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ABSTRACT

This paper provides a foundation for modeling the set of activities and their relationships by

which systems are engineered, or, more broadly, by which products and services are devel-

oped. It provides background, motivations, and formal definitions for process modeling in

this specialized environment. We treat the process itself as a kind of system that can be

engineered. However, while product systems must be created, the process systems for develop-

ing complex products must, to a greater extent, be discovered and induced. Then, they tend

to be reused, either formally as standard processes, or informally by the workforce. We

distinguish and clarify several important concepts in modeling processes, including: product

development versus repetitive business processes, descriptive versus prescriptive proc-

esses, activities as actions versus deliverables as interactions, standard versus deployed

processes, centralized versus decentralized process modeling, “as is” versus “to be” process

modeling, and multiple phases in product development. We also present a basically simple

yet highly extendable and generalized framework for modeling product development proc-

esses. The framework enables building a single model to support a variety of purposes,

including project planning (scheduling, budgeting, resource loading, and risk management)

and control, and it provides the scaffolding for knowledge management and organizational

learning, among numerous other uses. © 2006 Wiley Periodicals, Inc. Syst Eng 9: 104–128, 2006
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process; engineering management; project management
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1. INTRODUCTION

Processes are a key aspect of contemporary systems

engineering (SE) theory and practice. In addition to

their use in the engineering of systems, they are at the

heart of approaches such as project management, Total

Quality Management (TQM), Lean, Six Sigma, reengi-

neering, ISO 9000,1 CMMISM,2 etc. However, the term

“process” and the tasks most properly associated with

process definition, compliance, and improvement are

some of the most “differently understood” concepts

around. The problem is exacerbated by the fact that

“process” is such a simple word: Everyone thinks they

know what it means, but varied opinions about its

implications have caused uncounted man-years of

meetings, debates, and waste in many industries. And

while many have tried to settle the debate by providing

process modeling standards and tools, most of them

have fallen short in important areas, particularly when

it comes to treating processes as systems and using an

SE approach in their development.

In this paper, we hope to clarify some of these

“dif-understandings” by discussing the motivations for

and key concepts of processes as used for systems

development, or, more generally, product (and service)

development (PD). These perspectives and approaches

stem from our variety of experiences working in the

international automotive and aerospace industries and

our backgrounds of research on many aspects of the

subject. The content is based on a number of interactive

presentations to experienced practitioners, including

the first part of a full-day tutorial offered thrice at the

International Council for Systems Engineering (IN-

COSE) 2001–2003 International Symposia. The other

parts of the tutorial addressed three other important

areas, as shown in Figure 1. Due to space constraints,

this paper does not address the content in parts two

through four: Rather, it sets the foundation for them.

Before going further, we need clear definitions of the

terms PD, process, and model. PD is an endeavor com-

prised of the myriad, multi-functional activities done

between defining a technology or market opportunity

and starting production.3 The goal of PD is to create a

“recipe” for producing a product [Reinertsen, 1999].

This recipe must conform to requirements stemming

from customer or market needs. It includes the prod-

uct’s “ingredients” (bill of materials) and “preparation

directions” (manufacturing, supply, distribution, and

support systems). While many business processes seek

an identical result, repeatedly, PD seeks to do some-

thing new, once.4 Hence, PD involves creativity and

innovation and is nonlinear and iterative [Kline, 1985].

Although certain activities may repeat, the desired over-

all result is unique (unless one speaks in terms of a

generic result like “success”). Actually, this is the case

for any project or program, as these terms are defined

in the project management literature: For example, “A

project is a temporary endeavor undertaken to create a

unique product, service, or result” [PMI, 2004, p. 5].

Hence, the concepts presented in this paper apply to any

project or program.

A model is an abstract representation of reality that

is built, verified, analyzed, and manipulated to increase

understanding of that reality. Models can reside in the

mind (mental models) or be codified. “All models are

wrong, but some are useful” [Box, 1979]. A useful

model is helpful for making predictions and testing

hypotheses about the effects of contemplated actions in

the real world, where such actions would be too disrup-

tive or costly to try. A useful model also provides

insights otherwise available only through (sometimes

painful) experience. While scientists focus on descrip-

tive models, engineers and managers furthermore want

predictive models, for which validation and estimation

of modeling error are practically impossible [Hazelrigg,

1999]. Here, we are interested in models that help

represent, understand, engineer, manage, and improve

PD processes.

A process is “an organized group of related activities

that work together to create a result of value” [Hammer,

2001] or “a network of customer-supplier relationships

and commitments that drive activities to produce results

of value.”5 Thus, one can think of the work on any

project or program as a large process. Process models

are typically activity network models. Ambiguities, un-

certainties, and interdependencies of activities, their

results, their assigned people, and their tools make PD

processes extremely complex and challenging to

Figure 1. Content of tutorial on product development process

modeling.

4Of course, PD includes a spectrum of intensities of “newness,”

from the truly novel to the minor upgrade of an existing system. Most

of our discussion is oriented towards the novel end of the spectrum.
   5Gabriel Pall, personal communication; based on Pall [1999].

1International Organization for Standardization.
   2Capability Maturity Model®—Integrated. Capability Maturity

Model® and CMMISM are registered in the U.S. Patent and Trade-

mark Office by Carnegie Mellon University.
   3There may not necessarily be a clean break between develop-

ment and production: some test and evaluation units may require parts

of the production process prior to the “official” start of production,

and some development work may continue past production start.
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model. We must clearly distinguish between reality (the

way work really gets done) and a model (an abstract

description of the way work can or should get done).

Processes exist in both places. Especially in industry,

the term “process” is used in both contexts without clear

qualification—causing many to mistake the map for the

territory. Any work (even creativity and innovation)

done to produce a result has a process, though perhaps

not a process model. In other words, every enterprise

has processes (ways to get results), even though they

may not be modeled, documented, consistent, effective,

or efficient.

The literature on process modeling is extensive,

although only a relatively small subset of this literature

addresses PD processes specifically. Most of the litera-

ture is aimed at business and manufacturing processes,

which, as we discuss in Section 3.1, differ from PD

processes in significant ways. Several reviews of PD

process models are available [Browning and Ramasesh,

2005; O’Donovan et al., 2005; Smith and Morrow,

1999], so we will not repeat them here. Instead, we

summarize what we recognize as some fundamental

propositions that form the basis of PD process modeling

theory:

i. The process of invention/innovation cannot be

fully mechanized. Despite continued advances in

artificial intelligence, meta-modeling, and tech-

niques such as TRIZ [e.g., Savransky, 2000;

Clausing and Fey, 2004], we cannot prescribe a

completely mechanistic approach to creativity

[Dougherty, 2001].

ii. Nevertheless, the PD process has some repeatable

structure. This proposition stems from the engi-

neering design and systems engineering litera-

ture, where design is something of an art but with

many consistent patterns. That is, while PD seeks

to do something new, once, an individual or

organization tends to follow a similar approach

in each instance and learns and adapts (more or

less) through successive occurrences.

iii. The project management task is to plan and

control the project, determine and schedule ac-

tivities, manage commitments, etc. Project man-

agement is facilitated by a structured approach,

especially one supported by models of what work

can and should be done when, and what informa-

tion can and should be created when—i.e., proc-

ess models.

iv. Processes can be regarded and treated as systems

that should be engineered purposefully and intel-

ligently, facilitated by useful models [Negele,

Fricke, and Igenbergs, 1997; Pajerek, 2000].

v. In many aspects, complex process behaviors can

be better understood by examining their rela-

tively simpler, constituent parts (actions) and

those parts’ endogenous and exogenous relation-

ships (interactions). We refer to this as the decom-

position paradigm in process modeling. While it

is also at times referred to as the reductionist

paradigm, we resist that description as mislead-

ing: We do not mean to imply that a system can

be fully understood by reducing it to a mere set

of elements and relationships. However, holonic

decomposition can provide an effective means of

organizing a useful model.

vi. There is always a gap between the real system

and a model of it. The size of this gap is deter-

mined by the model’s richness, fidelity, accuracy,

“realism,” etc. In modeling, verification and vali-

dation are used in an effort to close this gap.

However, many models can be quite “useful”

despite large gaps, if these gaps are chosen ap-

propriately.

vii. Process models are built for a purpose, such as

to document the way work is done, to estimate

the duration of a project, etc. [Browning and

Ramasesh, 2005]. Process models built for one

purpose may not be useful for other purposes,

although this type of misuse is common in indus-

try. We discuss this issue further in Section 2.2.

These propositions form some of the theoretical basis

for PD process modeling. They have enabled the con-

struction and use of a large number of PD process

models. But they have not ensured success. For exam-

ple, process modelers may assume that too much of the

PD process structure should persist from one project to

the next.

At this early point, we must also distinguish a proc-

ess model from a process Capability Maturity Model

(CMM). For example, the CMMI [SEI, 2002] contains

25 required and expected process areas—such as Re-

quirements Management, Risk Management, etc.—

which altogether include around 185 practices.

However, the CMMI does not fully define the inter-

faces, interactions, or flow between the process areas or

practices, and it does not cover the specifics of engi-

neering design for particular products. Thus, CMMs

and other such standards may show what kinds of

activities to include in a process model, but not how to

string them together at the level of execution. A CMM

is a model of a process’s capability and maturity, not a

model of the process itself.

With this introduction to processes and process mod-

els, the rest of this paper is organized as follows. In

Section 2, we discuss the motivations for building proc-
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ess models and treating them as systems. Section 3

addresses some key concepts, and Section 4 presents

our proposal for a generalized framework for modeling

PD processes. Section 5 provides our concluding re-

marks.

2. MOTIVATION

2.1. Why Treat Processes as Systems?

While most SE literature focuses on physical (hardware

and software) systems—i.e., products—and while

some addresses political, societal, and economic sys-

tems, a process is also a kind of system—one that has

received much less attention as such. Comparing the

definitions of a process given in the previous section to

the following definitions of a system should make this

obvious. A system is:

• A regularly interacting or interdependent group

of items forming a unified whole

• A group of devices or artificial objects or an

organization forming a network especially for

distributing something or serving a common pur-

pose

• An organized or established procedure6

• An integrated set of elements that accomplish a

defined objective.7

In fact, the product and process systems are just two

of several important systems in a project or program. In

the ZOPH8 model (Fig. 2), Negele, Fricke, and Igen-

bergs [1997] identify these and two other important

systems, the agent9 and goal systems. Based on other

work [Eppinger and Salminen, 2001; Browning, 2001],

Figure 3 shows an organization system and a tool sys-

tem explicitly, yielding five systems. Each of the five

systems is related to the others, is composed of elements

with relationships, and thus can be discussed in terms

of its network structure and architecture. The product

system is the desired result of the project—i.e., in the

case of PD, the product “recipe” described previously.

Here, the system consists of designed physical (hard-

ware, software, and/or people) components that may be

related via a variety of types and degrees of interactions.

The process system is the work done and interim results

achieved to produce the product system. The process

system consists of related activities. The organization

system consists of people assigned to do the work to

produce the product system—i.e., individuals, groups,

teams, or other organizational units, related to each

other by communication, reporting, etc. The tool sys-

tem represents the technologies used by the people to

do the work to get the product. While some tools, like

drafting boards and pencils, may be essentially unre-

lated in terms of a PD system model, many contempo-

Figure 2. ZOPH model [from Negele, Fricke, and Igenbergs, 1997; Negele, 1998; Negele and Wenzel, 2000, with permission

from Dr. Negele].

8ZOPH is the German acronym for Zielsystem (goal system),

Objektsystem (product system), Prozeßsystem (process system), and

Handlungssystem (agent system).
   9Negele, Fricke, and Igenbergs’s [1997] conception of the agent

system includes organization, relevant technologies, resources, meth-

ods, tools, etc.

6The first three definitions are from the Merriam Webster online
dictionary (www.m-w.com).
   7The fourth definition is from INCOSE [2004].
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rary software tools must interact as a direct result of the

relationships between activities and the people doing

them. The software applications and information tech-

nologies (IT) used by an organization to accomplish

work constitute a significant portion of the tool system.

The product, process, organization, and tool systems

operate in the context of requirements or goals, which

may themselves be related: e.g., making it easier to meet

one requirement may make it more difficult to meet

another. Hence, the fifth system is the goal system.

Thus, each of the five systems is related to and both

enables and constrains the others, even though Figure 3

does not show all such relationships; Figure 2 does a

better job in this regard. An enterprise typically has

multiple projects going on at once (represented by the

layers in Fig. 3), and there are strong incentives to achieve

commonality in these five systems across projects.

According to the propositions advanced above for

process modeling, models of these five systems and

their interactions would be extremely valuable aids for

designing, managing, and improving them [Danilovic

and Browning, 2006]. While models of the product,

process, and organization systems typically exist to

some extent in most projects, these models are seldom

integrated or used to verify each other in industry. This

is a tragedy, because a tremendous amount of waste

could be eliminated, and much more informed technical

and managerial decisions could be made, if an inte-

grated model spanned these systems [Negele, 1998;

Negele and Wenzel, 2000]. For example, Figure 4 sty-

listically depicts how information from an integrated

model could be filtered to show individual systems and

their interactions—e.g., people, teams, departments,

and other organization units assigned to various proc-

esses; tools used by particular organizational units or

for particular activities; and requirements bearing upon

particular product components, process activities, or-

ganizational units, or tools. However, as Figures 2 and

3 emphasize, the process system is in many ways the

nexus of the systems’ interactions: If the project were a

sentence, the process would be the action verb. Hence,

in our estimation, a useful process model is the basis for

and key to the effective integration of the project system

models and the effective management of projects.

Figure 3. Five systems in a project.

Figure 4. Project analysis and decision support enabled by a multisystem model [from Negele et al., 1997, with permission

from Dr. Negele].
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Thus, a process is a system, and, because of its vital

relationships to the other systems in a project, a model

of the process system is an excellent basis for integrat-

ing models of the other project systems. Unfortunately,

however, many process models are poor representations

of processes as systems. To drive this point, consider

two of Rechtin’s [1991, p. 29] salient heuristics for

systems architecting:

• “Relationships among elements are what give

systems their added value.”

• “The greatest leverage in systems architecting is

at the interfaces.”

Restating these heuristics in terms of processes, we get:

• Relationships among activities are what give

processes their added value.

• The greatest leverage in process architecting is at

the interfaces.

Hence, a good process model should pay special atten-

tion to the interfaces among activities. However, this is

not the case with many process models [Browning,

2002]. For example, many flowcharts include a nominal

number of arrows—just enough to connect the boxes—

and label the boxes but not the arrows. Other (mental

and codified) process models have led to the common

expression of processes as chains, whereas in reality,

especially in PD, processes are in fact dense networks

or webs of interdependencies [Negele, 1998; Negele,

Fricke, and Igenbergs, 1997], as shown in Figure 5.

Therefore, a rich, holistic, integrated model of the PD

process system is necessary, and this model must inte-

grate with models of the other systems in PD projects.

2.2. Why Build Process Models?

Process models can be built for a variety of reasons.

Traditionally, process models have provided a basis for

planning and managing projects. By listing the activi-

ties to be done (often resulting from a work breakdown

structure [WBS]) and their dependencies, planners can

get an idea of a project’s critical path, duration, etc.

From there, they can explore opportunities to reduce

duration (e.g., through “crashing”). Thus, the temporal

aspect of projects has been the traditional focus, and this

application of process models has spread widely

through the project management community—q.v., the

Project Management Institute’s Guide to the Project

Management Body of Knowledge (PMBOK) [PMI,

2004].

More recently, higher product complexity, increased

competition, customer expectations for customization,

shortened reaction times, and larger numbers of activi-

ties and amounts of information to coordinate have

increased the need for a systematic approach to manag-

ing projects, especially large ones (i.e., programs). Con-

current Engineering and Integrated Product and Process

Development (IPPD) have increased the overlap among

PD activities, dramatically increasing the coordination

challenge. Standards such as CMMI have mandated

additional activities to include in projects. Increased

coordination with partners and suppliers (made possi-

ble by technology, but not necessarily regulated by that

technology) has also contributed to increased complex-

ity in contemporary PD projects. The complexity of the

PD process correlates with the complexity of the prod-

uct being developed. Very rarely, if ever, can a single

person or small team effectively, efficiently, and consis-

tently identify and coordinate all the required interac-

tions. It is no wonder, then, that so many projects and

programs fail to meet their stakeholders’ expectations,

not only for technical reasons, but also for so-called

“managerial reasons”—i.e., failure to meet technical

goals within expected cost and/or schedule constraints.

Also, in the last 20 years, process descriptions have

become the basis for codifying and communicating

certain organizational knowledge about what work to

do and how to do it. Many companies’ internal policies,

and external standards such as the ISO 9000 series,

mandate process documentation. While the noble idea

is to provide the workforce with a common description

of work methods and a basis for coordination, at least

four significant barriers have prevented this from hap-

pening in most cases.

First, the models are usually too abstract and am-

biguous for most workers’ day-to-day needs. In fact,

companies have some incentive to keep the models

purposefully ambiguous so that when a process confor-

mance auditor shows up, any actions by the workforce

will in high likelihood be found to fall under the large

and loose umbrella of a vague process description.

Thus, subtle pressure often exists to build a kind of a

process model that is not really useful for day-to-day

Figure 5. Processes are networks, not chains [from Negele,

1998, with permission from Dr. Negele].
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management and coordination. This unfortunate cir-

cumstance has caused many debates, misunderstand-

ings, and wastes of time and money in industry, not to

mention a failure to realize the advantages provided by

a really useful process model.

Second, the common flowcharting approach (and

many other approaches) to process modeling fails to

capture most of the relationships between the activities

in a project. The resulting models do not help the

workforce to self-coordinate; they are used primarily

for scheduling. In contemporary practice, the process

flowchart has often been replaced by the even less

informative Gantt chart view. Even for scheduling pur-

poses only, the process models in use are often woefully

inadequate. Schedules are just a partial view of a proc-

ess model. They are one scenario for how activities

might work together. They do not address exactly what

information must flow or what state it must be in. And

they are often notoriously wrong, because they are

based on undocumented, unshared, and often false as-

sumptions. Something more useful is needed to support

the development of complex systems.

Third, building a process model takes time, and the

most elaborate process models have taken a very long

time to build. Aside from the obvious question about

justifying the return on such investments, the long

development time exacerbates the “wish-was” prob-

lem, where process modelers tend to document either

the way they wish a process would occur or else the way

it occurred some time ago.10 Often, a centralized group

of “process modelers” is pulled away from “real work”

to document other peoples’ work, resulting in a model

that those doing the “real work” fail to embrace. The

information contained in the process model is often

documented in user-unfriendly prose (“process docu-

mentation” or “procedures”), which is extremely cum-

bersome to maintain, thereby compounding the process

model’s anachronism.

Fourth, and worst of all, the policies of many com-

panies have forced employees to work in a constant

state of cognitive dissonance, where they must pretend

to follow a documented process while doing “what

really needs to be done.” These and other shortcomings

of most process models in industry have led to indiffer-

ence, dismissal, and sometimes hostility from the work-

force in regard to process modeling. In essence, most

of the problems with and shortcomings of the process

models used in industry can be traced to a fundamental

lack of knowledge and education about what a process

model is and what it can be used for. We begin to address

this shortcoming in this paper.

Process models can be built for a variety of uses

beyond project scheduling and compliance with exter-

nal standards. Drawing from lists by Fricke et al. [1998]

and Browning [2002], Table I provides a list of potential

purposes for modeling processes. Browning and

   Table I. Some Uses of Process Models

10As best as we can recall, credit for the term “wish-was” goes
to Steven D. Eppinger.
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Ramasesh [2005] provide the taxonomy of purposes

shown in Table II. Models built for one of these pur-

poses are often not very useful for the others—not that

this need be the case; it just often is. For example,

process models built for the purpose of compliance with

standards may not be good for day-to-day project coor-

dination. Models built to facilitate day-to-day coordi-

nation are often not the ones useful for communicating

with executives and customers. Unfortunately, attempt-

ing to force-fit a model developed for one purpose in

order to suit another is common practice. Different

users have different needs and require different infor-

mation, emphases, and views—e.g., those managing a

schedule may need a Gantt chart. Of course, models

should be built with a purpose in mind. Sometimes,

modelers lose sight of this and continue well past the

point of satisfying a need—modeling for the sake of

modeling. Modeling is a means, not an end.

A modeling framework is a generic approach which

may be applied to modeling any situation within its

scope, but which in itself provides only general insights.

Some example process modeling frameworks are

PERT/CPM, DSM, and IDEF0.11 Within a framework,

a modeling instance is a model created to provide

specific guidance. Using a metaphor familiar to chil-

dren, a framework is a sandbox and a model (instance)

is a sandcastle. Just as the properties of sand limit the

forms that may be created, a framework constrains the

features of models that may be built within it [O’Dono-

van et al., 2005]. The PD process modeling literature

includes a variety of frameworks, including the list of

18 compiled in Table III (which does not address all

process modeling frameworks, only those applied in the

literature to modeling the PD process). While other

structured modeling frameworks, such as Unified Mod-

eling Language (UML) and functional flow block dia-

grams, are widely used in the SE field, these

applications are almost exclusively to modeling product

system processes, functionality, and behaviors—not

the activities undertaken by the engineers themselves.

The variety of users and needs for process models is

part of the reason why there are so many modeling

frameworks in academia and so many disparate models

in industrial organizations. On a single, large project,

for example, perhaps one group manages schedule with

a model of activities and relationships. Another group

manages budget with a list of activities and cost ac-

counts (often failing to account for the relationships

among activities). Yet another group manages risk, ty-

ing projected risk reductions to certain events, activi-

ties, or milestones. Each of these groups has its own

models, yet the lists of activities—upon which each of

the models are based—are often unsynchronized at best

or very different at worst.

A generalized framework for process modeling

could provide a basis for integrating the disparate mod-

els in use across an organization. Information unneeded

by one group of users for their particular purposes could

be hidden, yet all users would be “drawing from the

same well.” Assumptions made by one group would

automatically be validated against the latest, actual

information possessed by another group. With an inte-

grated process model—one that accounted for activity

durations, costs, relationships, effects on technical per-

formance criteria, effects on risk measures, pitfalls (fail-

ure modes) and lessons learned, etc.—an organization

would benefit by being able to explore “what if” sce-

narios that traded off cost, schedule, technical perform-

ance, and risk. In Section 4, we propose that a

generalized framework for process modeling can in-

deed suit the variety of purposes in Tables I and II.

We hope to convey the power of a process model to

support dynamic, innovative PD processes. The point

of process modeling is not to meticulously model the

details of an anachronistic process or hamper creativity.

Rather, we propose that a process model serve to em-

power the workforce by getting the information they

need (and especially the information they do not know

they need) to them at the right time, thereby freeing

11PERT: project evaluation and review technique; CPM: critical
path method; DSM: design structure matrix; IDEF: integration defi-
nition, of which versions “0” (IDEF0) and “3” are most widely used
for PD process models.

Table II. Taxonomy of Purposes for Process Models
[adapted from Browning and Ramamesh, 2005]
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them to focus their creativity and innovation on value-

adding activities instead of on circumventing dissonant

systems, searching for information, and cleaning up

problems caused by poor assumptions. Thus, counter-

intuitively for some, process models actually enable

creativity and innovation to flourish: an appropriate

amount of structure is needed to focus innovation on the

most valuable problems instead of letting it “reinvent

the wheel.” Processes are the nexus of the five project

systems in Figure 3. A process model provides a pow-

erful fulcrum for leveraging a project, a program, or an

enterprise.

Finally, if we buy an argument that many managers

do not know as much as they would like about what they

are doing, and, furthermore, that they are afraid to admit

this, then we find another key reason for a lack of

support for process modeling. A model lays out the key

assumptions and mental models of the modelers, paving

the way for others to compare with their own mental

models and disagree. Some managers prefer to manage

only on the basis of their hidden mental models, thereby

not truly empowering their team. If this is common,

then we again see an important gap in managerial

education and perception. Process models provide the

key to sharing assumptions, understanding the areas of

project uncertainty and ambiguity, managing commit-

ments and accountability, and completing the project on

schedule, within budget, to specifications, and with

minimal surprises—every manager’s goals. Many en-

lightened managers realize this, which is why we re-

main optimistic.

3. KEY CONCEPTS

Having established the importance of building useful

process models that treat the process as a system, we

now turn to discuss several key concepts that provide

an important background and foundation for PD proc-

ess modeling.

3.1. Distinguishing PD Processes from
Many Other Business Processes

Business and manufacturing process modeling are large

fields with substantial literature on modeling frame-

works and techniques. However, project processes in

general and PD processes in particular are unlike these

conventional processes in a number of significant ways.

Innumerable modeling efforts have failed or fallen far

short of their potential because of failing to realize this.

First, as we mentioned in the Introduction, most busi-

ness processes, such as manufacturing, order process-

ing, and purchasing, strive to do the same thing

repeatedly, whereas projects such as PD seek to do

something new, once. Second, the outputs of activities

in most business processes can be verified immediately

(e.g., the part has been made to specifications or not),

whereas the outputs of many PD activities, such as

information, cannot be verified until much later. Third,

while some business processes are largely functional

(e.g., manufacturing or sales), PD is most properly a

multidisciplinary endeavor, one that spawns many in-

terdependencies among activities. In fact, PD processes

are better thought of as networks or webs instead of as

chains [Negele, Fricke, and Igenbergs, 1997]—popular

parlance (e.g., “Critical Chain” [Goldratt, 1997]) not-

withstanding. Fourth, conventional business processes

tend to be more sequential, driven by firm dependencies

on specific materials and data, whereas PD processes

tend to be more parallel (think Concurrent Engineer-

ing), since dependencies on information are “softer” in

the sense that they can be replaced (for better or worse)

by assumptions and early estimates. Fifth, the depend-

encies in conventional business processes tend to be

clearer than those in PD processes; communication

tends to be directed to known customers and suppliers.

This is less true in PD, because a number of assumptions

and interactions tend to be undocumented, and because

of greater ambiguity in the required actions and inter-

actions. Because of this “softness,” PD processes need

to be more flexible and agile than their relatively fixed

counterparts.12 Since creativity and innovation are not

linear, PD processes are constantly changing based on

the state of the project—adding activities and interac-

tions, eliminating them, and iterating. Meanwhile, con-

ventional business processes are less ambiguous (easier

to define), more rigid, and easier to “reengineer” to-

wards optimality in some dimension. Uncertainty, am-

biguity, and risk are higher in PD [e.g., Schrader, Riggs,

and Smith, 1993; De Meyer, Loch, and Pich, 2002], and

most organizations tolerate higher risk in PD than they

do in manufacturing or customer-service processes.

(Nevertheless, companies take many unnecessary risks

in PD; a useful process model can decrease them.) All

of these differences between conventional business

processes and PD processes have important implica-

tions for the modeling framework used and the ap-

proach taken to building the model.13

12However, the most flexible and agile project does not have
“no process.” While too much structure can be constraining, too little
structure causes project participants to spend their time creating it,
“reinventing wheels” and otherwise wasting effort on non-value-add-
ing activity. Too much process discipline is bad, as is too little—de-
spite some affectionately calling such a state “agility” [Boehm and
Turner, 2003]. We hypothesize an optimal amount of process struc-
ture, above or below which the project will lose value. We also
hypothesize that this point will move according to a project’s uncer-

tainty profile [De Meyer, Loch, and Pich, 2002].
13Fricke et al. [1998] catalog some additional differences be-

tween PD and other business processes.
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3.2. Descriptive Versus Prescriptive
Process Models

A process model can be descriptive, prescriptive, or

have aspects of both. A descriptive process model at-

tempts to capture tacit knowledge about how work is

really done. It tries to describe key features of the “as

is” reality. It is built inductively. On the other hand, a

prescriptive process model tells people what work to do

and perhaps also how to do it. It is built deductively,

perhaps drawing from an external standard and/or docu-

mentation from other projects. A prescriptive process is

a standard process or procedure accompanied by a

mandate to follow it exactly. Prescriptive processes

become more appropriate as the work becomes more

repetitive—e.g., as we move from PD projects to the

conventional business processes described above.

Many process models share some descriptive and pre-

scriptive characteristics.

Of course, prescribing a process in the wrong envi-

ronment is dangerous. Before becoming prescriptive, a

process model should accumulate enough information,

learning, and accuracy to ensure its feasibility and

effectiveness. Even then, the PD environment is dy-

namic enough that no process model will become or

remain complete and accurate in all aspects. In this

paper, we focus on building descriptive process models

that will help us understand what and how work is

done—but that may not have to be followed exactly on

a project. Having a shared, agreed-to representation of

an approach and a network of commitments (discussed

below) that is known to have worked in a somewhat

similar situation is an invaluable aid to project planning

and execution. The process details are also what em-

power the workforce to manage themselves. It is health-

ier for an organization to gradually evolve portions of a

descriptive process model into a prescriptive one rather

than to pull a prescriptive process out of the air (or an

industry standard).

Are canonical process models such as the Spiral

development model [Boehm, 2000] and the common

SE “Vee” model [e.g., Forsberg, Mooz, and Cotterman,

2000] descriptive or prescriptive? They contain aspects

of both. They are high-level, general descriptions of PD

processes, and many enterprises use them as guidelines

for their prescriptive processes. Enterprises may de-

velop tiered process models, where the high levels are

prescriptive and the lower levels are descriptive. Unfor-

tunately, some companies fail to realize the distinction,

thereby causing internal misunderstandings and de-

bates about what process documentation is formal,

auditable, etc. The resulting waste in time and effort in

large organizations should not be underestimated.

Toyota seems to have a mature perspective on proc-

ess models, treating them as the company’s repository

of state-of-the-art knowledge about how to do work, but

constantly subjecting them to the scientific method

[Spear and Bowen, 1999]. Each process is described in

great detail, and each activity and interaction descrip-

tion is hypothesized to be the best way of getting the

desired result. Hence, it is descriptive and prescriptive.

The workforce has a common understanding of what is

planned to be done and spends minimal time wondering

how to do it. Clearly, a lot of effort is invested in

planning: Rather than hoping that “we will figure out a

way to do that when we get there,” they explicitly

develop a proposed approach, a hypothesis. Given this

huge investment in detailing processes, one might think

that Toyota would be highly resistant to change. Para-

doxically, just the opposite is true. Each hypothesis is

viewed as waiting to be disproved. A better way is

always welcome, and there is a clear and quick mecha-

nism for changing a process, which then becomes the

new hypothesis for the best way to do the work. This

approach promotes consistency; it also provides a ready

baseline against which to compare a proposed change.

Moreover, since they do not have to think so much about

what work to do, the employees are freed to think about

better ways to do the work. While used primarily in the

Toyota Production System, this philosophy is also used

in projects at Toyota.14 It provides the basis for a true

“learning organization.”

As former U.S. President Dwight G. Eisenhower

said, “The plan is nothing; planning is everything.” It is

impossible to pre-specify all actions and interactions in

a PD project—i.e., to have a perfect plan. On the other

hand, it is very inappropriate to make no attempt to do

so—i.e., not to do enough planning. Planning involves

systematic learning about what is known and unknown,

what is certain and uncertain [de Geus 1988; De Meyer,

Loch, and Pich, 2002]. More than just “documenting,”

modeling is the act of sorting out what is known and

unknown and can lead to discovery of the “unknown

unknowns.” Many of the so-called “unk unks” in a

14Spear and Bowen’s [1999] four rules of the Toyota Production

System are highly instructive for (but not necessarily applicable to

the same extent in) PD process modeling, and we will allude to these

rules in other discussions:

1. All work shall be highly specified as to content, sequence,

timing, and outcome.

2. Every customer-supplier connection must be direct, and

there must be an unambiguous yes-or-no way to send re-

quests and receive responses.

3. The pathway for every product and service must be simple

and direct.

4. Any improvement must be made in accordance with the

scientific method, under the guidance of a teacher, at the

lowest possible level in the organization.
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project are actually known by someone, but they never-

theless surprise project management because they were

not accounted for in the project plans. Building a shared

process model helps expose such latent information.

Having a prescribed way of doing something needs to

be reconsidered in the context of PD as meaning having

a hypothesized way of doing something. This implies

that “changing the plan” should be easier than it often

is in many organizations.

3.3. Activity Dependencies and
Information Flow

What causes one activity to depend on another? Where

do the connectors on a flowchart or PERT chart come

from? In many modeling and scheduling situations,

activity dependencies are defined casually, as an indi-

vidual or group sits down and thinks, “This should

happen before that does.” Even if the approach is more

systematic, often only a nominal set of dependencies

are recorded—just enough to connect all the boxes on

the flowchart or Gantt chart and perhaps find a critical

path. Thereafter, however, all of the dependencies so

derived may be treated as completely firm! But where

do dependencies among activities in PD projects really

come from?

In PD, activities require information and perhaps

other inputs to do their work and produce satisfactory

results. If one actually asks the people who do them,

one will find that most PD activities use a set of inputs

rather than a single one.15 Similarly, one will find that

activities produce much more than their primary deliv-

erable: they produce preliminary outputs, status reports,

confirmations and/or rejections of other activities’

propositions, etc. PD and its activities can be viewed as

a process of information collection, creation, interpre-

tation, transformation, and transfer.16 PD activities re-

quire and produce information. The result of many PD

activities is just information. Information is what flows;

it is the life-blood of projects. Thus, to find the depend-

encies between activities, we need to find what infor-

mation and other deliverables they require to do their

work. Unfortunately, most process modeling fails to

capture the full information flow, and the noted interac-

tions are often poorly understood—e.g., when the

boxes on a flowchart are labeled but the connectors are

not. Activities also require quality inputs to produce

quality outputs. A 100% value-adding activity (if such

exists) will still produce garbage if fed garbage [Brown-

ing, 2002].

In information-intensive processes like PD, where

activities depend on a number of inputs and provide a

number of outputs, a casual approach to process mod-

eling is insufficient. Since poor flow is the source of

many process problems, the dependencies that establish

the flow patterns must be recognized and managed. At

the outset of building a descriptive process model, one

is unlikely to capture all of the dependencies. Over the

course of a dynamic project, dependencies may appear,

change, and disappear. However, it is interesting to note

that the dependencies tend to be the more stable part of

a process model. That is, while the way an activity is

done may vary from project to project, the activity’s

need for particular inputs (information, approvals, re-

sults of decisions, etc.) is more consistent. (For this

reason, high-level program plans will often focus on the

deliverables desired at certain milestones.)

Several authors [e.g., Winograd and Flores, 1986;

Pall, 1999] consider processes as “networks of commit-

ments,” where each dependency represents a deliver-

able that must be agreed and committed to. The process

model then provides the basis for accountability

throughout an organization. (These commitments can

change if necessary, but without a baseline set of com-

mitments, there is nothing to change.) With this per-

spective, dependencies take on an even greater

importance, and managers realize the impetus to man-

age interactions vice actions.17

In discussing the flow of information and other

deliverables that create dependencies, we distinguish

information from knowledge. Knowledge is required to

do non-automated work, but information is what flows

between activities done by different people (Fig. 6).

There can be problems turning information into the

right knowledge and turning knowledge into the right

information. An individual’s mental models play a role

in both transformations, and a process model is useful

when it helps align peoples’ mental models and facili-

tates communication.

Note: As we will discuss below, we distinguish

inputs from resources, although the latter are techni-

cally a kind of input. By resources, we refer to time,

money, energy, enthusiasm, and other consumables

used in the course of executing the activity. Within the

category of resources, we also prefer to distinguish

consumables from tools and equipment, which include

15Many PD activities can proceed based on assumptions about

their inputs when the actual inputs are unavailable. This flexibility is

a double-edged sword and makes a process model even more valuable

for managing a PD project. Even the activities’ participants may not

recognize the assumptions they make for what they are: proxy inputs.
16This perspective is supported by an extensive literature on

organizations [e.g., March and Simon, 1993; Burns and Stalker, 1961;

Galbraith, 1977; Tushman and Nadler, 1978; Clark and Fujimoto,

1991] and design activities [e.g., Pahl and Beitz, 1995] as information

processors.

17Some managers refer to this as managing the “white space”
between activities or organizational units.

116   BROWNING, FRICKE, AND NEGELE



machines, hardware, software, templates, etc. required

to perform the activity. It can also be helpful to distin-

guish facilities or work areas in this category.

3.4. General Objectives for PD Process
Modeling

The discussion so far points to some general objectives

for a PD process model, as given in Table IV. Unfortu-

nately, the text-based, narrative process documentation

found in many companies does not meet these objec-

tives; in fact, it turns out to be very unhelpful except for

passing audits. Nor do mere process flowcharts or maps

fit the bill entirely. A more capable process modeling

framework is needed, one that is simple but extensible

to capture rich content where appropriate.

3.5. Foundations of a Generalized

Framework for Modeling Processes:

Activities and Deliverables

These objectives point to the need for a generic, flexible

basis for structuring a process model. Such a framework

would begin with two fundamental objects: activities

(variously referred to as processes, process elements,

subprocesses, tasks, steps, operations, functions, etc.)

and deliverables (also known as inputs, outputs, results,

work products, services, information, outcomes, arti-

facts, items, etc.). Activities are the constituent ele-

ments of a process system. They are packages of work

to be done to produce results, the “boxes” on a flow-

chart. They require deliverables as inputs and produce

them as outputs. Hence, they are both a customer and a

supplier. They consume or use resources: time, money,

people, tools, facilities, etc. Deliverables are the con-

nectors on a flowchart that represent any information,

data, result, material, etc. produced or required by an

activity. On the basis of these two fundamental objects,

we propose a generalized framework in Section 4.

     Table IV. General Objectives for a PD Process Model

Figure 6. Distinguishing knowledge and information.
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3.6. Standard and Deployed Processes

The multiproject company struggles with the issue of

commonality across projects, both in terms of organi-

zation structure (to facilitate personnel transfer and

career development), tools (to leverage investments,

training, and infrastructure compatibility), product ar-

chitectures, and, not in the least, processes. Some or-

ganizations define a standard process to be used by all

projects—i.e., a standard set of activities and deliver-

ables, usually at a high level, although sometimes also

at lower levels in particular areas. Typically, this stand-

ard process requires some amount of tailoring and/or

scaling before it is helpful for planning and controlling

a particular project instance. Such a modification of a

standard process is termed a deployed process.

We provided a fuller discussion of the use of stand-

ard and deployed processes in part four of our tutorial

(q.v., Fig. 1). Here, we will only note some of the

difficulties these pose for modeling. First, because they

are not used verbatim on any project, many organiza-

tions’ standard processes tend to be detached from the

way work is actually done. Many of those doing so-

called “real work” may see the standard process as

irrelevant, too generic to be helpful. And process

modelers struggle with the right level of standardization

when faced with clear differences in projects’ ways of

working. Second, company policy may attempt to man-

date the use of a standard process in a prescriptive way.

Third, and also because of its prescriptive nature, there

is often pressure for it to be purposefully ambiguous, so

that any activity done on a project will conveniently fall

under its umbrella whenever, for example, an ISO audi-

tor questions the workforce. These difficulties chal-

lenge the establishment and maintenance of standard

and deployed processes. Thus, even though standard

and deployed processes must be developed progres-

sively and iteratively, as part of an organization’s learn-

ing cycle, we generally recommend that an organization

with existing projects build deployed process models

first, based on the ways work is actually done on current

projects. Then, a central organization can distill a stand-

ard process and strive to make it increasingly common

(and improving) over time. This in turn facilitates ef-

forts towards commonality in the tools system, where

companies prefer to drive their various projects towards

common information technology platforms, software

applications, templates, etc. (Driving towards a com-

mon tool set should follow process standardization,

however, rather than lead it, because the point is for the

chosen tools to support the valued activities, rather than

the other way around.)

3.7. Centralized Versus Decentralized
Process Modeling

The discussion of standard and deployed processes

leads to the question of who in a company should build

a process model. It is important that the people who

currently do the work be involved as much as possible

since they tend to have the most reliable knowledge of

it. On the other hand, having a centralized organization

or a team get together in a conference room to “hammer

it out” has some advantages. For one thing, these tend

to be process modeling experts who can build sophisti-

cated models. Yet, they suffer the major disadvantage

of being removed from where the work is done—and

the accompanying “wish-was” problem mentioned

above. Furthermore, collecting and verifying the data

comprising the process model will overwhelm a small

group. Thankfully, the generalized framework for mod-

eling processes that we present in Section 4 lends itself

to distributing the modeling effort throughout the or-

ganization. Each person can contribute a little of the

information in their area of specialization, and a cen-

tralized group can oversee its integration and verifica-

tion. The centralized group will often specify the

“trunk” of the enterprise’s process “tree” structure but

allow those currently doing the work to specify the

twigs and leaves. To facilitate a decentralized approach

to building PD process models, Fricke et al. [1998] and

Negele et al. [1999] developed an input-process-output

(IPO) database and integration tool called TIPO (“Tool

for IPO”). Sabbaghian, Eppinger, and Murman [1998]

also developed a Web-based tool to facilitate distributed

process modeling.

3.8. “As Is” Versus “To Be” Process
Modeling

As people build a process model, what should they

describe—the way work is done now or the way they

think it should be? Should they describe the present or

prescribe the future? If there is an “obvious” way to do

things better, is it a waste of time to document the

current way? In practice, process modeling typically

proceeds as a combination of both “as is” and “to be.”

For a process of significant size, it will take some period

of time to build the process model, and during that time

the enterprise will evolve and the process will change.

The point of building the process model is to establish

a baseline to the extent possible. Of course, one of the

key requirements of a useful process model is that it be

amenable to quick and easy maintenance and improve-

ment.

Having the people who currently do the work con-

tributing to building the model usually provides the best

mix of current and desired practice in the baseline
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model. Major improvements (deviations from the cur-

rent process) are best left for a second, proposed, “to

be” version of the model, the value of which can be

analyzed and compared to the “as is” state.

3.9. Dealing with Multiple Phases

PD occurs over several phases, such as conceptual

design, preliminary design, and detailed design. As

illustrated in spiral models [e.g., Boehm, 2000], each of

these phases is somewhat similar, though successively

more detailed. Therefore, does each phase need to be

modeled separately? Can some of the modeling struc-

ture from one phase be reused for another?

We have found that, while the structure of each phase

is similar at a very high level, the nature of the specific

activities performed and the information required dif-

fers, especially in its attributes (such as duration, cost,

maturity, entry and exit criteria, etc.). Hence, we recom-

mend that each phase be approached separately at first,

maximizing the inductive nature of the model building.

Thereafter, efforts can and should be made to consoli-

date and standardize across phases to a reasonable

extent, perhaps using varied activity modes (defined

below). Having separate models of each phase to start

with provides a basis for comparison, contrast, and

validation in the model building process. Best practices

from one phase can be used in the others, instead of

“who-knows-how-good” practices from one phase be-

ing foisted on the others.

It is important to emphasize the reason for multiple

phases or stages in uncertain, ambiguous, and risky

projects like PD. By breaking a large, risky project or

program down into smaller, chronological chunks, re-

source commitments can be delayed and reevaluated at

phase-gate reviews, thereby reducing the overall risk by

providing opportunities to terminate the project early if

unsatisfactory scenarios materialize. The early phases

are typified by fewer resources and much higher ambi-

guity. Activities in these phases are geared towards

generating and discovering information and reducing

ambiguity and risk, and the activities are much more

likely to change drastically based on the results that

appear. The downstream, detailed design phases obvi-

ously have a different emphasis; what needs to be done

is much clearer by that point. Hence, the different

phases of PD are best addressed by separate (but inte-

gratable) process models, and care should be taken to

distinguish the similar activities in each phase accord-

ingly.

3.10. Dealing with Unforeseen Uncertainty
and Ambiguity

In their survey of PD process models, Browning and

Ramasesh [2005] note the following two themes and

call for further research to address them. First, most

process models assume that all PD activities are known

a priori. De Meyer, Loch, and Pich [2002] classify

projects by their type and amount of uncertainty—from

“variation,” “foreseen uncertainty,” and “unforeseen

uncertainty” to “chaos”—and suggest that the approach

to project management vary accordingly. The approach

to process modeling should also vary [Lillrank, 2002].

While the current models are most applicable in cases

of “variation” and “foreseen uncertainty”—where over

90% of activities and deliverables can be anticipated

from one project to the next [Austin et al., 2000]—re-

search is needed on process models to support project

planning in cases of “unforeseen uncertainty” and

“chaos.” In these latter cases, the process should explic-

itly include activities to reduce risks and discover op-

portunities. Natural, adaptive, or emergent processes

[Highsmith, 2000; Lévárdy and Browning, 2005] such

as bazaar-style development [Raymond, 2001] offer

promising avenues for further research.

Second, as standard processes become more widely

used as a basis for project planning and organizational

learning, research on tailoring and scaling a standard

process for a particular project takes on greater impor-

tance. The existing frameworks and models do not

capture the difference between process description and

prescription, nor do they provide much guidance for

process tailoring and scaling. When is the full, standard

process really appropriate, and when might a fast-track,

albeit higher-risk PD process make more sense? While

pure, mechanistic design of innovative organizations

does not work [Dougherty, 2001], an appropriate

amount of planned process structure yields efficiency

[Tatikonda and Rosenthal, 2000; Spear and Bowen,

1999] by enabling workers to focus their creativity on

value-adding actions and coordinate their interactions.

Austin et al. [2001] show that some basic process

structure is appropriate even for conceptual design.

Therefore, what is the right balance between process

prescription and innovation [Benner and Tushman,

2003]? As flexible, adaptive processes become more

attractive in climates of high uncertainty and ambiguity,

how are these to be distinguished from what some

managers say is the most adaptable process of all—“no

process”?

These are important questions that bear much further

scrutiny. However, it seems to be clear that both ex-

tremes—assuming one knows all activities and deliver-

ables a priori, on one hand, and thinking that trying to

model and plan what one does anticipate is a total waste

of time, on the other—are problematic. The generalized

framework that we propose in this paper is especially

useful between these extremes. While some may at-

tempt to use it in the first extreme, it is important to
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realize that all proposed activities, deliverables, and

commitments represent a hypothesized baseline, a plan,

and that it is the act of creating and updating them that

is valuable, much more so than seeking to use the single,

original version to keep a project “on track” (as dis-

cussed in Section 3.2). As a key benefit, the generalized

framework enables (and even admonishes) capturing

much of the information needed to re-plan rapidly and

effectively.

3.11. Some “People” Issues in Process
Modeling

“Here is Edward Bear, coming downstairs now, bump,

bump, bump, on the back of his head, behind Christo-

pher Robin. It is, as far as he knows, the only way of

coming downstairs, but sometimes he feels that there

really is another way, if only he could stop bumping

for a moment and think of it.”

  —A.A. Milne, Winnie-the-Pooh, opening lines

Some people resist process modeling because they:

• Have witnessed a lack of benefit from previous

process modeling efforts;

• Perceive a lack of resources;

• See current crises as more urgent and important;

• Do not understand the uses, value, and benefits of

process models;

• Anticipate and fear control, over-prescription,

over-systemization, reduction of creativity, and

stifling of innovation;

• Are reluctant to share knowledge and collaborate;

• Have grown accustomed to “hiding” in bureauc-

racy and are averse to transparency;

• Prefer to work “harder” instead of “smarter”; or

• A combination of these reasons.

Arnold [2004] discusses some other inhibitors to proc-

ess modeling efforts. In response to these problems, we

offer the following as potential solutions:

• Starting small, demonstrating the benefits, and

then expanding;

• Reprioritizing and reallocating existing resources

when it is not possible to add resources;

• Education and training on the motivations for and

benefits of process modeling;

• Communication that processes do not eliminate

innovation but channel it towards critical prob-

lems and collaborations and the results customers

value;

• Admonition to view process models as hypothe-

ses of the best courses of action [Spear and

Bowen, 1999], ready to be rejected when a better

solution can be found18;

• Incentive systems for sharing knowledge, col-

laborating, and improving; and

• Executive support!

Notwithstanding the last item, the most important of

these is education. Unless people understand “why” and

appreciate the value, they will act as barriers instead of

enablers to process modeling success. Often, the critics

of process modeling can point to one or two particular

experiences to justify their opposition. For instance,

perhaps, in an effort to “get things done,” their organi-

zation isolated a cadre of individuals to work on a

process model (cf. the centralized approach to modeling

discussed in Section 3.7). When presented to the rest of

the organization, the results of this work were not

actively accepted, as they did not understand why the

model was built the way it was. (This “short cut” [or

“short circuit”] approach to process modeling and its

less than stellar results is a major contributor to the poor

reception of process models in many circles.) Or, per-

haps they think that their conception of a process model

(perhaps as a long narrative) would not help them do

their work. Whatever the issues, it is extremely impor-

tant to find the most vocal opponents of process mod-

eling and strive to educate them about its benefits.

Removing a barrier to success is often much more

effective than increasing the drivers of success (because

the barriers will also increase their resistance propor-

tionally), which is why we favor education even over

executive support. As an excellent explanation of the

value of spending precious company resources on proc-

ess improvement and learning vice the “crisis de jour,”

we recommend a paper by Repenning and Sterman

[2001]. Finally, it is crucial that everyone involved in

process modeling receive some benefit commensurate

with the contribution they make.

3.12. Definitions

We conclude this section on key concepts by providing

our recommended definitions for some process model-

ing terms in Table V.

18 Sometimes lazy, creative people find helpful short cuts, but

often they must be kept to following a best practice. Give them the

opportunity to find a better way, but make them prove it is better, not

just in terms of efficiency, but in terms of effectiveness and consis-

tency and in light of all the potential failure modes that the baseline

process is geared towards preventing.
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4. A GENERALIZED FRAMEWORK FOR
MODELING PD PROCESSES

The PD process modeling literature seems to struggle

with regard to the right amount of standardization.

(Recall Table III, which lists 18 PD process modeling

frameworks.) While a diversity of frameworks places

no reins on innovation, reinvention seems rampant in

the literature, as extended models in one framework

merely incorporate attributes that have already been

accounted for in another framework. This diversity also

causes problems in practice, as models for different

purposes are not easily integrated or understood across

functions. Our observations of the uses of PD process

models and the key concepts discussed above suggest

possibilities for and advantages of a more general ap-

proach. Hence, we propose a synthesis in the form of a

generalized framework (GF) for modeling PD proc-

esses. A GF would be helpful and useful, without sig-

nificant drawbacks, and is validated by similar efforts

outside of PD.

As discussed in Section 3.5, two primary objects,19

actions and interactions—i.e., activities and deliver-

Table V. Definitions of Some Process Modeling Termsa

aNotes for Process item: (1) Hammer [2001]; (2) Gabriel Pall, personal communication; based on Pall [1999]

19Here, we discuss process modeling using some terminology
from the object-oriented (o-o) modeling literature. o-o modeling is a
robust modeling paradigm with high structural correspondence to
peoples’ mental models of reality [e.g., Kilov, Rumpe, and Sim-
monds, 1999]. o-o modeling and its popular Unified Modeling Lan-
guage (UML) are used extensively for designing product systems
[e.g., Crisp et al., 2000; Senin, Wallace, and Borland, 2003].
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ables—provide the foundation for a PD process model.

Each of these objects can have a myriad of attributes;

the 18 frameworks in Table III each account for and

emphasize certain ones. For example, traditional activ-

ity network models emphasize the activity attributes of

duration, cost, and predecessors, but they do not address

the attributes of the deliverables. From the “purpose

perspective” [Browning and Ramasesh, 2005], while no

single purpose requires a model with all of the attrib-

utes, each purpose requires a subset of them and often

can benefit from accounting for more of them. (Again,

research has often moved in the direction of enriching

models for one purpose by accounting for additional

attributes that have already been emphasized in models

for other purposes.)

Activities and deliverables provide the kernels or

basic “Lego® blocks” from which increasingly complex

process structures can be built. Table VI shows each

with a rich (but not exhaustive) superset of their attrib-

utes. These are used to “tag” relevant information (or

links to information) to the object, especially in three

ways: (i) An activity’s input and output attributes pro-

vide one or more pointers to unique deliverable objects

(and vice-versa); (ii) an activity’s (deliverable’s) parent

and child attributes provide pointers to unique activity

(deliverable) objects, thereby specifying hierarchical

(actually, holonic) work and deliverable breakdown

structures; (iii) other attributes can optionally point to

other kinds of objects—such as organization units (e.g.,

individuals, teams), events, issues, policies, goals, mile-

stones, “toll gates,” resources, and tools—representing

elements of the other four project systems in Figure 3.

No single model need utilize all of the attributes, but

having a structure to accommodate them facilitates

process model integration. This potentially very rich

model is stored in a database, independent of the many

views that could be used to represent aspects of it. A

single view is inadequate to convey all of its objects and

attributes in a visually appealing way, and hence a

variety of views should be used, as discussed in relation

to Figure 4 and in Browning and Ramamesh [2005].

At a minimum, to form the most basic process

model, each activity must list its inputs and outputs and

thus be linked to the intervening deliverable objects.

Hence, process modeling sometimes begins with an

input-process-output (IPO) or supplier-IPO-customer

(SIPOC) representation, such as the example in Figure

7. However, the SIPOC diagram covers only the bare

minimum of activity attributes needed to get a process

model started.

Beyond the two fundamental objects, a process

model can include other objects such as:

Table VI. Fundamental Building Blocks of PD Process Models and Some of Their Attributes (Adapted from
Browning [2002], Fricke et al. [1998], and Negele et al. [1999])
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• Organizational units (person, team, company,

etc.)

• Tools (facility, template, computer system, soft-

ware application, etc.)

• Product elements (sub-system, component, etc.)

• Goals (requirement, objective, policy, etc.)

Each of these objects would have its own set of

attributes. Collectively, these objects and their attributes

provide a sufficient basis to model and link the five

project systems shown in Figure 3. Other objects and

attributes may be added to model other systems or

aspects thereof.

Whenever an attribute of one of these objects refers

to another object (such as when an activity has a list of

input deliverables as one of its attributes), this reference

is captured simply as a pointer or link to the referent

object itself, which stores the actual information. The

objects are holonic and can share other convenient

properties of object-oriented modeling frameworks,

such as full or selective inheritance. In addition, a parent

process element with constituent activities can have one

or more attributes (meta-data) to represent holistic be-

haviors not captured collectively by the constituent

activities. Thus, the model can represent much more

than a reductionist perspective.

As the marketing literature models a product as a

vector of attributes, Table VI enables processes to be

treated the same way. The GF can be tailored for a

particular use via a Quality Function Deployment

(QFD)-like mapping of purposes (“whats”) to attributes

(“hows”). Applications to new purposes would require

the addition of new attributes. Thus, the GF theory

enables new research to identify the attributes of proc-

ess models that will make consistent and valid descrip-

tions of reality and have predictive value for a given

purpose.

A GF offers many other benefits. It raises attentive-

ness to attributes that would be ignored from the per-

spective of one framework, such as the importance of

deliverables’ attributes. Thus, one would expect the GF

to improve model validity, accuracy, resolution, and

ability to represent causality [Hazelrigg, 1999]. By

accounting for work states as well as workflows, the GF

facilitates modeling adaptive processes and their emer-

gent characteristics [Highsmith, 2000]. As new activi-

ties are discovered in an ambiguous project, they are

easily inserted into the GF model of the network, which

adapts quickly to their presence and indicates any

changes and their effects.20 The object-oriented view of

activities and their mapping to organizational objects

also facilitates agent-based modeling and analysis ap-

proaches.

Moving towards a GF provides further advantages,

especially for practitioners. In practice, models built for

a specific purpose but using different frameworks, such

Figure 7. Example SIPOC diagram.21

20Like the integration of a new information technology system

into an existing company infrastructure, the effective integration of a

new activity into a project can cost more than the activity itself. The

way to break this paradigm is to “develop systems and process that

are self-integrating—that are able to “understand” their own capa-

bilities, limitations, input needs, and output abilities; and which are

able to “negotiate” their relationship with the rest of the enterprise’s

systems when they are plugged in and given their performance

specifications” [IMTI, 2000: 27].
21The data for this example come from an unmanned combat

aerial vehicle (UCAV) PD process at The Boeing Company, as

described in Browning [1998].
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as a value stream map [e.g., McManus and Millard,

2002] and a signposting model [Clarkson and Hamil-

ton, 2000], could be integrated into a single, rich model,

which could furthermore be abstracted for any particu-

lar user or purpose by filtering out the irrelevant attrib-

utes in a customized view. Meanwhile, each user and

view would benefit from querying the full, common,

rich model instead of a single, disparate, shallow model.

While a model built in one of the 18 frameworks would

make implicit assumptions about attributes not nor-

mally accounted for by the framework, in a GF these

assumptions are explicit or replaced by real informa-

tion. Improved process model integration enables in-

creased integration of real processes, which in turn

enables improved organizational, tool, and product in-

tegration. Furthermore, by including attributes for “les-

sons learned” and “potential pitfalls” in the activity

objects, and by generally capturing information about

what and how work is done, the process model becomes

a skeleton for organizational knowledge. By enabling

an organization to structure and reuse their knowledge

about what and how work is done, a GF facilitates

process-model-based project planning and tailoring.

Chiefly, following a GF makes a process model more

broadly applicable, integratable, adaptable, usable, re-

usable, maintainable, and easy to store. Individually,

each of these mean real money saved in practice; com-

bined, they can enable a revolutionary approach to

enterprise planning and management. A compelling

motivation for a GF is provided by trends in other areas,

including the broader business process modeling and

information technology literature [e.g., Tissot and

Crump, 1998; Presley et al., 2001; Scheer, 1998a; Zach-

man, 1987], efforts to structure process specification

languages [e.g., Schlenoff et al., 2000] for manufactur-

ing processes, and the modeling of complex product

architectures as a set of views drawn from a complex

database of information [DoD 2001; Yu, Harding, and

Popplewell, 2000]. These areas portend the needs and

desires of industry.

Using a GF also benefits the research community by

allowing the buildup of a shared library of integratable

and reusable process models upon which to test future

analysis techniques. With a generic scaffolding, models

and databases of process information captured in one

research project, using a particular framework (such as

Petri nets), could be more readily integrated, reused,

reanalyzed, and verified in another project using an-

other framework (such as IDEF3), and any missing data

would be highlighted. Thus, it is also possible to view

Table VI as the basis for a data interchange format

between PD process models. Since PD projects are

more complex than manufacturing operations and

unique rather than repetitive, the models are potentially

richer and more varied. Thus, having a GF is of even

greater benefit for PD process modeling. Since collect-

ing the rich data set necessary to build a PD process

model is a significant barrier to researchers, the capa-

bility to share models in a standard format should

accelerate the pace of research.

5. CONCLUSION

The methods and tools used to design and manage

complex projects and programs and their work proc-

esses have evolved considerably over the last 50 years

[Cleland, 2004], from early work on phased program

planning and systems engineering in the U.S. Depart-

ment of Defense in the 1950s, to Concurrent Engineer-

ing [Smith, 1997] or IPPD via Integrated Product Teams

(IPTs) in the 1980s, to the wider incorporation of deci-

sion support tools such as QFD [e.g., Hauser and

Clausing, 1988; Akao, 1990], concept selection [e.g.,

Pugh, 1991], and decision analysis [e.g., Clemen, 1996]

in the 1990s. We have also witnessed growth in inter-

national standards such as the ISO 9000 series and the

CMMI process guidance. However, the advent and use

of all of these has not necessarily increased program

success in terms of being able to meet goals within a

schedule and a budget. For one thing, the variety of and

detail within many of today’s methods and tools have

arguably increased specialization and the division of

labor in organizations. Also, the time-compression de-

sired to reach markets and customers more quickly has

led to increased concurrency and multi-disciplinary

activity, all of which dramatically increases the coordi-

nation and integration challenges facing managers and

systems engineers. Furthermore, the individuals who

have lived through most of the evolution in techniques

over the last fifty years have now retired or are retiring,

which contributes to “organizational forgetting” [e.g.,

de Holan, Phillips, and Lawrence, 2004]. Thus, with all

of these methods and tools and their disparate users

comes an even greater need for managerial and techni-

cal leadership support in terms of a systematic approach

to integrating and coordinating the work required to

achieve a unique result. We see process models as the

enabler for such support, as well as providing the scaf-

folding for knowledge management. While the outlook

in this direction is optimistic, much work remains to be

done to guide this development in the most effective and

efficient ways.

In this paper, we have laid a foundation for process

modeling in a systems engineering context. The SE

context, or, more broadly, the PD context, differs from

that of typical business processes in significant ways.
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Hence, process modeling should be tailored to that

environment. This paper seeks to begin to fill that gap.

Education and training on the purposes of and ap-

proaches to process modeling is an essential starting

point. Many process modelers have attempted to “leap

into modeling” just as software engineers are notorious

for wanting to “leap into coding.” It is important to

know “why” before doing, which is the reason for a

paper focused on the background and motivation for

process modeling. Even so, many of the powerful capa-

bilities of process models and the competitive advan-

tages they provide must be left for discussion

elsewhere. Such important topics, not addressed in this

paper, include building, representing, and using PD

process models (q.v., Fig. 1). Within these broad areas,

important subtopics include process-model-based man-

agement, the process model life cycle, project and pro-

gram planning and scheduling, process analysis,

process improvement, process model improvement,

roadmapping the evolution of dynamic processes, proc-

ess tailoring and scaling, measures and metrics, leading

indicators, iteration management, and risk manage-

ment.
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