversion works with this protocol because there are
p+1 points on the curve, which has many factors of 2 which guarantees the presence
of multiple points of order 4. The conversion from short Weierstrass to Montgomery
curves is expensive in that a point of order 4 has to be found through probabilis-
tically searching. A different approach could be to factor the division polynomial
ψ4.

3 Compression of Public Information

The term “public information” has a different definition depending on the cryp-
tosystem being discussed. In Section 4 we explain how our compression techniques
can be used in a key-exchange protocol, a public-key encryption scheme, and a zero-
knowledge identification protocol. Even though the structure of these cryptosystems
differ, they each have some form of public information. The key exchange protocol
has a public transcript, the public-key encryption scheme has a public key, and in
the zero-knowledge proof of identity the participating parties communicate multiple
times to one another over a public channel. The compressed public information in
each setting is approximately half the size it was in previous work. For full details
of the mathematical operation of the protocols, we refer to [6] or to the detailed
protocol descriptions given in Section 4.

Let p be a prime of the form ℓeAA ℓeBB · f ± 1, where ℓA and ℓB are small prime
numbers. In general, the public information for (say) Alice consists of her elliptic
curve EA : y2 = x3 + Ax + B, defined over Fp2 , together with two points on that
curve, φA(PB) and φA(QB). To convey this information in a space-efficient manner,
Alice would normally send the field elements A and B to describe the curve, and the
x-coordinates of φA(PB) and φA(QB) to describe the points. From the x-coordinate
alone Bob can determine the point (x,±y), and the sign ambiguity is immaterial
for isogeny-based cryptosystems, since both choices of sign yield the same kernel
subgroup.

In order to decrease the number of bits required for the participants to send, we
propose two improvements to the transmission mechanism.

3.1 First improvement

Instead of sending the coefficients A and B to Bob, we suggest Alice sends j(EA).
This alternate method requires the same amount of space as sending the j-invariant,
In order to use this approach, we must solve two problems:

1. Given a j-invariant in Fp2 , both Alice and Bob need some method to determine
a canonical choice of curve E∗

A isomorphic to EA.
2. Alice will also have to compute the isomorphism ψA : EA → E∗

A, in order to
work out which points on E∗

A correspond to φA(PB) and φA(QB).

Solutions:
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1. Given a particular j ∈ Fpn , the following formulas [17] determine an elliptic
curve Ej having j-invariant equal to j:

Case 1 : If j = 0, then Ej : y
2 + y = x3,

Case 2 : If j = 1728, then Ej : y
2 = x3 + x,

Case 3 : Otherwise, Ej : y
2 + xy = x3 − 36

j−1728x− 1
j−1728 .

Notice neither Case 1 nor Case 3 yield equations in short Weierstrass form y2 =
x3 + Ax + B, but since p 6= 2, 3, we can rewrite these curves in the form y2 =
x3 − 27c4x − 54c6 using the c-invariants c4 and c6 described in Section 2.1. In
all cases, this curve is guaranteed to be isomorphic to E over Fp2 [17], but may
not be isomorphic over Fp2 itself.
Alice will convey either Ej or a twist Ed

j of Ej to Bob, depending on which one
is isomorphic to EA over Fp2 . In order for Bob to obtain the same curve, both
parties will have to use the same element d; note however that this element can
be pre-computed as a public parameter. In addition, Alice needs to communicate
one bit of information to Bob to indicate whether or not the twist was used.

2. If EA and E∗

A are isomorphic over Fp2 , then the isomorphism between them is
easy to compute. Simply write out their equations

EA : y2 = x3 +A1x+B1

E∗

A : y2 = x3 +A2x+B2

and look for a field element d′ ∈ Fp2 such that A1 = d′4A2. If A1 = A2 = 0, then

use the Bi’s instead, such that B1 = d′6B2 .

An alternate approach would be to find an elliptic curve isomorphic to EA with
A = −3 (this occurs exactly when h := 1− 1728

j(EA) is a quadratic residue in Fp2), and

then Alice would send only the coefficient B = 2
√
h. Suppose h does not have a

square root in Fp2 . Let β ∈ Fp2 be a global parameter with a cube root in Fp2 but
no square root. Then the product hβ will be a quadratic residue, and Alice can send
B = 2

√
hβ and an additional bit to alert Bob that she used β. Bob now can compute

the elliptic curve EA2 : y
2 = x3−3β1/3x+2

√

β(1− 1728
j(EA)) which is isomorphic to EA,

if a specific root β1/3 is publicly determined as well. This alternate method requires
the same amount of space as sending the j-invariant, slightly increases the amount
of computation Alice must do, but decreases the length of Bob’s computation to
determine the short Weierstrass form of EA.

3.2 Second improvement

Instead of sending the x-coordinates of the points φA(PB) and φA(QB), Alice sends
the coefficients α1, β1, α2, β2 ∈ Z/ℓeBB Z of the representations of these points with
respect to some fixed basis. Again, this raises two problems.

1. Given a supersingular elliptic curve, E, defined over Fp2 , both Alice and Bob
need to be able to determine the same basis {R1, R2} for E[ℓeBB ].
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2. Given an elliptic curve EA, two points φA(PB), φA(QB), an isomorphism ψA :
EA → E∗

A, and a basis {R1, R2} for E∗

A[ℓ
eB
B ], Alice must compute α1, β1, α2, β2 ∈

Z/ℓeBB Z such that ψA(φA(PB)) = α1R1+β1R2, and ψA(φA(QB)) = α2R1+β2R2.

Solutions:

1. We will explain how to find a basis for E[ℓeAA ]; the case of E[ℓeBB ] is similar.
Using a deterministic pseudo-random number generator, choose a random point
P ∈R E(Fp2) and multiply it by ℓeBB · f to obtain a point P ′. The order of P ′

divides ℓeAA , and with high probability, is exactly ℓeAA . To check the order of P ′

efficiently, one can multiply P ′ by powers of ℓA until the identity is found. If the
order is ℓeAA , then set R1 = P ′, otherwise pick another random P and start again.
To find R2, repeat this process with random points Q ∈R E(Fp2) until a point Q′

of order ℓeAA is found, and check whether it is independent of R1 by computing
the Weil pairing of R1 and Q′. If the pairing evaluates to anything other than 1,
then set R2 = Q′, otherwise find another Q′. The bases that Alice and Bob find
will be the same, as long as they both choose the same random points P and
Q in the same order, which will be achieved if Alice and Bob provide to PRNG
with identical seed values.

2. Using the Pohlig-Hellman algorithm, we can efficiently compute the discrete
logarithm over finite extensions of fields with small prime characteristic. Suppose
ψA(φA(PB)) = αR1+βR2. Then, using the (efficiently computable) Weil pairing:

e(R1, ψA(φA(PB))) = e(R1, αR1 + βR2)

= e(R1, αR1)e(R1, βR2)

= e(R1, R1)
αe(R1, R2)

β

= e(R1, R2)
β ,

Hence solving the discrete logarithm of e(R1, ψA(φA(PB))) with respect to
e(R1, R2) will output the value of β. With β known, α can be computed by
taking the discrete logarithm of e(R2, ψA(φA(PB)) − βR2) with respect to
e(R2, R1) since

e(R2, ψA(φA(PB))− βR2) = e(R2, αR1)

= e(R2, R1)
α

Both of these discrete log computations can be performed efficiently with the
Pohlig-Hellman algorithm [14], since they take place in a group of order ℓeBB ,
which is smooth.

Because j(EA) is in Fp2 , it takes 2 log p bits to express. Each of A and B is also
in Fp2 and is 2 log p bits, so sending the j-invariant requires only half as many bits as
sending both A and B. In addition, each of α1, β1, α2, β2 has size eB log ℓB ≈ 1

2 log p,
which means sending all four to Bob will only require 2 log p bits, half as many as
required if sending the x-coordinates of each point (each x-coordinate is 2 log p bits,
and there is one for φA(PB) and one for φA(QB)). Overall, we achieve a reduction
in the size of the public information, from 8 log p bits to 4 log p bits.
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4 Isogeny-Based Cryptography with compressed keys

In this section, we explain how to apply the compression techniques (Section 3)
to public-key isogeny-based cryptosystems: key exchange, zero-knowledge proof of
identity, and public-key encryption.

4.1 Key-exchange with compressed keys

Setup: Fix Fp2 as the field of definition, where p is a prime number of the form
ℓeAA ℓeBB ·f±1, ℓA and ℓB are small prime numbers, and f is chosen so that p is prime.
Fix a supersingular curve, E : y2 = x3+a4x+a6, defined over Fp2 , having cardinality
(p∓ 1)2 = (ℓeAA ℓeBB · f)2, which can be done efficiently [3]. Fix a non-square element
d ∈ Fp2 . Lastly, fix a basis PA, QA which generates E[ℓeAA ], and a basis PB, QB which
generates E[ℓebB ].

Compression of public information:Alice chooses two random elementsmA, nA ∈R

Z/ℓeAA Z not both divisible by ℓA. Using Vélu’s formulas, she computes EA, φA(PB),
and φA(QB) where ker(φA) = 〈[mA]PA + [nA]QA〉. Normally, Alice would just send
EA, φA(PB), and φA(QB) to Bob, but we now add key compression. Alice computes
the canonical curve EjA from j(EA), along with

E∗

jA
: y2 = x3 − 27c1(EjA)x− 54c2(EjA)

to put EjA in short Weierstrass form. If EA is not isomorphic to E∗

jA
over Fp2 , then

she sets TA = 1 and computes the twist

E∗

A : y2 = x3 + d2a4(E
∗

jA
)x+ d3a6(E

∗

jA
)

of E∗

jA
. Otherwise she sets E∗

A to E∗

jA
, and TA to 0.

Next, Alice computes the isomorphism ψA : EA → E∗

A and canonical basis
{R1, R2} for E∗

A[ℓ
eB
B ]. Finally, she solves the 2-dimensional discrete log problem to

determine α1, β1, α2, β2 ∈ Z/ℓeBB Z such that

α1R1 + β1R2 = ψA(φA(PB)), α2R1 + β2R2

= ψA(φA(QB))

Alice’s compressed public information is equal to the tuple (j(EA), α1, β1, α2, β2, TA),
and her private key is (mA, nA). She exchanges this information with Bob, who in
turn sends Alice his public information consisting of (j(EB), γ1,κ1,γ2,κ2,TB), where

– {S1, S2} is the canonical basis for E∗

B[ℓ
eA
A ],

– γ1S1 + κ1S2 = ψB(φB(PA)),

– γ2S1 + κ2S2 = ψB(φB(QA)),

– ker(φB) = 〈[mB]PB + [nB]QB〉,
– ψB : EB → E∗

B,
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E

EA E∗

A

EB E∗

B

EAB
∼= EBA

ψA

ψB

ke
r(φ

A
) =

〈[m
A
]PA

+ [nA
]QA

〉

ker(φ
B ) = 〈[m

B ]P
B + [n

B ]Q
B 〉

ker(φ ′

B ) = 〈[m
B ]ψ

A(φ
A(P

B )) + [n
B ]ψ

A(φ
A(Q

B ))〉

ke
r(φ

′

A
) =

〈[m
A
]ψB

(φB
(PA

)) +
[nA

]ψB
(φB

(QA
))〉

✲

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

❄
✲

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

✻

Fig. 1. Key exchange protocol with compression

and TB is 1 if a twist is required, and 0 otherwise.

Decompression and computing a shared secret key: Alice determines E∗

B by
computing the canonical curve associated with j(EB), putting it in short Weierstrass
form, and computing a twist depending on the bit from Bob. After computing the
canonical basis {S1, S2} for E∗

B[ℓ
eA
A ], Alice uses γ1, κ1, γ2, κ2 to compute ψB(φB(PA))

and ψB(φB(QA)). Using Vélu’s formulas once more, Alice computes the isogeny

φ′A : E∗

B → EAB,

with ker(φ′A) = 〈[mA]ψB(φB(PA)) + [nA]ψB(φB(QA))〉.
Bob then computes the same curve EBA = E∗

A/〈[mB]ψA(φA(PB)) + [nB]ψA(φA(QB))〉
by doing an analogous decompression operation. Afterwards, both Alice and Bob
possess the shared secret key j(EAB) = j(EBA) ∈ Fp2 .

4.2 Zero-knowledge proof of identity with compressed information

Here we outline how to use the compression technique to reduce the amount of
information sent in each round of an isogeny-based zero-knowledge proof of identity.
Let p be a prime number of the form ℓeAA ℓeBB · f ± 1, where ℓA and ℓB are small
prime numbers, and f is chosen so that p is prime. Throughout this subsection let
E∗ denote the canonical curve associated to the j-invariant of the isomorphism class
of E.

Secret parameters: A supersingular curve E defined over Fp2 , a primitive ℓeAA -
torsion point S defining an isogeny φ : E → E/〈S〉, and an isomorphism φ0 :
E/〈S〉 → (E/〈S〉)∗.

Public parameters: The elliptic curves E and E/〈S〉, generators P,Q for E[ℓeAA ]
and the points φ0(φ(P )) and φ0(φ(Q)).
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E

E/〈S〉 (E/〈S〉)∗

E/〈R〉 (E/〈R〉)∗

E/〈S,R〉 ∼= E〈R,S〉

φ0

ψ0

ke
r(φ

) =
〈S
〉

ker(ψ) =
〈R〉

ker(φ ′

) =
〈φ

0(φ(R))〉

ke
r(ψ

′ ) =
〈ψ0

(ψ
(S
))〉

✲

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

❄
✲

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

✻

Fig. 2. Zero-knowledge proof of identity with compression

Identification: Repeat m times:

1. Peggy picks R ∈ E[ℓeBB ] and, using Vélu’s formulas, computes the elliptic curves

E/〈R〉, (E/〈R〉)∗, E/〈S,R〉,
and the isogenies

ψ : E → E/〈R〉, φ′ : (E/〈S〉)∗ → E/〈S,R〉
ψ′ : (E/〈R〉)∗ → E/〈S,R〉.

She also computes the isomorphism

ψ0 : E/〈R〉 → (E/〈R〉)∗.
2. Peggy sends j(E/〈R〉) and j(E/〈S,R〉) to Victor.
3. Victor selects a random bit b and sends it to Peggy.
4. If b = 0, then Peggy computes the canonical basis {B1, B2} for E[ℓeBB ] and

the canonical basis {B′

1, B
′

2} for (E/〈S〉)∗[ℓeBB ]. Peggy then sends the values
α1, β1, α2, β2 ∈ Z/ℓeBB Z to Victor, where α1B1 + β1B2 = R, and α2B

′

1 + β2B
′

2 =
φ0(φ(R)).

5. If b = 1, then Peggy computes the canonical basis {B′′

1 , B
′′

2} for (E/〈R〉)∗[ℓeAA ].
Peggy then sends α3, β3 ∈ Z/ℓeAA Z to Victor, such that α3B

′′

1+β3B
′′

2 = ψ0(ψ(S)).

4.3 Key compression for public-key cryptography

Setup: The setup is identical to the key-exchange system described above, except
this cryptosystem also requires a family of hash functions, H = {Hk : k ∈ K}, from
Fp2 to the message space {0, 1}w, indexed by a finite set K.

Compressed key generation: Choose two random elements mA, nA ∈R Z/ℓeAA Z

not both divisible by ℓA, and a random k ∈R K. As in Section 4.1, compute and
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publish the tuple (j(EA), α1, β1, α2, β2, TA) as the public key, and store the private
key tuple (mA, nA, k).

Decompression: Given a public key (j(EA), α1, β1, α2, β2, TA, k) it is described
above (4.1) how to decompress to the tuple (E∗

A, ψA(φA(PB)), ψA(φA(QB)), k).

Encryption: Given the decompressed public key (E∗

A, ψA(φA(PB)), ψA(φA(QB)),
k), and message m ∈ {0, 1}w, the sender chooses mB, nB ∈R Z/ℓeBB Z not both
divisible by ℓB. Next, as in Section 4.1, the sender computes the values EB, φB(PA),
φB(QA), E

∗

B, TB, ψB, {S1, S2}, the coefficients γ1, κ1, γ2, κ2 ∈ Z/ℓeAA Z such that γ1S1+
κ1S2 = ψB(φB(PA)), and γ2S1 + κ2S2 = ψB(φB(QA)), and φ

′

B : E∗

A → EBA, with
ker(φ′B) = 〈[mB]ψA(φA(PB)) + [nB]ψA(φA(QB))〉. The sender then sets

c = Hk(j(EBA))⊕m.

The ciphertext is the tuple (c, j(EB), γ1, κ1, γ2, κ2, TB).

Decryption: Given a ciphertext (c, j(EB), γ1, κ1, γ2, κ2, TB) and private key (mA,
nA, k), compute the curve E∗

B from j(EB) and TB, the points ψB(φB(PA)) and
ψB(φB(QA)) from γ1, κ1, γ2, κ2, and the isogeny φ′A : E∗

B → EAB, with ker(φ′A) =
〈[mA]ψB(φB(PA)) + [nA]ψB(φB(QA))〉. The plaintext is

m = c⊕Hk(j(EAB)).

5 Complexity and Security

In this section we discuss the impact of key compression on isogeny-based cryptosys-
tems, in terms of security, key size, and running time costs.

5.1 Security

The compression and decompression operations require no private key material, and
indeed the operations can be unilaterally performed by any party or any observer.
Accordingly, the operations cannot have any effect whatsoever on the security of the
underlying scheme.

5.2 Space requirements

Our compressed keys require 4 log p+ 1 bits to store (the extra bit is to convey if a
twist was used or not), as explained in Section 3. The best known quantum attack
against this scheme [20] has complexity O( 6

√
p), and the classical version runs in

O( 4
√
p). This formula allows us to compute the minimum number of bits required to

store the compressed keys for any given level of security.
In Table 2 we present a comparison between the size of our compressed keys

and the minimum key size required for the 128-bit and 256-bit security level from
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Table 2. Public key sizes in bits

Security level
Scheme 128-bit 256-bit

NTRU [10] 4 939 11 957
Ring-LWE [18] 7 498 15 690
McEliece (Goppa)[1] 1 991 880 9 276 241
McEliece (QC-MDPC) [12] 9 857 32 771
Isogenies 3 073 6 145

two other major families of post-quantum encryption primitives: Lattice-based and
Code-based.

The key sizes in Table 2 for lattice and code-based schemes are based on classical
attacks, because we took these key size estimates from sources which only perform
classical security analyses. Quantum attacks may be slightly faster: for instance
[9] demonstrates a 2112 quantum attack against the “128-bit” NTRU parameters.
By contrast, isogeny-based cryptosystems are motivated mainly by post-quantum
applications, and our security analysis and key sizes for isogeny-based cryptosystems
are based on quantum attacks. Against classical attacks, key sizes for isogeny-based
cryptosystems can be further reduced by 33%.

5.3 Computational requirements

It is computationally easy to compute j-invariants, canonical curves from j-invariants,
twists, scalar multiples of points on elliptic curves, isomorphisms between elliptic
curves, sums of points on elliptic curves, and to put elliptic curves in Weierstrass
form. These costs are relatively negligible compared to the costs of computing a
basis and performing discrete logarithms, so we ignore them.

The basis computation is done probabilistically, with expected running time
O(eA), since for a random point P , the point (ℓeBB · f)P has order ℓeAA with proba-
bility 1/eA. As for discrete logarithms, to solve two discrete logarithms in Fp2 one
can use Pohlig-Hellman twice (explained in Section 3.2), each with a runtime of
O(e2A+eA

√
ℓA) [14]. To compress her information, Alice performs both of the above

steps. After she has exchanged information with Bob, she performs another basis
computation, with cost O(eA), to decompress. This gives a total theoretical runtime
of O(eA

√
ℓA + e2A).

We remark that, assuming cheap storage and expensive bandwidth, the logi-
cal strategy is to store both compressed and uncompressed copies of the key, and
transmit only compressed copies. In this scenario, the computational costs of com-
pression and decompression are incurred only once per key; for compression, once
per key for the lifetime of the key, and for decompression, once per key per recip-
ient. Unlike space-saving strategies with NTRU and LWE, public key compression
imposes no per-message encryption or decryption overhead. NTRU and LWE also
have a nonzero probability of decryption failure (they are based on adding error vec-
tors into the ciphertext, and occasionally the error overcomes the intended signal),
which causes a tradeoff between security, efficiency, and error-rate, and represents



14 Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher Leonardi

Table 3. Isogeny Key Exchange Primes

p = ℓ
eA
A ℓ

eB
B f ± 1 Key Size (bits)

22583161186− 1 512
238632422− 1 768
25143323353− 1 1024

a limiting factor in reducing key size for these two schemes, whereas isogeny-based
encryption schemes have no possibility of mathematical error.

5.4 Software Implementations

The C implementation of the isogeny-based key exchange protocol in [6] was ex-
tended to include the key compression and decompression schemes introduced in
this paper. The original implementation used GNU Multiprecision Library to han-
dle large number operations. The reliance on this library limits the speed of the total
computation, but allows for portability. The original implementation implemented
the key exchange over Montgomery curves because of their fast isogeny computa-
tions. This work deals primarily with short Weierstrass curves, so an extra layer to
convert from Montgomery curves to short Weierstrass curves before the key com-
pression and an extra layer to convert from the short Weierstrass curves back to
Montgomery curves after the key decompression were both added to integrate the
two new protocols. The primes that were used to test are shown in Table 3.

The C code only requires access to OpenSSL and the GNU Multiprecision Li-
brary to compile. To evaluate the performance of the proposed compression and
decompression schemes, the C code was implemented on an ARM processor and
an Intel processor. Tables 4 and 5 show the timing results for the key exchange
and individual compression and decompression times on a Jetson TK1 and an Intel
i7-4790K, respectively. The compression and decompression utilize probabilistic al-
gorithms, so the median time over many iterations was used as a benchmark. The
compression algorithm relies on the elliptic curve discrete log to factor the double
point multiplication instead of a pairing approach to the discrete log over finite
fields, which results in slower times. As a side note, the compression time includes
the conversion from Montgomery to short Weierstrass and the decompression time
includes the conversion from short Weierstrass to Montgomery.

The NVIDIA Jetson Tegra K1 development board represents the expected timing
for a medium tier embedded device. The board features a a quad-core ARM Cortex-
A15 CPU under the ARM v7 microarchitecture, which runs at 2.3 GHz.

The Intel i7-4790K represents the expected timing for the high tier of personal
computers. The Intel processor is a quad-core desktop processor under the Haswell
microarchitecture, running at 4.0 GHz.

These results show that the decompression time is roughly the amount of the
key exchange protocol, but the compression time is larger by a factor of magnitude.
The compression for Bob is typically faster than Alice’s because the elliptic curve
discrete log over base 3 requires far fewer rounds than the elliptic curve discrete log
over base 2. Decompression is relatively fast, demonstrating the effectiveness of the
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Table 4. ARM Implementations on Jetson TK1 Device

Prime size (bits) 512 768 1024

Classical security (bits) 128 192 256
Quantum security (bits) 85 128 168
Key Exchange (sec) 0.291 0.808 1.749
Alice Compression (sec) 1.816 6.906 18.042
Bob Compression (sec) 2.324 8.582 22.991
Alice Decompression (sec) 0.311 0.811 1.969
Bob Decompression (sec) 0.284 0.772 1.488

Table 5. PC Implelementations on Intel i7-4790K

Prime size (bits) 512 768 1024

Classical security (bits) 128 192 256
Quantum security (bits) 85 128 168
Key Exchange (sec) 0.0540 0.1337 0.2669
Alice Compression (sec) 0.4529 1.5203 3.7020
Bob Compression (sec) 0.5740 1.9368 4.6312
Alice decompression (sec) 0.0580 0.1348 0.2493
Bob Decompression (sec) 0.0530 0.1233 0.2364

protocol with decompression on a compressed key at rest, for instance. Overall, the
C implementation results are promising and can be further improved in the future.

6 Applications

The most relevant application today for reduced key sizes is when there is an upper
bound in the protocol on the amount of bits allowed to be sent at a time. A few
popular systems that have this restriction in place include Tor and Bitcoin. It is also
usually preferable to send as little information as possible in systems like SSH and
SSL.

Tor is currently the most widely deployed software for anonymous communi-
cation, which it achieves by directing internet traffic through thousands of relays.
Each cell of data in Tor’s onion rooting network must be less than 514 bytes [7],
and public keys are transmitted within blocks of this size. Compared to isogeny-
based cryptography, no other known quantum-resistant cryptosystem can function
well under this restriction. Recently, [15] showed how to incorporate NTRUEn-
crypt into the ntor protocol, but only after increasing the cell size. For a security
level of 128, the scheme of [15] requires a handshake message of approximately 600
bytes. By contrast, compressed keys at the 128-bit level of security for isogeny-based
cryptography require only 384 bytes to store and send (see Table 2).

Both SSH and SSL currently provide confidentiality or privacy using public-key
encryption schemes which are not secure against quantum attacks. Isogeny-based
public-key encryption using our compression method is extremely space efficient,
providing a strong candidate for quantum-resistant deployment of these protocols.
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7 Conclusion

We propose a method to compress the public transcript for isogeny-based key-
exchange, the public keys for isogeny-based public-key encryption, and the public
information in each round of an isogeny-based zero-knowledge proof of identity. In
each case in this family of cryptosystems, the compressed information is half the
size it was in previous work. Our compression routines do not affect the security of
the systems, since compression is done with entirely public information. The small
key sizes come at the expense of a modest computational cost, which we measured
and find small enough to represent an acceptable tradeoff in many contexts.
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the elliptic curve this is 3074 bits . . .

This calculation is incorrect, because it assumes the public key curve is defined
over Fp; in reality, the public key curve is defined over Fp2 , so that field elements
require double the claimed bitlengths. Our work, on the other hand, achieves reduced
public-key sizes correctly, without any inaccuracies or misunderstandings.
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Appendix: Security assumptions

For completeness, we state the security assumptions under which the security of
isogeny-based cryptosystems can be proved. The corresponding security proofs can
be found in [6].

Problem 1 Let φA : E → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉,
where mA and nA are randomly chosen from Z/ℓeAA Z and are not both divisible
by ℓA. Given EA and the values φA(PB), φA(QB), the Supersingular Isogeny (SSI)
problem is to find a generator RA of 〈[mA]PA + [nA]QA〉.

Problem 2 Let φA : E → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉,
and let φB : E → EB be an isogeny whose kernel is 〈[mB]PB + [nB]QB〉, where mA,
nA (respectively mB, nB) are randomly chosen from Z/ℓeAA Z (respectively Z/ℓeBB Z)
and not both divisible by ℓA (respectively ℓB). Given EA, EB and the points φA(PB),
φA(QB), φB(PA), φB(QA), the Supersingular Computational Diffie-Hellman (SSCDH)
problem is to find the j-invariant of E/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉.

Problem 3 Given a tuple sampled with probability 1/2 from one of the following
two distributions:

(EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB),

where EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB are as in the SSCDH prob-
lem and EAB

∼= E/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉,

(EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC),

where EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB are as in the SSCDH prob-
lem, m′

A, n
′

A (respectively m′

B, n
′

B) are randomly chosen from Z/ℓeAA Z (respectively
Z/ℓeBB Z) and not both divisible by ℓA (respectively ℓB), and EAB

∼= E/〈[m′

A]PA +
[n′A]QA, [m

′

B]PB+[n′B]QB〉, the Supersingular Decision Diffie-Hellman problem (SS-
DDH) is to determine from which distribution the triple is sampled.
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