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We give an overview of the underlying concepts of time-dependent density-functional
theory. The basic relations between densities, potentials and initial states, for time-
dependent many-body systems are discussed. We obtain some new results concerning
the invertability of response functions. Some fundamental difficulties associated with the
time-dependent action principle are discussed and we show how these difficulties can be
resolved by means of the Keldysh formalism.

1. Introduction

A large field of research in physics is concerned with many-electron systems in

time-dependent external fields. One could, for instance, think of linear response

properties of molecules and solids. In this regime one considers external fields which

cause a small perturbation of the initial ground state of the system. Many im-

portant physical quantities can be obtained from such a calculation,1–3 such as

polarizabilities, dielectric functions, excitation energies, photoabsorption spectra,

and van der Waals coefficients. Beyond linear response the situation becomes much

more complicated. One can for instance think of atoms and molecules in strong

laser fields.4 A full theoretical description of these systems which involves solving

the time-dependent Schrödinger equation is currently beyond computational ca-

pabilities and full time-dependent wavefunctions have thusfar only been obtained

with large effort and only for small systems5 or one-dimensional models.6,7 It is

therefore clear that new methods must be found to deal in an efficient way with

such time-dependent many-particle correlations.

It is therefore worthwhile to explore new methods which deal with time-

dependent systems. A promising method is time-dependent density-functional the-

ory (TDDFT).8–12 Its most attractive feature is that it transforms the many-body

system into a system of noninteracting particles in an effective field. This makes

1969



June 12, 2001 18:19 WSPC/140-IJMPB 00499

1970 R. v. Leeuwen

the method of great practical use. The price we have to pay for transforming the

interacting problem to an effective noninteracting one, is that we have to find ap-

proximations for the effective field. This effective field is known as the Kohn–Sham

potential13 and is a functional of the particle density. Its functional dependence on

the density is such that the density of the fully interacting system and the effec-

tive Kohn–Sham system are identical. Within density functional theory not only

the Kohn–Sham potential, but every physical observable is a density functional.

The success of density functional theory therefore depends critically on whether

or not we can find good approximate density functionals for the quantities of in-

terest. Experience with stationary systems has taught us that in this respect we

have been quite fortunate. Already simple approximations such as the local density

approximation (LDA) have turned out to be quite succesful in the calculation of

structures and total energies of molecules and solids.14,15 Based on this experience

it is therefore interesting to investigate how well density functional theory will per-

form for time-dependent systems. Calculations within the linear response regime

have been very promising16–20 and the interest in the field is growing rapidly. It

is therefore timely to look back to the foundations of the theory. This article will

give an overview of the key concepts underlying time-dependent density functional

theory. It is hoped that this work will serve as a basis for further development of

more accurate density functionals.

In this paper we first address the question what the time-dependent density can

tell us about the dynamics of a many-particle system. We discuss the Runge–Gross

theorem21 which establishes a one-to-one correspondence between the density and

the external potential for a given initial state. The Kohn–Sham construction then

forces us to consider different two-particle interactions and initial states. This will

lead us to a discussion of the time-dependent v-representability problem.

The most succesful applications of TDDFT are found in the linear response

regime. We will give an overview of the properties of the linear response function

of the density and establish an invertability proof for a large class of switch-on

potentials. The key objects in the response equations of TDDFT are the exchange-

correlation potential and its functional derivative, the exchange-correlation kernel.

Some basic properties of these quantities are discussed which will hopefully provide

some guidelines for the construction of better approximate functionals.

Finally the subtleties related to the action principle are discussed in detail. It

is explained why initial derivations of the time-dependent Kohn–Sham equations

from a variational principle have lead to paradoxes, and how they can be avoided by

the use of functionals that are defined on a so-called Keldysh contour. It is shown

how the Keldysh formalism can be used to derive all the equations of TDDFT in a

consistent way. The formalism is further illustrated using an exactly solvable model

system. Finally we present our conclusions and outlook on future developments

within density functional theory.
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2. Mapping Between Densities and Potentials

2.1. Ground state density-functional theory by Legendre

transforms

In order to study the properties of time-dependent density functionals it is useful to

reconsider density functional theory of stationary systems from a different viewpoint

than usual. The method described here goes back to the work of De Dominicis

and Martin.22 This work discusses the relations between n-body potentials and

n-particle density matrices, of which the density-potential relation to be discussed

here is a special case. The method will play an important role later, when we will

study the action functional for time-dependent density functionals. We consider a

Hamiltonian of a stationary many-body system

Ĥv = T̂ + V̂ + Ŵ , (1)

where T̂ is the kinetic energy, V̂ the external potential, and Ŵ the two-particle

interaction. We denote the Hamilton operator Ĥv with a subindex v to indicate

that we will consider the Hamiltonian as a functional of the externa l potential v.

In second quantization the constituent terms are, as usual, written as

T̂ = −1

2

∑
σ

∫
d3rψ̂†σ(r)∇2ψ̂σ(r) , (2)

V̂ =
∑
σ

∫
d3rv(r)ψ̂†σ(r)ψ̂σ(r) , (3)

Ŵ =
1

2

∑
σσ′

∫
d3rd3r′w(|r − r′|)ψ̂†σ(r)ψ̂†σ′(r

′)ψ̂σ′(r
′)ψ̂σ(r) , (4)

where σ and σ′ are spin indices. The two-particle potential w(|r − r′|) can be

arbitrary, but will in practice almost always be equal to the repulsive Coulomb

potential. The two-particle interaction is considered to be fixed, whereas the ground

state energy E[v] and wavefunction |Ψ[v]〉 are considered to be functionals of the

external potential through solving the time-independent Schrödinger equation

(T̂ + V̂ + Ŵ )|Ψ[v]〉 = E[v]|Ψ[v]〉 . (5)

From this equation we see that ground state energy as a functional of the external

potential v can also be written as

E[v] = 〈Ψ[v]|Hv|Ψ[v]〉 . (6)

Our goal is now to go from the potential as our basic variable, to a new variable,

which will be the electron density. The deeper reason that this is possible is that

the density and the potential are conjugate variables. With this we mean that the

contribution of the external potential to the total energy is simply an integral of the

potential times the density. We make use of this relation if we take the functional
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derivative of the energy functional E[v] with respect to the potential v:

δE

δv(r)
=

〈
δΨ

δv(r)

∣∣∣∣Hv|Ψ〉+ 〈Ψ|Hv

∣∣∣∣ δΨδv(r)

〉
+ 〈Ψ| δHv

δv(r)
|Ψ〉

= E[v]
δ

δv(r)
〈Ψ|Ψ〉+ 〈Ψ|

∑
σ

ψ̂†σ(r)ψ̂σ(r)|Ψ〉

= 〈Ψ|n̂(r)|Ψ〉 = n(r) (7)

were we used the Schrödinger equation Hv|Ψ〉 = E[v]|Ψ〉 and the normalization

condition 〈Ψ|Ψ〉 = 1. We further defined the density operator

n̂(r) =
∑
σ

ψ̂†σ(r)ψ̂σ(r) . (8)

Note that the equation above is nothing but a functional generalization of the well-

known Hellmann–Feynman theorem.23 Now we can go to the density as our basic

variable by defining a Legendre transform

F [n] = E[v]−
∫
d3rn(r)v(r) = 〈Ψ[v]|T̂ + Ŵ |Ψ[v]〉 (9)

where v must now be regarded as a functional of n. The uniqueness of such a

mapping is garanteed by the Hohenberg–Kohn theorem.24 The set of densities for

which the functional F [n] is defined is the set of so-called v-representable densi-

ties. These are ground state densities for a Hamiltonian with external potential v.

The question which constraints one has to put on a density to make sure that it is

v-representable is known as the v-representability problem. We refer to the litera-

ture for more extensive discussions on this point.25,26 From δE/δv = n it follows

immediately that

δF

δn(r)
= −v(r) . (10)

This is our first basic relation. As a remark we note that if we fix the potential v in

the Hamiltonian of Eq. (6) we obtain a relation which is more common in textbooks

on density-functional theory, namely δE/δv = 0. However, the present approach is

more suitable for the extension to the time-dependent case.

In order to derive the Kohn–Sham equations we define the following energy

functional for a system of noninteracting particles with external potential vs and

with ground state wavefunction |Φ[vs]〉:

Es[vs] = 〈Φ[vs]|T̂ + V̂s|Φ[vs]〉 (11)

with Legendre transform

Fs[n] = E[vs]−
∫
d3rn(r)vs(r) = 〈Φ[vs]|T̂ |Φ[vs]〉 , (12)
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and derivatives

δEs

δvs(r)
= n(r) , (13)

δFs

δn(r)
= −vs(r) . (14)

Finally we define the exchange-correlation functional Exc[n] by the equation

F [n] = Fs[n] +
1

2

∫
d3rd3r′n(r)n(r′)w(|r − r′|) +Exc[n] . (15)

This equation assumes that the functionals F [n] and Fs[n] are defined on the same

domain of densities. In other words we assume that for a given ground state den-

sity of an interacting system there is a noninteracting system with the same den-

sity. In other words, we assume that the interacting density is noninteracting-v-

representable. If we differentiate Eq. (15) with respect to the density n we obtain

vs(r) = v(r) +

∫
d3r′n(r′)w(|r − r′|) + vxc(r) , (16)

where

vxc(r) =
δExc

δn(r)
(17)

is the exchange-correlation potential. Now the state |Φ[vs]〉 is a ground state for

a system of noninteracting particles, and can therefore be written as an antisym-

metrized product of single-particle orbitals ϕi(r). If we now collect our results we see

that we have converted the ground state problem into the following set of equations

E[v] =
N∑
i=1

−1

2

∫
ϕ∗i (r)∇2ϕi(r)

+

∫
d3rn(r)v(r) +

1

2

∫
n(r)n(r′)w(|r − r′|) +Exc[n] , (18)

×
[
−1

2
∇2 + v(r) +

∫
d3r′n(r′)w(|r − r′|) + vxc(r)

]
ϕi(r)

= εiϕi(r) , (19)

n(r) =
N∑
i=1

|ϕi(r)|2 . (20)

The above equations constitute the ground state Kohn–Sham equations. These

equations turn out to be of great practical use. If we can find a good approxima-

tion for the exchange-correlation energy, we can calculate the exchange-correlation

potential vxc and solve the orbital equations self-consistently. The density we find

in this way can then be used to calculate the ground state energy of the system.
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This procedure has been applied with great success for a large range of electronic

systems, ranging from molecules to solids.

However, in this work we are interested in time-dependent problems. Let us

therefore see if we can generalize the previous derivation to the case that we have

a time-dependent perturbing field. This will be the subject of the next section.

2.2. Some preliminary thoughts on time-dependent density

functionals

In the previous section we arrived in a rather quick fashion at the Kohn–Sham

equations. One might therefore think one could do a similar procedure for time-

dependent systems. However, we will see that here some problems will arise. We

consider the case where we have a time-dependent external field v(rt) which is

decribed by the following potential energy operator in the Hamiltonian:

V̂ (t) =

∫
d3rv(rt)n̂(r) . (21)

This system will have a time-dependent density n(rt). In analogy with the previous

section it seems natural that we should look for functionals Ã[v] and A[n] having

the property

δÃ

δv(rt)
= n(rt) , (22)

δA

δn(rt)
= v(rt) , (23)

and which are related by the Legendre transform

A[n] = −Ã[v] +

∫
d3rdtn(rt)v(rt) . (24)

Note that in Eq. (23) we have introduced a relative minus sign compared to Eq. (10)

of the stationary case. The functional F [n] for stationary systems should therefore

be compared to the functional −A[n] in the time-dependent case.

If we now define functionals Ãs[vs] and As[n] for a noninteracting system with

external field vs(rt) and density n(rt) and properties

δÃs

δvs(rt)
= n(rt) , (25)

δAs

δn(rt)
= vs(rt) , (26)

we can easily construct Kohn–Sham equations. For this purpose we define an

exchange-correlation functional Axc[n] by

A[n] = As[n]− 1

2

∫
d3rd3r′dtn(rt)n(r′t)w(|r − r′|)−Axc[n] . (27)
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Differentiation of this equation with respect to n(rt) then yields

vs(rt) = v(rt) +

∫
d3r′n(r′t)w(|r − r′|) + vxc(rt) (28)

where

vxc(rt) =
δAxc

δn(rt)
(29)

is the time-dependent exchange-correlation potential. Since vs(rt) is the external po-

tential for a noninteracting system with density n(rt), we obtain the time-dependent

Kohn–Sham equations21[
−1

2
∇2 + v(rt) +

∫
d3r′n(r′t)w(|r − r′|) + vxc(rt)

]
ϕi(rt) = i∂tϕi(rt) , (30)

n(rt) =
N∑
i=1

|ϕi(rt)|2 . (31)

This derivation seems straightforward enough. We only have to find an explicit

definition of our starting functional Ã[v] in terms of the Hamiltonian. It is exactly

here that a major problem arises. The problem is that one can not find a functional

Ã[v] with the property

n(rt) =
δÃ

δv(rt)
. (32)

The reason is that this equation would imply that

δ2Ã

δv(rt)δv(r′t′)
=

δn(rt)

δv(r′t′)
. (33)

Now the left hand side of this equation is symmetric in the space-time arguments,

whereas the right hand side of this equation is the density response function which

has a causal structure, i.e. it is zero for t′ > t. Therefore the causality and symmetry

requirements contradict each other.10,11,27 We conclude that there is no differen-

tiable functional of the external field with property (32). Consequently there is

also no functional of the density with the property δA/δn = v (otherwise we could

construct a functional Ã with property (32) by means of a Legendre transform).

The same is, of course, true for the noninteracting functionals Ãs[vs] and As[n].

We therefore conclude that the Kohn–Sham potential can not be obtained as a

functional derivative with respect to the density. We note, however, that a Kohn–

Sham potential can still be defined as that potential vs[n], that, in a noninteracting

system, yields a given density n(rt). This definition of the Kohn–Sham potential is

based on a one-to-one mapping between densities and potentials that can be proven

directly from the time-dependent Schrödinger equation. On the basis of this map-

ping we can therefore still define time-dependent Kohn–Sham equations. However,

in this way we have lost a connection between action functionals and potentials.

Such a connection can be useful for the derivation of new approximate potentials.
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This difficulty is resolved later when we will show that the Kohn–Sham poten-

tial can still be obtained as a functional derivative of an extended type of action

functional defined on a new time contour.

2.3. Local conservation laws

Before we discuss some other properties of density functionals we will first describe

some general properties of time-dependent many-body systems. The relations de-

rived will be used later in some basic proofs of time-dependent density functional

theory.

We consider systems in which the time-dependent external field can be described

by a time-dependent scalar potential v(rt). We start from a Hamiltonian Ĥ of a

finite many-particle system

Ĥ(t) = T̂ + V̂ (t) + Ŵ , (34)

where T̂ is the kinetic energy, V̂ (t) the external potential, and Ŵ the two-particle

interaction. The explicit forms of these terms have been defined before. The whole

time-dependent dynamics of the system is given by the solution of the time-

dependent Schrödinger equation:

(i∂t − Ĥ(t))|Ψ(t)〉 = 0 (35)

with the initial condition |Ψ(t0)〉 = |Ψ0〉. This is therefore an initial value problem

for which we need to specify an initial state. A commonly occuring initial value

problem is one where we consider a system which is in the ground state before a

certain time t0. For t > t0 the system is then perturbed by an external field and

we are interested in the response of the system. If the perturbation is weak the

problem may be solved by linear response theory. For strong field cases we have

to face the full time-dependent problem. The full time-dependent wavefunction is,

even for small atoms, a complicated object. Fortunately, some insight can be gained

from the consideration of conservation laws of particle number and momentum. The

local forms of these conservation laws reduce to relations between densities, currents

and the external fields, and can therefore give some information on the structure

of density functionals.

The time-dependent density is given as the expectation value of the density

operator with the time-dependent many-body wavefunction:

n(rt) = 〈Ψ(t)|n̂(r)|Ψ(t)〉 . (36)

In the following we consider two continuity equations. If |Ψ(t)〉 is the state evolving

from |Ψ0〉 under the influence of Hamiltonian Ĥ(t) we have the usual continuity

equation

∂tn(rt) = −i〈Ψ(t)|[n̂(r), Ĥ(t)]|Ψ(t)〉 = −∇ · j(rt) , (37)
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where the current operator is defined as

ĵ(r) =
1

2i

∑
σ

[ψ̂†σ(r)∇ψ̂σ(r)− (∇ψ̂†σ(r))ψ̂σ(r)] (38)

and has expectation value

j(rt) = 〈Ψ(t)|̂j(r)|Ψ(t)〉 . (39)

This continuity equation expresses, in a local form, the conservation of particle

number. Using Gauss’ law the continuity equation it simply says that the change of

the number of particles within some volume can simply be measured by calculating

the flux of the current through the surface of this volume.

As a next step, we can consider an analogous continuity equation for the current

itself. We have

∂tj(rt) = −i〈Ψ(t)|[̂j(r), Ĥ(t)]|Ψ(t)〉 . (40)

If we work out this equation in more detail, we find the expression

∂tjk(rt) = −n(rt)∂kv(rt)−
∑
i

∂iTik(rt) −Wk(rt) . (41)

Here we have defined the momentum-stress tensor (part of the energy-

momentum tensor) as

T̂ik(r) =
1

2

∑
σ

[
∂iψ̂
†
σ(r)∂kψ̂σ(r) + ∂kψ̂

†
σ(r)∂iψ̂σ(r)− 1

2
∂i∂k(ψ̂†σ(r)ψ̂σ(r))

]
(42)

and the quantity Ŵk as

Ŵk(r) =
∑
σ,σ′

∫
d3r′ψ̂†σ(r)ψ̂†σ′(r

′)∂kw(|r − r′|)ψ̂σ′(r′)ψ̂σ(r) , (43)

where the derivative ∂k is taken with respect to the variable r. Their expectation

values are defined as

Tik(rt) = 〈Ψ(t)|T̂ik|Ψ(t)〉 , (44)

Wk(rt) = 〈Ψ(t)|Ŵk|Ψ(t)〉 . (45)

The continuity equation (41) is a local quantum version of Newton’s third law. This

is readily seen by integrating this equation over space. In that case the term with

the stress-momentum tensor disappears since it is a total derivative (assuming that

Tik vanishes sufficiently fast at infinity). The integral over Wk disappears too:∫
d3rWk(rt) =

∫
d3rd3r′Γ(r, r′, t)∂kw(|r− r′|) = 0 , (46)

where we defined the diagonal two-particle density matrix as

Γ(r, r′, t) = 〈Ψ(t)|
∑
σ,σ′

ψ̂†σ(r)ψ̂†σ′(r
′)ψ̂σ′(r

′)ψ̂σ(r)|Ψ(t)〉 . (47)



June 12, 2001 18:19 WSPC/140-IJMPB 00499

1978 R. v. Leeuwen

This follows because Γ is a symmetric function of the variables r and r′ whereas

∂kw(|r−r′|) is an odd function. We therefore find that integration of Eq. (41) yields

∂tP(t) =

∫
d3r∂tj(rt) = −

∫
d3r′n(rt)∇v(rt) , (48)

where we defined the momentum of the system by

P(t) =

∫
d3rj(rt) . (49)

Equation (48) states that the change of momentum of a system is equal to the force

on that system. In other words, this is Newton’s third law. As a side remark we may

further mention that the local form of Newton’s third law also has been studied in

connection with many-body perturbation theory, in particular concerning so-called

conserving approximations.28–30

Let us finally consider the angular momentum of the system, defined as

L(t) =

∫
d3rr × j(rt) . (50)

If we take the time-derivative of this equation and use the continuity equation we

obtain

∂tLi(t) =

∫
d3r(r × ∂tj(rt))i

=
∑
ijk

∫
d3rεijkrj

(
−n(rt)∂kv(rt) −

∑
l

∂lTlk(rt)−Wk(rt)

)
, (51)

where εijk is the anti-symmetric Levi–Civita tensor which assumes the values 1 and

−1 for respectively even and odd permutations of the indices. This can be rewritten

as

∂tLi(t) = −
∫
d3r(r ×∇v(rt))i +

∑
jk

∫
d3rεijkTjk

+

∫
d3rd3r′(r× r′)iΓ(r, r′, t)

1

ρ

∂w

∂ρ
, (52)

where we defined ρ = |r−r′| and in the second term performed a partial integration

where we used ∂lrj = δlj . Now the second term disappears since Tjk is an symmetric

tensor contracted with the antisymmetric εijk tensor. The last term disappears too,

since Γ(r, r′, t) is symmetric in r and r′, whereas r× r′ is antisymmetric. Note that

we explicitly used that the two-particle interaction depends on |r − r′|. Collecting

our results we obtain

∂tL(t) =

∫
d3rr × ∂tj(rt) = −

∫
d3rn(rt)r ×∇v(rt) . (53)

This equation therefore tells us that the time-derivative of the angular momen-

tum is equal to the torque due to the external field acting on the system.
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We further mention a relation which we will need later in our discussion. Taking

the divergence of Eq. (41) and using the continuity Eq. (37) we find

∂2
t n(rt) = ∇ · (n(rt)∇v(rt)) + q(rt) (54)

with q(rt) being defined as the expectation value

q(rt) = 〈Ψ(t)|q̂(r)|Ψ(t)〉 (55)

and where the operator q̂(r) is given by

q̂(r) =
∑
i,k

∂i∂kT̂ik(r) +
∑
k

∂kŴk(r) . (56)

Equation (54) will play a central role in our discussion of the relation between the

density and the potential. This is because it represents an equation which directly

relates the external potential and the electron density.

2.4. The Runge–Gross proof

We will now investigate a basic relation between the external potential and the time-

dependent density. Such a relation has been investigated by Runge and Gross and

the main result of this work is known as the Runge–Gross theorem.21 This theorem

states that two densities n(rt) and n′(rt) evolving from a common initial state |Ψ0〉
under the influence of two potentials v(rt) and v′(rt) (which are both assumed to

have a Taylor expansion around the initial time t0) are always different provided

that the potentials differ by more than a purely time-dependent (r-independent)

function:

v(rt) 6= v′(rt) + C(t) . (57)

The proof of this theorem consists of two steps. In the first step one shows that the

current densities j(rt) and j′(rt) corresponding to the systems with potential v(rt)

and v′(rt) will differ. To show this we first use the condition that the potentials

v(rt) and v′(rt) can be expanded in a Taylor series:

v(rt) =
∑
k=0

1

k!
vk(r)(t − t0)k . (58)

We have a similar equation for v′(rt) with coefficients v′k(r). Equation (57) is equiv-

alent to the statement that, given the expansion coefficients vk(r) and v′k(r), there

exists a smallest integer k ≥ 0 such that

wk(r) = vk(r)− v′k(r) 6= constant . (59)

If we use the quantum mechanical equation of motion for a Schrödinger operator

Â(t),

∂t〈Ψ(t)|Â(t)|Ψ(t)〉 = 〈Ψ(t)|∂tÂ(t)− i[Â(t), Ĥ(t)]|Ψ(t)〉 , (60)
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we obtain for the current densities:

∂t(j(rt) − j′(rt))|t=t0 = −i〈Ψ0|[̂j(r), Ĥ(t0)− Ĥ ′(t0)]|Ψ0〉

= −n0(r)∇(v(rt0)− v′(rt0)) (61)

where n0(r) = n(rt0) is the initial density. If condition (59) is satisfied for k = 0

then the currents j(rt) and j′(rt) will become different infinitesimally later than t0.

It could still be that wk(r) is constant for k = 0 in Eq. (59) and in that case the

initial time-derivatives of the currents are equal. However, there must always be a

smallest k such that wk(r) is not constant. If we then use Eq. (60) (k+ 1) times we

obtain:

∂k+1
t (j(rt) − j′(rt))|t=t0 = −n0(r)∇wk(r) 6= 0 . (62)

We can therefore conclude that j(rt) 6= j′(rt). To prove a similar statement for the

densities we use the continuity equation

∂t(n(rt)− n′(rt)) = −∇ · (j(rt) − j′(rt)) . (63)

The (k + 1)th time-derivative of this equation then yields

∂k+2
t (n(rt)− n′(rt))|t=t0 = ∇ · (n0(r)∇wk(r)) . (64)

If we want to prove that n(rt) and n′(rt) will become different for times t > t0 we

have to show that the right hand side of Eq. (64) can not vanish identically. For

this we note that∫
d3rn0(r)(∇wk(r))2 = −

∫
d3rwk(r)∇ · (n0(r)∇wk(r))

+

∮
dS · (n0(r)wk(r)∇wk(r)) (65)

where we have used Green’s theorem. For physically realistic potentials (i.e. po-

tentials that arise from normalizable external charge densities) the surface integral

vanishes, because for such potentials the quantities wk(r) fall off at least as fast

as 1/r while the density itself decays exponentially. Therefore ∇ · (n0∇wk(r)) 6= 0

because that would imply that the left hand side of Eq. (65) is zero. This in turn

would imply that (∇wk(r))2 = 0 which is in contradiction to the assumption that

wk(r) is not constant. This completes the proof of the theorem.

There is another important observation to be made from this proof. In Eq. (64)

the density difference n(rt) − n′(rt) is linear in wk(r). This density difference is

therefore nonvanishing already to first order in v(rt)− v′(rt). This means in partic-

ular that the linear density response function is invertible for switch-on processes.

2.5. Extension to different interactions and initial states

In the previous section we concluded that for a given initial state the time-dependent

density is a unique functional of the external potential. Let us elaborate a bit further
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on this point. Suppose we could solve the time-dependent Schrödinger equation for

a given many-body system, i.e. we specify an initial state |Ψ0〉 at t = t0 and evolve

the wavefunction in time using the Hamiltonian Ĥ(t). Then, from the wavefunction,

we can calculate the time-dependent density n(rt). We can then ask ourselves the

following question:

Can exactly the same density n(rt) be reproduced by an external potential v′(rt)

in a system with a different given initial state and a different two-particle interac-

tion, and if so, would this potential be unique (modulo a purely time-dependent

function)?

The answer to this question is obviously of great importance for the construction

of the time-dependent Kohn–Sham equations. The Kohn–Sham system has no two-

particle interaction and differs in this respect from the fully interacting system. It

has, in general, also a different initial state. This state is usually a Slater determinant

rather than a fully interacting initial state. A time-dependent Kohn–Sham system

therefore only exists if the question posed above can be answered affirmatively. We

will show in the following, that with some restrictions on the initial states and

potentials, this question can indeed be answered affirmatively.31

We proceed carefully by first restricting ourselves to external potentials v(rt)

that are of the form

v(rt) =

∫
d3r′

Z(r′t)

|r− r′| , (66)

where Z(rt) describes a finite but arbitrarily large charge distribution. The exter-

nal potential is thus assumed to be generated by some finite, and in general time-

dependent, charge distribution. This form is chosen to make the integrals in our

discussion well-defined. However, the form is not particularly restrictive as it encom-

passes most cases of physical interest. For instance, if Z(rt) is a delta-function-like

distribution of point charges then v(rt) describes a molecular framework. The form

Eq. (66) excludes some commonly used external fields, such as the potential of a

spatially homogeneous electric field. However, for practical purposes, these fields

can always be approximated to arbitrary accuracy by considering very large but

finite charge distributions (which is actually closer to the real physical situation).

We further assume v(rt) to be an analytic function of time t, i.e. v(rt) must have

a Taylor expansion with finite convergence radius for each time t.

Let us now assume that we have solved the time-dependent Schrödinger equation

for the many-body system described by Hamiltonian Ĥ(t) and initial state |Ψ0〉 at

t = t0. We then have obtained a many-body wavefunction |Ψ(t)〉 and density n(rt).

As shown before in section 2.3 this density satisfies the equation

∂2
t n(rt) = ∇ · (n(rt)∇v(rt)) + q(rt) , (67)

where q(rt) is defined in Eqs. (55) and (56). We now consider a second system with

Hamiltonian

Ĥ ′(t) = T̂ + V̂ ′(t) + Ŵ ′ . (68)
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The terms V̂ ′(t) and Ŵ ′ represent again the one- and two-body potentials. We

denote the initial state by |Φ0〉 at t = t0 and time-evolved state by |Φ(t)〉. The form

of Ŵ ′ is assumed to be such that Ŵ ′k(rt) and its derivatives are finite. For the most

important case of interest, i.e. Ŵ ′ = λŴ with 0 ≤ λ ≤ 1, this is automatically

satisfied. We will discuss some special cases of this type later on. For the system

described by Hamiltonian Ĥ ′ we have an equation analogous to Eq. (54). Assuming

that the other system has identical density, i.e. n′(rt) = n(rt), we have

∂2
t n(rt) = ∇ · (n(rt)∇v′(rt)) + q′(rt) , (69)

where q′(rt) is the expectation value

q′(rt) = 〈Φ(t)|q̂′(r)|Φ(t)〉 , (70)

for which we defined

q̂′ =
∑
i,k

∂i∂kT̂ik(r) +
∑
k

∂kŴ
′
k(r) . (71)

By subtracting Eqs. (54) and (69) we find

∇ · (n(rt)∇ω(rt)) = ζ(rt) , (72)

where ω(rt) = v(rt)−v′(rt) and ζ(rt) = q′(rt)−q(rt). Equation (72) is the equation

we will use to construct v′(rt). First we need to discuss some initial and boundary

conditions. As a necessary condition for the potential v′ to exist, we have to require

that the initial states |Ψ0〉 and |Φ0〉 yield the same initial density, i.e.

〈Φ0|n̂(r)|Φ0〉 = 〈Ψ0|n̂(r)|Ψ0〉 . (73)

We now note that the basic equation (54) is a second order differential equation

in time for n(rt). This means that we still need as additional requirement that

∂tn
′(rt) = ∂tn(rt) at t = t0. With help of the continuity equation (37) this yields

the condition

〈Φ0|∇ · ĵ(r)|Φ0〉 = 〈Ψ0|∇ · ĵ(r)|Ψ0〉 . (74)

This constraint also implies the weaker requirement that the initial state |Φ0〉
must be chosen in such a way that the initial linear momenta P(t0) of both systems

are the same. This follows directly from the fact that the momentum of the system

is given by

P(t) =

∫
d3rj(rt) =

∫
d3rr∂tn(rt) . (75)

The equality of the last two terms in this equation follows directly from the conti-

nuity equation (37) and the fact that we are dealing with finite systems for which,

barring pathological examples, currents and densities are zero at infinity (see below

and Appendix). This also helps us to understand the physics behind constraint (74).

If the densities of both systems described by Hamiltonian Ĥ and Ĥ ′ are the same

at all times then the above Eq. (75) implies that also the momenta of both systems
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are equal at all times. This clearly can not be satisfied if the initial momenta of

both systems are different, since it would require an infinite force to make them

equal for t > t0.

It turns out (see Appendix), however, that one can construct examples of initial

states for a finite system that satisfy constraint (73) and constraint (74), but for

which the current at infinity does not vanish.32 These initial states will have an

infinite momentum and kinetic energy expectation value. We want to exclude these

pathological cases by putting a third constraint on the initial state:

P(t0) =

∫
d3r〈Φ0 |̂j(r)|Φ0〉 <∞ (76)

i.e. we require that the state |Φ0〉 has a finite initial momentum, which then by

Eq. (75) coincides with the initial momentum of state |Ψ0〉. With the initial condi-

tions Eq. (73) and Eq. (74) and Eq. (76), we now discuss the solution of Eq. (72).

We first notice that this equation contains no time-derivatives and the time-variable

can therefore be treated as a parameter. We further notice that this equation is of

a well-known Sturm–Liouville type, which has a unique solution for ω(rt) if n(rt)

and ζ(rt) are given and if we further specify as boundary condition that ω(rt)

approaches zero at infinity (for further details on this point we refer to the Ap-

pendix). Imposing the latter boundary condition at infinity also means that we

choose a particular gauge for the potential v′(rt), i.e. we fix the arbitrary time-

dependent function C(t) mentioned above. Note that this boundary condition at

infinity is also satisfied for the potential v(rt) of Eq. (66). At t = t0 we have

∇ · (n(rt0)∇ω(rt0)) = ζ(rt0) . (77)

Since n(rt) is known at all times and since ζ(rt0) can be calculated from the initial

states |Ψ0〉 and |Φ0〉 there is a unique solution ω(rt0), provided we take into account

the boundary condition. This means that we have determined v′(rt0) = v(rt0) −
ω(rt0). In the next step we take the time-derivative of Eq. (72) at t = t0 and obtain

∇ · (n(rt0)∇ω(1)(r)) = ζ(1)(r)−∇ · (n(1)(r)∇ω(rt0)) , (78)

where we introduced the following notation for the kth time-derivative at t = t0:

f (k)(r) = ∂kt f(rt)|t=t0 . (79)

Now all quantities on the right hand side of Eq. (78) are known, since n(rt) is

known at all times and ω(rt0) was already determined from Eq. (77). The quantity

ζ(1)(r) is calculated from the commutators:

ζ(1)(r) = ∂tζ(rt)|t=t0 = i〈Ψ0|[q̂(r), Ĥ(t0)]|Ψ0〉 − i〈Φ0|[q̂′(r), Ĥ ′(t0)]|Φ0〉 , (80)

where Ĥ ′(t0) is known from our previous calculation of v′(rt0). From Eq. (78),

which is of the same Sturm–Liouville type as Eq. (77), we can therefore calculate

ω(1)(r) (using the same boundary condition at infinity as before) and hence we get

∂tv
′(rt) at t = t0. By taking the second time derivative of Eq. (72) we can repeat
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the above procedure and obtain ∂2
t v
′(rt) at t = t0. In general, if we take the kth

time derivative of Eq. (72), we obtain

∇ · (n(rt0)∇ω(k)(r)) = Q(k)(r) , (81)

where the inhomogeneity Q(k)(r) is given by

Q(k)(r) = ζ(k)(r)−
k−1∑
l=0

(
k

l

)
∇ · (n(k−l)(r)∇ω(l)(r)) . (82)

The term ζ(k) involves multiple commutators of the operators q̂(r) and q̂′(r) with

the Hamiltonians Ĥ and Ĥ ′ and their time-derivatives up to order k−1, sandwiched

between the initial states |Ψ0〉 and |Φ0〉. The structure of the iteration procedure

is now clear. The inhomogeneity Q(k)(r) is completely determined by the density

n(rt), the potential v(rt), the initial states |Ψ0〉 and |Φ0〉, and the time-derivates

∂
(l)
t v′(rt) at t = t0 up to order k−1. Equation (81) therefore allows for the complete

determination of all ∂kt v
′(rt) at t = t0. We can therefore construct v′(rt) from its

Taylor series as

v′(rt) =
∞∑
k=0

1

k!
∂kt v
′(rt)

∣∣∣∣∣
t=t0

(t− t0)k . (83)

This determines v′(rt) completely within the convergence radius of the Taylor ex-

pansion. There is, of course, the possibility that the convergence radius is zero.

However, this would mean that v′(rt) and hence n(rt) and v(rt) would be non-

analytic at t = t0. Since we only consider analytical densities we disregard this

possibility. If the convergence radius is nonzero but finite, we can propagate |Φ0〉
to |Φ(t1)〉 at a finite time t1 > t0 within the convergence radius and repeat the

whole procedure above from t = t0 by regarding |Φ(t1)〉 as the initial state. This

amounts to analytic continuation along the whole real time-axis and a complete

determination of v′(rt) at all times. We can now make the following statement:

“We specify a given density n(rt) obtained from a many-particle system

with Hamiltonian Ĥ and initial state |Ψ0〉. If one chooses an initial state

|Φ0〉 with finite momentum of a many-particle system with two-particle

interaction Ŵ ′ in such a way that it yields the correct initial density and

initial time-derivative of the density, then, for this system, there is a unique

external potential v′(rt) (determined up to a purely time-dependent func-

tion C(t)) that reproduces the given density n(rt)”.

Let us now specify some special cases. We take Ŵ ′ = 0. We conclude, that for a given

initial state |Φ0〉 of finite momentum, with the correct initial density and initial

time derivative of the density, there is a unique potential vs(rt) (modulo C(t)) in a

noninteracting system that produces the given density n(rt) at all times. This solves

the noninteracting v-representability problem, provided we can find an initial state

with the required properties. If the many-body system described by Hamiltonian
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Ĥ is stationary for times t < t0, the initial state |Ψ0〉 at t0 leads to a density

with zero time-derivative at t = t0. In that case a noninteracting state with the

required initial density and initial time-derivative of the density (namely zero) can

be obtained via the so-called Harriman construction.33,34 Therefore a Kohn–Sham

potential always exists for this kind of switch-on processes. The additional question

whether this initial state can be chosen as a ground state of a noninteracting system

is equivalent to the currently unresolved noninteracting-v-representability question

for stationary systems.25,26

We now take Ŵ ′ = Ŵ . We therefore consider two many-body systems with

the same two-particle interaction. For a given v-representable density n(rt) that

corresponds to an initial state |Ψ0〉 and potential v(rt), and for a given initial state

|Φ0〉 with the same initial density and initial time derivative of the density, we find

that there is a unique external potential v′(rt) (modulo C(t)) that yields this given

density n(rt). The case |Ψ0〉 = |Φ0〉 (in which the constraints on the initial state

|Φ0〉 are trivially satisfied) corresponds to the well-known Runge–Gross theorem.

2.6. The time-dependent Kohn–Sham approach

In the previous section we found that, under some assumptions, there exists a

noninteracting system with the same density as a fully interacting system. We

now discuss some properties of this system in more detail. We consider the case

that the initial state of the noninteracting system is a single Slater determinant.

Usually this will be the ground state Kohn–Sham wavefunction calculated using

stationary density-functional theory. The Slater determinant is made up of Kohn–

Sham orbitals which satisfy the equations[
i∂t +

1

2
∇2 − vs[n](rt)

]
ϕi(rt) = 0 (84)

and the density is constructed as a sum of orbital densities

n(rt) =
N∑
i=1

|ϕi(rt)|2 . (85)

The Kohn–Sham potential vs is defined by the requirement that it yields the same

density in a noninteracting system. It is defined modulo a purely time-dependent

function, i.e. a function that is uniform in space. The choice for vs can be made

unique by requiring that vs(rt) → 0 for |r| → ∞. We can subsequently define the

exchange-correlation potential by

vs(rt) = v(rt) + vH(rt) + vxc(rt) , (86)

where we defined the Hartree potential as

vH(rt) =

∫
d3r′n(r′t)w(|r − r′|) . (87)
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Note that in this way vxc is not obtained as functional derivative of any functional.

In this way we therefore avoid the problems27 related to the definition of an action

functional. For practical applications we nevertheless need to find a good approxi-

mation for the exchange-correlation potential. For general time-dependent systems

this is a difficult problem. However, some information on vxc(rt) can be obtained

from conservation laws. We first consider the momentum Ps(t) of the Kohn–Sham

system, which is identical to the momentum P(t) of the true system. This follows

immediately from

Ps(t) =

∫
d3rjs(rt) =

∫
d3rr∂tn(rt) =

∫
d3rj(rt) = P(t) , (88)

where we defined the Kohn–Sham current

js(rt) =
1

2i

N∑
k=1

(ϕ∗k(rt)∇ϕk(rt)− ϕk(rt)∇ϕ∗k(rt)) . (89)

We then obtain immediately, using Eq. (48) that

0 = ∂t(P(t)−Ps(t)) =

∫
d3rn(rt)∇(vs(rt)− v(rt))

=

∫
d3rn(rt)∇(vH(rt) + vxc(rt)) . (90)

By direct calculation we find that∫
d3rn(rt)∇vH(rt) =

∫
d3rd3r′n(rt)n(r′t)

r− r′

ρ

∂w

∂ρ
= 0 , (91)

where ρ = |r − r′|, and where we used that the integral is antisymmetric in r

and r′. We therefore obtain the following equation for the exchange-correlation

potential11,35 ∫
d3rn(rt)∇vxc(rt) = 0 . (92)

This equation states that the force exerted on the system by the exchange-

correlation potential is zero. From Eq. (88) we also find some condition on the

Kohn–Sham current∫
d3r(j(rt) − js(rt)) =

∫
d3rjxc(rt) = 0 , (93)

where we defined the exchange-correlation part jxc(rt) of the current as the dif-

ference of the real and the Kohn–Sham current, i.e. jxc(rt) = j(rt) − js(rt). Fur-

thermore, since the density of the Kohn–Sham system is, by definition, equal to

the density of the full system, we obtain by subtracting the continuity equations of

both systems:

0 = ∇ · (j(rt) − js(rt)) = ∇ · jxc(rt) . (94)
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We therefore see that jxc(rt) is a divergenceless or transversal vector field. A relation

between jxc and vxc is obtained by considering the angular momentum Ls(t) of the

Kohn–Sham system, and the angular momentum L(t) of the true system. We have∫
d3rr× ∂tjxc(rt) = ∂t(L(t)− Ls(t))

=

∫
d3rn(r)r ×∇(vs(rt)− v(rt)) . (95)

By explicit calculation we find that∫
d3rn(r)r ×∇vH(rt) = −

∫
d3rd3r′r× r′n(r)n(r′)

1

ρ

∂w

∂ρ
= 0 , (96)

where ρ = |r− r′| and where we again used the antisymmetry of the integrand.

We thus find ∫
d3rr × ∂tjxc(rt) =

∫
d3rn(r)r ×∇vxc(rt) . (97)

This equation says that the torque due to the exchange-correlation potential is

therefore equal to the torque due to the exchange-correlation current. The appear-

ance of an exchange-correlation contribution to the current is a typical feature of

a density functional theory based on external scalar fields. There is also a version

of density functional theory in which the basic variables are the density and the

current.36–39 In this theory an additional Kohn–Sham vector potential is intro-

duced to ensure that the Kohn–Sham current is equal to the real current. In that

case jxc = 0 and an exchange-correlation vector potential Axc will appear in the

equation for the torque.

3. Linear Response

3.1. Properties of the linear response function

The discussion thusfar was rather general, in the sense that we allowed for arbitrary

external potentials and initial states. In this section we will consider a more specific

case. A large part of the research in time-dependent systems concerns the calculation

of linear response properties. In this case one considers the dynamical reaction of

a system that is initially in the ground state, to a small external perturbation.

We can then study the linear response of some physical observable to such a small

perturbation. In particular we will consider the response of the electron density, as

described by the linear density response function. A great deal of information can

be obtained from this response function. One can, for instance, obtain the excitation

energies of the system since these correspond to poles of this response function in

the frequency domain. Let us therefore first investigate some basic properties of

this function.

We define the density operator in the Heisenberg picture as

n̂H(rt) = U(t0, t)n̂(r)U(t, t0) , (98)
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where U is the evolution operator corresponding to Hamiltonian Ĥ. The evolution

operator has the property

|Ψ(t2)〉 = U(t2, t1)|Ψ(t1)〉 (99)

and can formally be defined as

U(t2, t1) = T exp

[
−i
∫ t2

t1

dtĤ(t)

]
, (100)

where T is the time-ordering operator. In case the Hamiltonian is time-independent

U is simply given by U = exp(−iĤ(t2 − t1)). If for times t > t0 we perturb the

system with a potential φ(rt) the linear response of the density is given by

δn(r1t1) = −i
∫ t1

t0

dt2d
3r2〈Ψ0|[n̂H(r1t1), n̂H(r2t2)]|Ψ0〉φ(r2t2)

=

∫ ∞
t0

dt2d
3r2χR(r1t1, r2t2)φ(r2t2) , (101)

where |Ψ0〉 is the ground state wavefunction and where the retarded linear response

function χR is defined as

iχR(r1t1, r2t2) = θ(t1 − t2)〈Ψ0|[n̂H(r1t1), n̂H(r2t2)]|Ψ0〉 . (102)

In this equation the subindex H refers to the Hamiltonian of the system before the

perturbation φ(rt) is switched on. If this initial Hamiltonian is time-independent

then χR depends on time only through the time interval t2− t1. This is the assump-

tion made hereafter. If we insert a complete set of eigenstates of Ĥ we obtain

χR(r1, r2; t2 − t1) = −iθ(t2 − t1)
∑
α

gα(r1)g∗α(r2)e−iΩα(t2−t1) + c.c. , (103)

where we defined

gα(r) = 〈Ψ0|n̂(r)|N,α〉 (104)

and Ωα = Eα − E0 and where the states |N,α〉 are N -particle eigenstates of Ĥ

with eigenvalue Eα. We see that the energies Ωα are the excitation energies of the

system. In the continuous part of the spectrum the sum over index α becomes an

integration over α. Since φ = 0 for t < t0 we can extend the time integration in

Eq. (101) to −∞ and do the Fourier transform of this equation to obtain

δñ(r1ω) =

∫
d3r2χ̃R(r1, r2;ω)φ̃(r2ω) , (105)

where

χ̃R(r1, r2;ω) =

∫ +∞

−∞
dτχR(r1, r2; τ)eiωτ (106)

and ñ and φ̃ are defined similarly. The χ̃R is given more explicitly as

χ̃R(r1, r2;ω) = lim
η→0+

∑
α

{
gα(r1)g∗α(r2)

ω − Ωα + iη
− g∗α(r1)gα(r2)

ω + Ωα + iη

}
, (107)
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where η is a positive infinitesimal whose limit should be taken to be zero from above

after integrating the response function with φ̃. The above form of the response

function, known as the Lehmann representation,40 clearly displays that poles of the

response function correspond to the excitation energies of the system. Because χR

is a real function, its Fourier transform χ̃R satisfies the symmetry relation

χ̃∗R(r1, r2;ω) = χ̃R(r1, r2;−ω) . (108)

This means that the real part of χ̃R is an even function of ω and the imaginary part

of χ̃R is an odd function of ω. If the system obeys time-reversal symmetry then the

eigenstates of Ĥ can be chosen to be real. In that case the real and imaginary part

of χ̃R are given by

Re χ̃R(r1, r2;ω) =
∑
α

gα(r1)gα(r2)P

{
1

ω − Ωα
− 1

ω + Ωα

}
(109)

and

Im χ̃R(r1, r2;ω) = −π
∑
α

gα(r1)gα(r2)(δ(ω − Ωα)− δ(ω + Ωα)) , (110)

where P stands for principal value. We indeed see that the real and imaginary

part of χ̃R are respectively even and odd functions of the frequency. Since χ̃R is an

analytic function in the upper half plane, the real and imaginary parts are related

by the Kramers–Kronig relations.2 Suppose we look at the discrete part of the

spectrum of some finite system. This means that −I < ω < I, where I is the

ionization energy of the system. The imaginary part of the response function then

consists of a sum of delta functions located at the discrete excitation energies Ωα.

This means that if ω 6= Ωα then χ̃R is a well-defined real function given by

χ̃R(r1, r2;ω) =
∑
α

gα(r1)gα(r2)
2Ωα

ω2 − Ω2
α

. (111)

The properties of this function have been investigated by Mearns and Kohn.43 As

this function is Hermitian and real, it has a complete orthonormal set of eigenfunc-

tions ζl(r, ω) and eigenvalues λl(ω):∫
d3r2χ̃R(r1, r2;ω)ζl(r2, ω) = λl(ω)ζl(r1, ω) . (112)

If the eigenvalue is non-degenerate (apart from the usual additive constant func-

tion) then λl(ω) = λl(−ω) and ζl(r, ω) = ζl(r,−ω) where ζl can be chosen to be

real. The response function can then be written in the diagonal form

χ̃R(r1, r2;ω) =
∑
l

λl(ω)ζl(r1, ω)ζl(r2, ω) , (113)

where the eigenvalues λl(ω) are given by

λl(ω) =
∑
α

2Ωα
ω2 − Ω2

α

|〈gα|ζl〉|2 . (114)
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Of particular interest to density-functional theory is the question whether λl(ω) can

be zero for some frequency ω = ω̄. If this is the case then there are potential changes

that yield a zero-density variation. That this is possible has been demonstrated by

Mearns and Kohn with the explicit example of noninteracting particles in a box.43

If λl(ω̄) = 0 for some l (we assume this eigenvalue to be non-degenerate) then, for

example, a potential variation δv with Fourier transform,

ṽ(rω) = µ(δ(ω − ω̄) + δ(ω + ω̄))ζl(rω̄) , (115)

where µ is a arbitary constant, yields a zero density variation. In the time-domain

this corresponds to a potential variation of the form

δv(rt) =
µ

π
ζl(rω̄) cos(ω̄t) . (116)

Note, however, that this is an external perturbation that exists at all times, i.e.

there is no t0 such that δv = 0 for t < t0. In the next section we will prove that for

such switch-on potentials zero responses are not possible.

Let us finally discuss the large ω limit and related sum rules for χ̃R. From

Eq. (107) we see that the large ω limit of χ is given as

χ̃R(r1, r2;ω) =
c(r1, r2)

ω2
+O

(
1

ω4

)
, (ω →∞) , (117)

where

c(r1, r2) =
∑
α

Ωα(gα(r1)g∗α(r2) + g∗α(r1)gα(r2))

= −〈Ψ0|[[Ĥ, n̂(r1)], n̂(r2)]|Ψ0〉 . (118)

The last equality can easily be checked by insertion of a complete set of energy

eigenstates. Since χ̃R is analytic in the upper half of the complex ω-plane we find

that

0 =

∫
C

dωωχ̃R(r1, r2;ω) = iπc(r1, r2) +

∫ +∞

−∞
dωωχ̃R(r1, r2;ω) , (119)

where the contour C is a semi-circle in the upper ω-plane. Since c(r1, r2) is a real

function we obtain∫ +∞

−∞
dωω Im χ̃R(r1, r2;ω) = −πc(r1, r2) . (120)

For the case of systems with time-reversal symmetry this equation also follows

directly by integration of Eq. (110). The obtained result is also known as the f -

sum rule in the theory of the electron gas.2 In atomic physics the sum rule is often

known as the Thomas–Reiche–Kuhn sum rule.12 If we work out the commutator in

Eq. (118) we obtain41

c(r1, r2) = ∇1 · ∇2(δ(r1 − r2)n0(r1)) , (121)
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where n0 is the ground state density. Using the above expression for c, and the

asymptotic behavior of χ̃R from Eq. (117), we see that the large ω limit of the

induced density response δñ due to a potential δṽ, is given by

δñ(rω) ≈ ∇ · (n0(r)∇δṽ(rω))

ω2
, (ω →∞) . (122)

This result is consistent with the previously derived Eq. (54) if one realizes that the

behavior of physical quantities for large ω corresponds to their behavior for short

times, in our case for t ≈ t0. We can invert the above response equation to obtain

δṽ(r1ω) ≈ ω2

∫
d3r2a(r1, r2)δñ(r2ω) , (ω →∞) , (123)

where a satifies

∇1 · (n0(r1)∇1a(r1, r2)) = δ(r1 − r2) . (124)

The function a is therefore the Green function corresponding to the Sturm–Liouville

equation discussed before. If we require that a vanishes at infinity then there

is a unique solution for this function. One can then further show, using Green’s

theorem,42 that a is symmetric, i.e. a(r1, r2) = a(r2, r1). This implies the following

relation for the inverse response function

χ̃−1
R (r1, r2;ω) ≈ ω2a(r1, r2) , (ω →∞) . (125)

One can therefore conclude that, for short times, the inverse density response func-

tion in the time domain behaves like the second derivative of the delta function.

This is, of course, reflected in the second time-derivative of the density in Eq. (54).

The general form of χ̃−1
R for large frequencies is given by

χ̃−1
R (r1, r2;ω) = ω2a(r1, r2) + b(r1, r2) +O

(
1

ω2

)
, (ω →∞) , (126)

where the function b is determined from the ω−4-coefficient in the large ω-expansion

of χ̃R. This coefficient in turn is determined form the so-called third frequency

moment sum rule41 and will not be discussed here. This general form implies in the

time-domain that

χ−1
R (r1, r2; t2 − t1) = δ′′(t2 − t1)a(r1, r2) + δ(t2 − t1)b(r1, r2)

+hreg(r1, r2; t2 − t1) . (127)

Here δ′′ is the second derivative of the delta function and where hreg is the regular

part of χ−1, where the use of the word regular refers to the absence of delta functions

in the time variable. The regular part hreg is a causal function, i.e. hreg = 0 for

t1 > t2. The inverse response function has the same causal structure as the original

response function. This can be seen directly from a dicretization of the time variable

because the inverse of an upper triangular matrix is again an upper triangular

matrix.
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Thusfar we have been discussing the properties of the response function and

its inverse without a discussion of the conditions under which an inverse can be

obtained. This will be the topic of the next section.

3.2. An invertability proof for switch-on processes

In this section we will address the question if we can recover the potential variation

δv(rt) from a given density variation δn(rt) that was produced by it. There is,

of course, an obvious non-uniqueness since both δv(rt) and δv(rt) + C(t), where

C(t) is an arbitrary time-dependent function, produce the same density variation.

However, this is simply a gauge of the potential and is easily taken care of. Thus by

an inverse we will always mean an inverse modulo a purely time-dependent function

C(t) and by different potentials we will always mean that they differ more than a

gauge C(t).

From the work of Mearns and Kohn43 we know that different potentials can

yield the same density variations. However, in their examples these potentials are

always potentials that exist at all times, i.e. there is no t0 such that δv = 0 for

times t < t0. On the other hand we know from the Runge–Gross proof that a

potential δv(rt) (not purely time-dependent) that is switched on at t = t0 and is

analytic in t0 always causes a nonzero density variation δn(rt). In this proof the first

nonvanishing time-derivative of δn at t0 is found to be linear in the corresponding

derivative of δv and therefore the linear response function is invertible. Note that

this conclusion is even true for an arbitrary initial state. The conclusion is therefore

true for linear response to an already time-dependent system for which the linear

response function will depend on both t and t′ separately, rather than on the time-

difference t− t′. In the following we will give an explicit proof for the invertability

of the linear response function for which the system is initially in its ground state.

However we will relax the condition that δv be an analytic function in time, and

we therefore allow for a larger class of external potentials than assumed in the

Runge–Gross theorem.

We consider a many-body system in its ground state. At t = 0 (since the system

is initially described by a time-independent Hamiltonian we can, without loss of

generality, put the initial time t0 = 0) we switch on an external field φ(rt) which

causes a density response δn. We want to show that the linear response function is

invertable for these switch-on processes. The density response is given by

δn(r1t1) = −i
∫ t1

0

dt2d
3r2〈Ψ0|[∆n̂H(r1t1),∆n̂H(r2t2)]|Ψ0〉φ(r2t2) . (128)

Note that here, instead of the density operator n̂H, we prefer to use the density

fluctuation operator ∆n̂H = n̂H − 〈n̂H〉 in the response function. This is not in

conflict with Eq. (101) since the commutator of the density operators is equal to

the commutator of the density fluctuation operators. Now we insert a complete set
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of eigenstates of Ĥ and we find

δn(r1t1) = i
∑
n

∫ t1

0

dt2d
3r2〈Ψ0|∆n̂H(r2t2)|Ψn〉

× 〈Ψn|∆n̂H(r1t1)|Ψ0〉φ(r2t2) + c.c.

= i
∑
n

∫ t1

0

dt2d
3r2e

iΩn(t1−t2)f∗n(r1)fn(r2)φ(r2t2) + c.c (129)

where Ωn = En−E0 > 0 are the excitation energies of the unperturbed system (we

assume the ground state to be nondegenerate) and the functions fn are defined as

fn(r) = 〈Ψ0|∆n̂(r)|Ψn〉 . (130)

This response can also be written as

δn(r1t1) = i
∑
n

f∗n(r1)

∫ t1

0

dt2an(t2) exp[iΩn(t1 − t2)] + c.c (131)

where we defined

an(t) =

∫
d3rfn(r)φ(rt) . (132)

Now we note the time integral in Eq. (131) is exactly of a convolution form. This

means that we can simplify this equation using Laplace transforms. The Laplace

transform is defined by

Lf(s) =

∫ ∞
0

dte−stf(t) (133)

and we want to use its basic convolution property

L(f ∗ g)(s) = Lf(s)Lg(s) , (134)

where the convolution product is defined as

(f ∗ g)(t) =

∫ t

0

dτf(τ)g(t − τ) . (135)

If we now take the Laplace transform of δn we obtain the equation:

L(δn)(r1s) = i
∑
n

f∗n(r1)
1

s− iΩn
Lan(s) + c.c. (136)

If we multiply both sides with the Laplace transform Lφ of φ and integrate over r1

we obtain ∫
d3r1Lφ(r1s)L(δn)(r1s) = i

∑
n

1

s− iΩn
|Lan(s)|2 + c.c. (137)

We therefore obtain∫
d3r1Lφ(r1s)L(δn)(r1s) = −2

∑
n

Ωn
s2 + Ω2

n

|Lan(s)|2 . (138)
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This is the basic relation that we use to prove invertability. If we assume that δn = 0

then also L(δn) = 0 and we obtain

0 =
∑
n

Ωn
s2 + Ω2

n

|Lan(s)|2 . (139)

However since each prefactor of |Lan|2 in the summation is positive the sum can

only be zero if Lan = 0 for all n. This in its turn implies that an(t) must be zero

for all n. This means also that∫
d3r∆n̂(r)φ(rt)|Ψ0〉 =

∑
n

|Ψn〉
∫
d3r〈Ψn|∆n̂(r)|Ψ0〉φ(rt)

=
∑
n

an(t)|Ψn〉 = 0 . (140)

Note that a0(t) is automatically zero since obviously 〈Ψ0|∆n̂(x)|Ψ0〉 = 0. If we

write out the above equation in first quantization again we have

N∑
k=1

∆φ(rkt)|Ψ0〉 = 0 , (141)

where N is the number of electrons in the system and ∆φ(rt) is defined as

∆φ(rt) = φ(rt) − 1

N

∫
d3rn0(r)φ(rt) , (142)

where n0 is the density of the unperturbed system. Now Eq. (141) immediately

implies that ∆φ = 0 and, since the second term on the right hand side of Eq. (142)

is a purely time-dependent function, we obtain

φ(rt) = C(t) . (143)

We have therefore proven that only purely time-dependent potentials yield zero

density response. In other words the response function is invertible for switch-on

processes. Note that the only restriction we put on the potential φ(rt) is that it is

Laplace-transformable. This is a much weaker restriction on the potential than the

constraint that it be an analytic function in t = t0, as required in the Runge–Gross

proof.

Another consequence of the above analysis is the following. Suppose the linear

response kernel has eigenfunctions, i.e. there is a λ such that

λζ(r1t1) =

∫
dt2d

3r2χR(r1t1, r2t2)ζ(r2t2) . (144)

Laplace transforming this equation yields

λLζ(r1s) =

∫
d3r2Ξ(r1, r2; s)Lζ(r2s) , (145)

where Ξ is the Laplace transform of χ explicitly given by

Ξ(r1, r2; s) = i
∑
n

f∗n(r1)fn(r2)

s− iΩn
+ c.c. . (146)
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Since Ξ is a real Hermitian operator its eigenvalues λ are real and its eigenfunctions

Lζ can be chosen to be real. Then ζ is real as well and Eq. (138) implies (if we take

φ = ζ and δn = λζ)

λ

∫
d3r(Lζ(rs))2 < 0 , (147)

which implies λ < 0. We have therefore proven that if there are density variations

that are proportional to the applied potential, then this constant of proportionality

is negative. In other words, the eigenvalues of the density response function are

negative. In this derivation we made again explicit use of Laplace transforms and

therefore of the condition that ζ = 0 for t < 0. The work of Mearns and Kohn

shows that positive eigenvalues are possible when this restriction is not made.

3.3. The exchange-correlation kernel and linear response in

TDDFT

Now that we have learned about some properties of the density response function

we will discuss how we can calculate this function within density functional theory.

The determination of this function is of great practical use, since it contains all the

information on the excitation energies. In TDDFT one calculates this function by

solving an equation that relates the exact density response function to the density

response function of the Kohn–Sham system. In order to derive this equation we

first define the exchange-correlation kernel fxc as:

fxc(rt, r
′t′) =

δvxc(rt)

δn(r′t′)
. (148)

This kernel describes the change in the exchange-correlation potential vxc(rt) due to

density variations δn(r′t′). Once we can find a good approximation for this function

we are able to calculate the density response function. This is seen as follows. We

calculate, using the chain rule for differentiation

δn(r1t1)

δv(r2t2)
=

∫
dt3d

3r3
δn(r1t1)

δvs(r3t3)

δvs(r3t3)

δv(r2t2)
. (149)

The function on the left hand side of this equation is simply the density response

function χR. The first term under the integral sign on the right hand side is the

density response function of the Kohn–Sham system, which we will denote as χR,s.

It gives the change in the density as a result of a change in the Kohn–Sham poten-

tial. The second term under the integral sign gives the change in the Kohn–Sham

potential due to a change in the external field. We can work out this term as:

δvs(r3t3)

δv(r2t2)
= δ(r3 − r2)δ(t3 − t2) +

∫
dt4d

3r4[w(|r3 − r4|)δ(t3 − t4)

+ fxc(r3t3, r4t4)]
δn(r4t4)

δv(r2t2)
. (150)
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If we now collect our results we obtain the basic relation:

χR(1, 2) = χR,s(1, 2) +

∫
d3d4χR,s(1, 3)(w(|r3 − r4|)δ(t3 − t4)

+fxc(3, 4))χR(4, 2) , (151)

where we introduced the short notation i = riti and di = d3ridti. This relation

relates the response function of the Kohn–Sham system to the response function of

the interacting system. In order to solve this equation we need to find, as always, a

good approximation for the exchange-correlation kernel fxc. Equation (151) has by

now found many applications and many properties of molecules46,47 and solids12

that have been obtained this way were in good agreement with experiment. These

calculations are almost always carried out with the simple adiabatic local density

approximation for fxc.
12 This approximation is surprisingly succesful. Nevertheless

there are deficiencies and therefore we will investigate some exact properties of fxc
which will be of some help to judge approximate functionals.

From the fact that χR and χR,s only depend on the differences of their time

arguments we find from this equation that also fxc has this property. We can

therefore define the Fourier transform of fxc by

f̃xc(r1, r2;ω) =

∫ +∞

−∞
dτfxc(r1, r2; τ)eiωτ (152)

where τ = t2 − t1. In the frequency domain the integral equation for χR therefore

becomes

χ̃R(r1, r2;ω) = χ̃R,s(r1, r2;ω) +

∫
dr3dr4χ̃R,s(r1, r3;ω)(w(|r3 − r4|)

+ f̃xc(r3, r4;ω))χ̃R(r4, r2;ω) . (153)

Within this expression the Kohn–Sham response function can be given explicitly

in terms of the Kohn–Sham orbitals

χ̃R,s(r1, r2;ω) = lim
η→0+

∑
kl

(µl − µk)
ϕk(r1)ϕ∗l (r1)ϕ∗k(r2)ϕl(r2)

ω − (εk − εl) + iη
, (154)

where µk is ground state occupation number of orbital φk, i.e. µk = 1 for occupied

states and µk = 0 for unoccupied states. As we see the Kohn–Sham response

function has poles at differences in the Kohn–Sham orbital energies. The role of

the exchange-correlation kernel fxc is to shift these energy differencies to the true

excitation energies. For this kernel we find the following formal expression:

f̃xc(r1, r2;ω) = χ̃−1
R,s(r1, r2;ω)− χ̃−1

R (r1, r2;ω)− w(|r1 − r2|) . (155)

Since both χ̃−1
R and χ̃−1

R,s are causal functions also f̃xc is a causal function and is

analytical in the upper half ω-plane. We can further derive some properties of fxc
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in the high frequency limit. The high frequency limits of the exact and Kohn–Sham

response functions are given by (see Eq. (126):

χ̃−1
R (r1, r2;ω) = ω2a(r1, r2) + b(r1, r2) +O

(
1

ω2

)
, (ω →∞) (156)

χ̃−1
R,s(r1, r2;ω) = ω2a(r1, r2) + bs(r1, r2) +O

(
1

ω2

)
, (ω →∞) . (157)

The leading term proportional to ω2 is equal for χ−1
R and χ−1

r,s in both equations.

This is because a(r1, r2) is completely determined by the ground state density n0

(see Eq. (124)) which by definition is equal for the Kohn–Sham system and the real

system. We therefore obtain for the large frequency limit of fxc

fxc(r1, r2, ω) = bs(r1, r2)−b(r1, r2)−w(|r1−r2|)+O

(
1

ω2

)
, (ω →∞) . (158)

The exchange-correlation kernel fxc therefore approaches a finite value in the high-

frequency limit. The form of the functions b and bs can be determined from the

third frequency moment sum rule.41

Let us further investigate the behavior of fxc in the low-frequency regime. We

consider the discrete part of the spectrum of a finite system. Therefore the frequency

range is given by −I < ω < I, where I is the ionization energy. In this frequency

range the inverse response function is given as

χ̃−1
R (r1, r2;ω) =

∑
l

1

λl(ω)
ζl(r1, ω)ζl(r2, ω) , (159)

where ζl(rω) and λl(ω) are the eigenfunctions and eigenvalues of the response func-

tion χ̃R. The inverse density response of the Kohn–Sham system can be written in

a similar way:

χ̃−1
R,s(r1, r2;ω) =

∑
l

1

λl,s(ω)
ζl,s(r1, ω)ζl,s(r2, ω) , (160)

where ζl,s(rω) and λl,s(ω) are the eigenfunctions and eigenvalues of the response

function χ̃R,s. It is important to note that the frequency range in which the Kohn–

Sham system has a discrete spectrum coincides with the frequency range in which

the real system has its discrete spectrum. This is because both systems have iden-

tical ionization energies, i.e. the eigenvalue of the highest occupied Kohn–Sham

orbital is equal in absolute value to the ionisation energy. From Eq. (155) we then

see that fxc has a discrete spectrum for −I < ω < I and is given by

fxc(r1, r2, ω) =
∑
l

1

λl,s(ω)
ζl,s(r1, ω)ζl,s(r2, ω)

−
∑
l

1

λl(ω)
ζl(r1, ω)ζl(r2, ω)− w(|r1 − r2|) . (161)
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We therefore see that fxc has a pole in the discrete spectrum whenever λl(ω) = 0

or λl,s(ω) = 0. In actual calculations we are interested in fxc near an excitation

energy where fxc has no poles. However, since a pole of fxc is always in between

two excitation energies the pole structure of fxc can become important when two

excitation energies approach each other. This could happen, for instance, in molec-

ular dissociation situations where bonding and anti-bonding states become nearly

degenerate and where the pole of fxc is squeezed between these nearly degenerate

energies which leads to a divergence of the exchange-correlation kernel.

Thusfar we have investigated the frequency-dependence of the exchange-

correlation kernel. One could imagine also some situations in which the spatial

dependence of fxc plays an important role. One case where this is the case is in

the metal–insulator transition. At the transition point the analytic behavior of the

density response function changes abruptly. This is because in the insulating phase,

a test charge is only partially screened at large distances whereas the screening is

complete in the metallic case. This screening is directly related to the long-range

spatial properties of the density response function. Now the metal–insulator tran-

sition does not occur at the same time for the Kohn–Sham system, since the gap

in the Kohn–Sham eigenvalue spectrum does, in general, not coincide with the real

gap. This question has been investigated numerically by Godby and Needs.44 In

this work they found that, when one compresses an insulating system, the exact

density functional gap closes long before the real system becomes metallic. This

implies that the exchange-correlation kernel fxc must have two changes of ana-

lytic behavior if an insulating material is compressed. There is one change when

the Kohn–Sham system becomes metallic and another one when the real system

becomes metallic. This is the price one has to pay for converting the many-body

problem into an equivalent one-particle theory.

4. The Action Functional

4.1. v-representability and boundary conditions

One of the main problems of obtaining good approximate solutions to the time-

dependent Schrödinger equation is to find a criterium for the accuracy of approxi-

mate wavefunctions. In the ground state case there is the Raleigh–Ritz variational

principle which says that the normalized wavefunction which minimizes the expec-

tation value of the Hamiltonian is equal to the wavefunction of the ground state.

The energy expection value can therefore be used as a criterium to judge the ac-

curacy of the method. Several methods such as Configuration Interaction (CI) and

Quantum Monte Carlo (QMC)45 are based on this criterium. However, such a sim-

ple criterium does not exist for the time-dependent case. One of the first things one

might think of is to consider the error function

|Θ(t)〉 = (i∂t − Ĥ(t)|Φ(t)〉 (162)
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and try to minimize the norm 〈Θ|Θ〉 of this error function over a set of normal-

ized Φ’s. Such a procedure is described by Löwdin and Mukherjee.48 However, the

corresponding variational equations are quadratic in the Hamiltonian and therefore

difficult to solve. For practical applications we should seek simpler procedures.

Much work on time-dependent systems has been based on Frenkel’s variational

principle

〈δΨ|i∂t − Ĥ(t)|Ψ〉 = 0 . (163)

In practical applications of this principle Ψ usually corresponds to some

parametrized Ansatz of the wavefunction and δΨ is obtained by making variations

with respect to these parameters.49 This amounts to doing a restricted set of vari-

ations. If we are allowed to make completely arbitrary variations of the wavefunc-

tion Frenkel’s variational principle is equivalent to the time-dependent Schrödinger

equation. This is easily seen by taking

|δΨ〉 = ε(i∂t − Ĥ(t))|Ψ〉 , (164)

where ε is a small parameter. In that case Frenkel’s variational principle tells us

that 〈δΨ|δΨ〉 = 0 and therefore

|δΨ〉 = ε(i∂t − Ĥ(t))|Ψ〉 = 0 (165)

which is the time-dependent Schrödinger equation. It is clear that Frenkel’s varia-

tional principle is quite different from the usual variational principle for the ground

state since no quantity is optimized. This makes it also difficult to define a density

functional on the basis of this variational principle. There is, however, a well-known

principle based on the following time-dependent action functional

A[Ψ] =

∫ t1

t0

dt〈Ψ|i∂t − Ĥ(t)|Ψ〉 . (166)

The usual approach is to require the action to be stationary under variations δΨ

which satisfy δΨ(t0) = δΨ(t1) = 0. We then find after a partial integration

δA =

∫ t1

t0

dt〈δΨ|i∂t − Ĥ(t)|Ψ〉+ c.c.+ [i〈Ψ|δΨ〉]t1t0 . (167)

With the boundary conditions on the variations δΨ the last term disappears and

we have the stationarity condition

0 = δA = 2 Re

∫ t1

t0

dt〈δΨ|i∂t − Ĥ(t)|Ψ〉 . (168)

If we split the variation δΨ = δΨ1 + iδΨ2 where δΨ1 and δΨ2 are real functions,

we obtain (using Re(iz) = −Im (z)) that

0 = δA = 2 Re

∫ t1

t0

dt〈δΨ1|i∂t − Ĥ(t)|Ψ〉 − 2 Im

∫ t1

t0

dt〈δΨ2|i∂t − Ĥ(t)|Ψ〉 . (169)
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Since δΨ1 and δΨ2 can be varied independently we obtain the result that the real

and imaginary parts of (i∂t − Ĥ(t))|Ψ〉 are equal to zero. In other words

(i∂t − Ĥ(t))|Ψ〉 = 0 , (170)

which is just the time-dependent Schrödinger equation. We see that the variational

requirement δA = 0, together with the boundary conditions is equivalent to the

time-dependent Schrödinger equation.

A different derivation48 which does not put any constraints on the variations at

the endpoints of the time interval is the following. We consider again a first order

change in the action due to changes in the wavefunction and require that the action

is stationary. We have the general relation

0 = δA =

∫ t1

t0

dt〈δΨ|i∂t − Ĥ(t)|Ψ〉+

∫ t1

t0

dt〈Ψ|i∂t − Ĥ(t)|δΨ〉 . (171)

We now choose the variations δΨ = δΦ and δΨ = iδΦ where δΦ is arbitrary. We

thus obtain

0 = δA =

∫ t1

t0

dt〈δΦ|i∂t − Ĥ(t)|Ψ〉+

∫ t1

t0

dt〈Ψ|i∂t − Ĥ(t)|δΦ〉 (172)

and

0 = δA = −i
∫ t1

t0

dt〈δΦ|i∂t − Ĥ(t)|Ψ〉+ i

∫ t1

t0

dt〈Ψ|i∂t − Ĥ(t)|δΦ〉 . (173)

From the two above equations we obtain

0 =

∫ t1

t0

dt〈δΦ|i∂t − Ĥ(t)|Ψ〉 . (174)

Since this must be true for arbitrary δΦ we again obtain the time-dependent

Schrödinger equation

(i∂t − Ĥ(t))|Ψ〉 = 0 . (175)

We did not need to put any boundary conditions on the variations at all. We only

required that if δΦ is an allowed variation that then also iδΦ is an allowed variation.

With the two derivations above we thus have shown that we can derive the

time-dependent Schrödinger equation from an action principle based on the action

functional (166). The numerical value of action functional itself can however not be

used as a criterium to judge the accuracy of a given Ansatz for the wavefunction.

If we allow for complete variational freedom in the variations of the wavefunction,

our solution will satisfy the time-dependent Schrödinger equation exactly and the

action will be identical zero. Usually our variational freedom will be restricted, as

we will restrict our trial wavefunctions, for instance using orbital products, or time-

dependent parameters that fix the shape of our trial wavefunction. In that case the

value of the action at the solution point of the variational equations need not be

zero. Nevertheless a wavefunction Φ, with zero value of the action A[Φ] = 0, can
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always be obtained from an approximate variational solution Ψ by defining a new

wavefunction

|Φ〉 = exp

(
−i
∫ t

t0

dt
〈Ψ|i∂t − Ĥ(t)|Ψ〉

〈Ψ|Ψ〉

)
|Ψ〉 . (176)

This corresponds to multiplication of the solution by a purely time-dependent fac-

tor. There are therefore always approximate wavefunctions that yield an action that

is identically zero and this value can therefore not be used to judge the accuracy

of a given approximation. In general A = 0 at the solution point of the variational

equations for any parametrization of the wavefunction that allows for a variation

of the form δΦ = C(t)Ψ where C(t) is an arbitrary function of time. This follows

immediately by inserting this variation into Eq. (174). In that case one obtains

0 = 〈Ψ|i∂t − Ĥ(t)|Ψ〉 . (177)

Such a variation is, for instance, allowed in an approximate wavefunction that is

a product of orbitals by making an orbital variation δφi(rt) = C(t)φi(rt). For

this reason the variational solution of the time-dependent Hartree–Fock equations

corresponds to a zero value of the action integrand. Since in general

∂t〈Φ|Φ〉 = 2 Im 〈Φ|i∂t − Ĥ(t)|Φ〉 , (178)

it follows that if Eq. (177) is satisfied then also the norm of |Φ〉 is conserved.

From our discussion above we can immediately conclude that the time-dependent

Hartree–Fock equations conserve the norm of the wavefunction.

Let us now discuss the problems with the variational principle when one at-

tempts to construct a time-dependent density-functional theory. The obvious defi-

nition of a density functional would be

A[n] =

∫ t1

t0

dt〈Ψ[n]|i∂t − Ĥ(t)|Ψ[n]〉 , (179)

where |Ψ[n]〉 is a wavefunction which yields density n(rt) and evolves from a given

initial state |Ψ0〉 with initial density n0(r). By the Runge–Gross theorem such

a wavefunction is determined up to a phase factor. In order to define the action

uniquely we have to make a choice for this phase factor. We could for instance choose

a phase factor for each |Ψ〉 such that 〈Ψ|i∂t − Ĥ(t)|Ψ〉 = 0. This is a choice made

in Eq. (176). However, as is obvious this leads to a rather useless functional which

is identically zero. Another choice would be to choose the |Ψ[n]〉 that evolves in

the external potential v(rt) that vanishes at infinity and yields density n(rt). This

corresponds to a choosing a particular kind of gauge. There are of course many

more phase conventions possible. The trouble obviously arises from the fact that

the density only determines the wavefunction up to an arbitrary time-dependent

phase. However, there are more problems. Suppose we avoid the phase problem by

defining a functional of the external potential rather than the density

A[v] =

∫ t1

t0

dt〈Ψ[v]|i∂t − Ĥ(t)|Ψ[v]〉 . (180)
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Note that the potential v in the argument of the action is only used to parametrize

the set of wavefunctions used in the action principle. This potential v is therefore

not the same as the external potential in the Hamiltonian Ĥ(t) as this Hamiltonian

fixed. The state |Ψ[v]〉 is a state that evolves from a given initial state |Ψ0〉 by

solution of a time-dependent Schrödinger equation with potential v as its external

potential. As the potential obviously defines |Ψ[v]〉 uniquely, including its phase,

the action is well-defined. The action is not a density functional but since the

functional is now well-defined, one could now try to construct a density functional

from it afterwards, for instance using a Legendre transform. However, even this

strategy is not successful. Requiring δA = 0 for variations δv in the potential still

does not yield the Schrödinger equation. The reason for this is that all variations

δΨ of the wavefunction must now be caused by potential variations δv which leads

to variations over a restricted set of wavefunctions. In other words, the variations

δΨ must be v-representable. For instance, when deriving the Schrödinger equation

from the variational principle one can not assume the boundary conditions δΨ(t0) =

δΨ(t1) = 0. Since the time-dependent Schrödinger equation is first order in time, the

variation δΨ(t) at times t > t0 is completely determined by the boundary condition

for δΨ(t0). We are thus no longer free to specify a second boundary condition at a

later time t1. Moreover, we are not allowed to treat the real and imaginary part of

δΨ as independent variations since both are determined by the potential variation

δv. This means that the first derivation of the TDSE that we presented in this

section, can not be carried out. It is readily seen that also the second derivation

based on Eqs. (172) and (173) fails. If δΨ is a variation generated by some δv, then

δΨ satisfies

(i∂t − Ĥv(t))|δΨ〉 = δv|Ψ〉 , (181)

where Ĥv is a Hamiltonian with potential v and we neglected terms of higher

order. Multiplication by the imaginary number i yields that variation iδΨ must

be generated by potential iδv. This potential variation is however imaginary and

therefore not an allowed variation since all potential variations must be real.

We therefore conclude that time-dependent density-functional theory can not

be based on the usual variational principle, and indeed attempts to do so have led

to paradoxes. In the next section we will show how an extended type of action

functional defined on a time-contour can be used as a basis from which the time-

dependent Kohn–Sham equations can be derived.

4.2. The Keldysh action

In this section we will introduce a new action functional. This functional does not

suffer from the problems of the usual action. First of all the functional is not made

stationary but merely used as a generating function for the density and the response

functions. In this respect the function is very similar to the partition function of

statistical mechanics.
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In the definition of the new action functional we use the time contour method

due to Keldysh50 in which the physical time t is parametrized by an underlying pa-

rameter τ , called pseudotime. This procedure was originally introduced by Keldysh

in order to obtain an elegant treatment of nonequilibrium systems in terms of many-

body Green functions.50–54 We will use the same procedure in the definition of our

action functional. Higher functional derivatives of the new action functional will

lead to response functions which are symmetric in the Keldysh time contour pa-

rameter. Transforming back to physical time t then yields the desired causal, i.e.,

retarded response functions in terms of t.

The Keldysh contour is defined by parametrizing the physical time t(τ) in terms

of a pseudotime τ in such a way that if τ runs from τi to τf then t runs from

t0 to t̃ and from t̃ back to t0. The value of t̃ can be choosen arbitrarily as long

as physical quantities are calculated at earlier times. In practice one often takes

t̃ = +∞.50 The actual form of the parametrization is irrelevant since the final

results are independent of it. The initial state of the system at time t0 is given by

the wavefunction Ψ0. The evolution of this state in pseudotime is governed by the

Schrödinger equation

(it′(τ)−1∂τ − Ĥ(τ))|Ψ(τ)〉 = 0 , (182)

where t′(τ) = dt/dτ . The Hamiltonian Ĥ(τ) is given by Ĥ(τ) = T̂ + Û(τ) + Ŵ

where T̂ represents the kinetic energy operator, Û the external field explicitly given

by Û(τ) =
∫
d3rn̂(r)u(rτ) and Ŵ represents the two-particle interaction. It is easily

seen that this Schrödinger equation reduces to the usual one if u(rτ) is equal on the

forward and backward parts of the contour. The basic steps we will carry out here

are similar to the ones in Sec. 2.2 with the difference that we will use a functional

that is defined in terms of pseudo-time rather than physical time. The consequences

of this difference will become clear soon. We first define a functional of the external

field u by

Ã[u] = i ln〈Ψ0|V (τf , τi)|Ψ0〉 , (183)

where Ψ0 is the initial state and where V is the τ - or contour ordered evolution

operator of the system

V (τf , τi) = TC exp

[
−i
∫ τf

τi

dτt′(τ)Ĥ(τ)

]
, (184)

where TC denotes ordering in τ .53 It is this redefinition of the time-ordering oper-

ator in addition to the introduction of the time-contour which makes the Keldysh

approach applicable in nonequilibrium Green function theory.53 It is clear that if

the external potential is equal on the forward and backward parts of the contour,

i.e., of the form u(rτ) = v(rt(τ)), then this evolution operator will become unity

and Ã will become zero. Potentials of this type will be denoted as physical poten-

tials. Functional derivatives however, can be nonzero for physical potentials. For
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example the functional derivative of Ã with respect to u yields

δÃ

δu(rτ)
=
〈Ψ0|V (τf , τ)n̂(r)V (τ, τi)|Ψ0〉

〈Ψ0|V (τf , τi)|Ψ0〉
= 〈n̂H(rτ)〉 = n(rτ) , (185)

where we defined the Heisenberg representation of an operator Ô in pseudo-time

by ÔH(τ) = V (τi, τ)ÔV (τ, τi) and the expectation value by

〈ÔH(τ)〉 =
〈Ψ0|TC[V (τf , τi)ÔH(τ)]|Ψ0〉

〈Ψ0|V (τf , τi)|Ψ0〉
. (186)

Note that we have adopted the usual convention of Keldysh–Green function

theory53 in which the functional derivative is defined by

δÃ =

∫
d3rdτt′(τ)

δÃ

δu(rτ)
δu(rτ) , (187)

i.e. the term t′(τ) belongs to the integration measure rather than the functional

derivative. If we now evaluate the derivative of Ã at a physical potential u(rτ) =

v(rt(τ)) we obtain

δÃ

δu(rτ)

∣∣∣∣∣
u=v(rt)

= 〈Ψ0|V (t0, t)n̂(r)V (t, t0)|Ψ0〉 = n(rt) , (188)

where the operator V is now the usual evolution operator in physical time. There-

fore, the derivative of Ã at the physical potential v is the density of the system in

the external field v. As was pointed out in Sec. 2.2 it is not possible to construct a

functional with this property if the density is restricted to be a function of physical

time. We now want to use n(rτ) as our basic variable and we perform a Legendre

transform by defining

A[n] = −Ã[u] +

∫
C

dtd3rn(rτ)u(rτ) , (189)

so that

δA

δn(rτ)
= u(rτ) . (190)

For notational convenience we introduced the shortened notation
∫
C
dt for

∫
dτt′(τ).

The Legendre transformation assumes that there is a one-to-one relation between

u(rτ) and n(rτ) so that Eq. (185) is invertible. This inverse is unique modulo a

purely τ -dependent function C(τ). We will prove this in the next section for the

case of perturbations from an initial ground state. Note further that

Ã[u+ C(τ)] = Ã[u] +N

∫
C

dtC(τ) , (191)

where N is the number of particles in the system. This means that the arbitrariness

with respect to adding a purely τ -dependent function to the potential cancels in

the definition of A[n] which makes A[n] well-defined.
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For a noninteracting system with the Hamiltonian

Ĥs(τ) = T̂ + Ûs(τ) , (192)

we can now define the action functional

Ãs[us] = i ln〈Φ0|Vs(τf , τi)|Φ0〉 . (193)

The evolution operator Vs(τf , τi) is similar to the one in Eq. (184) and obtained by

replacing Ĥ by Ĥs. The initial wavefunction Φ0 at t = t0 is a Slater determinant.

We can now do a similar Legendre transform and define

As[n] = −Ãs[us] +

∫
C

dtd3rn(rτ)us(rτ) . (194)

The exchange-correlation part Axc of the action functional is then defined by

A[n] = As[n]−Axc[n]− 1

2

∫
C

dtd3r1d
3r2

n(r1τ)n(r2τ)

|r1 − r2|
. (195)

The above equation implicitly assumes that the functionals A and As are defined

on the same domain, i.e., that there exists a noninteracting system described by

the Hamiltonian Ĥs with the same density as the interacting system described

by the Hamiltonian Ĥ. For this to be true it is necessary that the initial states

Ψ0 and Φ0 yield the same density. For most applications, Ψ0 will be the ground

state of the system before the time-dependent field is switched on and Φ0 will

be the corresponding Kohn–Sham determinant obtained from stationary density-

functional theory. Functional differentiation of Eq. (195) with respect to n(rτ) yields

u(rτ) = us(rτ) − uxc(rτ) − uH(rτ) , (196)

where the Hartree potential is uH(rτ) =
∫
d3r′n(r′τ)/|r − r′| and where the

exchange-correlation potential is formally defined by

uxc(rτ) =
δAxc

δn(rτ)
. (197)

The above construction yields a potential us for a noninteracting system with the

same density as the fully interacting system with potential u. The noninteracting

system is thus to be identified with the time-dependent Kohn–Sham system. If we

take the above derivatives at the physical time-dependent density n(rt) correspond-

ing to the potential u(rτ) = v(rt(τ)) of the interacting system, we can transform

again to physical time. The Kohn–Sham system is then given by the equations[
−1

2
∇2 + v(rt) + vH(rt) + vxc(rt)

]
φi(rt) = i∂tφi(rt) ,

vxc(rt) =
δAxc

δn(rτ)

∣∣∣∣
n=n(rt)

,
(198)

where the density n(rt) can be calculated as the sum of the squares of the occupied

orbitals. We now address the causality and symmetry properties associated with
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the response functions, that have led to a paradox in an earlier version of time-

dependent density functional theory. The second derivative of the functional Ã

yields

χ(r1τ1, r2τ2) =
δ2Ã

δu(r1τ1)δu(r2τ2)
= −i〈TC∆n̂H(r1τ1)∆n̂H(r2τ2)〉 , (199)

where the density fluctuation operator ∆n̂H(rτ) = n̂H(rτ)−〈n̂H(rτ)〉 enters rather

than the density operator, due to the derivatives of the denominator in Eq. (185).

This density response function is symmetric as it should and from the Legendre

transform it follows that its inverse is given by

χ−1(r1τ1, r2τ2) =
δ2A

δn(r1τ1)δn(r2τ2)
. (200)

Taking the second functional derivative of Eq. (195) now yields

χ−1 = χ−1
s −

1

t′(τ1)

δ(τ1 − τ2)

|r1 − r2|
− fxc , (201)

where χ−1
s is the inverse of the Kohn–Sham density response function and

fxc(r1τ1, r2τ2) =
δvxc(r1τ1)

δn(r2τ2)
. (202)

Since both χ−1 and χ−1
s are symmetric also fxc must be symmetric. However,

these functions will become causal in physical time. In order to see how they act

in physical time we calculate the density reponse δn(rt) due to a variation δv(rt).

The function χ evaluated at a physical density n(rt) is given by

iχ(r1τ1, r2τ2) = θ(τ1 − τ2)〈∆n̂H(r1t1)∆n̂H(r2t2)〉+ (1↔ 2) , (203)

where the second term is identical to the first term with the indices interchanged.

Hence, we have

δn(r1t1) =

∫
C

dt2d
3r2χ(r1τ1, r2τ2)δv(r2t2)

= −i
∫ τ1

τi

dτ2t
′(τ2)d3r2〈∆n̂H(r1t1)∆n̂H(r2t2)〉δv(r2t2)

− i
∫ τf

τ1

dτ2t
′(τ2)d3r2〈∆n̂H(r2t2)∆n̂H(r1t1)〉δv(r2t2)

=

∫ +∞

t0

dt2d
3r2χR(r1t1, r2t2)δv(r2t2) , (204)

where

iχR(r1t1, r2t2) = θ(t1 − t2)〈Ψ0|[n̂H(r1t1), n̂H(r2t2)]|Ψ0〉 . (205)

In the last step we used that the expectation value of the commutator of the density

fluctuation operators is equal to the expectation value of the commutator of the
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density operators themselves. In a similar fashion for χs we obtain χs,R which is

given by Eq. (205) with Ψ0 replaced by Φ0. From Eq. (201) we see that fxc has

a structure similar to χ and χs. Transformation to physical time yields the causal

equivalent fxc,R. Acting in physical time, Eq. (201) then becomes

χ−1
R = χ−1

s,R −
δ(t1 − t2)

|r1 − r2|
− fxc,R . (206)

This is the basic equation which is used to calculate excitation energies within

TDDFT.46,47 We have thus obtained the main result of this section. All response

functions, i.e. higher order derivatives of the action functional are symmetric func-

tions in pseudotime and become causal functions when transformed back to physical

time. This resolves the paradox arising from the previous definition of the action

functional.

We will now discuss a useful application of the new formalism, namely a new

derivation of the time-dependent optimized potential method (TDOPM).55

The exchange-correlation part Axc of the action functional can be expanded in

terms of Keldysh–Green functions56 where the perturbing Hamiltonian is given by

Ĥ − Ĥs. The expansion of the logarithm of the evolution operator yields the set of

closed connected diagrams. Perturbation theory in addition requires an adiabatic

switching-on of Ĥ − Ĥs in the physical time interval (−∞, t0) in order to connect

the states Ψ0 and Φ0. This is however readily achieved by extending the Keldysh

contour to −∞.56 If we restrict the derivation to the first order terms we find

that the Hartree term and the term with u − us cancel, and thus we obtain the

exchange-only expression

Ax[n] = −1

2

N∑
ij

∫
C

dtd3r1d
3r2

φ∗i (r1τ)φi(r2τ)φj(r1τ)φ∗j (r2τ)

|r1 − r2|
. (207)

One sees that this functional is an implicit functional of n(rτ) but an explicit

functional of the orbitals. Going to higher order in Ĥ−Ĥs, the Keldysh perturbation

expansion leads to orbital dependent expressions for the correlation part Ac of the

action. In that case one may obtain uxc from

uxc(r2τ2) =

∫
C

dtd3r1
δAxc

δus(r1τ1)

δus(r1τ1)

δn(r2τ2)
. (208)

Multiplication by χs and use of the chain rule for differentiation yields∫
C

dt2d
3r2χs(r1τ1, r2τ2)uxc(r2τ2)

=
N∑
i=1

∫
C

dt2d
3r2

δAxc

δφi(r2τ2)

δφi(r2τ2)

δus(r1τ1)
+

δAxc

δφ∗i (r2τ2)

δφ∗i (r2τ2)

δus(r1τ1)
. (209)

Now we work out some terms on the right hand side of this equation. In the following

we will only consider the realistic case where the functional derivative δAxc/δφ
∗
i at a

physical potential is the complex conjugate of δAxc/δφi. Calculating the functional
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derivatives δφi/δus and δφ∗i /δus requires careful consideration of the boundary

conditions. From Eq. (193) it follows that the state |Φ0〉 evolves from τi forward in

pseudotime and therefore the variations δφi have to satisfy the boundary condition

δφi(τi) = 0. However, the complex conjugate state 〈Φ0| evolves from τf backwards

in pseudotime and thus the variations δφ∗i have to satisfy the boundary condition

δφ∗i (τf ) = 0. Carrying out these variations in a similar way as in Ref. 55 we obtain

from the pseudotime Kohn–Sham equations

δφi(r2τ2)

δus(r1τ1)
= −iθ(τ2 − τ1)φi(r1τ1)

∑
j

φj(r2τ2)φ∗j (r1τ1) ,

δφ∗i (r2τ2)

δus(r1τ1)
= −iθ(τ1 − τ2)φ∗i (r1τ1)

∑
j

φ∗j (r2τ2)φj(r1τ1) . (210)

Inserting the above expressions and transforming back to physical time yields the

integral equation

N∑
j

∫
dt2d

3r2GR(r1t1, r2t2)φj(r1t1)φ∗j (r2t2)

× [vxc(r2t2)− wxcj(r2t2)] + c.c. = 0 , (211)

where we defined the retarded Green function by

iGR(r1t1, r2t2) = θ(t1 − t2)
∑
j

φ∗j (r1t1)φj(r2t2) (212)

and the quantity wxcj by

wxcj(rt) =
1

φ∗j (rt)

δAxc

δφj(rτ)

∣∣∣∣
φi=φi(rt)

. (213)

The Eq. (211) is the well known equation of the TDOPM.55

The results of this section can be summarized as follows: We have resolved

an existing paradox regarding the causality and symmetry properties of response

functions within TDDFT. This is achieved by introducing an action functional

defined on a Keldysh contour. From this action we furthermore derived the time-

dependent Kohn–Sham equations and, as example, the TDOPM equations.

4.3. Invertability proof for the Keldysh linear response function

In the previous section we derived the time-dependent Kohn–Sham equations from

an action principle. In this derivation it we assumed that there is a one-to-one

relation between the contour density n(rτ) and the contour potential u(rτ). In this

section we will investigate this point more closely.

As a first guess one may think that the one-to-one relation between contour

density and potential can be proven along the same lines as in the usual Runge–

Gross proof. However, one soon realizes that this is not the case. The Runge–Gross
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proof is based on a Taylor expansion of the potential and the density around the

initial time t0, where one uses the fact that one can calculate the expectation values

at t = t0 from the initial state wavefunction. However, in the Keldysh formulation

the contour quantities at the endpoints of the contour do not depend just on the

initial state. For instance, for the contour density at τ = τi one has:

n(rτi) =
〈Ψ0|V (τf , τi)n̂(r)|Ψ0〉
〈Ψ0|V (τf , τi)|Ψ0〉

. (214)

We see that this quantity does not only depend on the initial state |Ψ0〉, but also

on the complete evolution of this state along the contour, which is governed by the

evolution operator V (τf , τi). Only for potentials that are identical on the forward

and backward part of the contour this evolution operator becomes equal to the

identity operator in which case the fully evolved state has returned exactly to the

initial state. We therefore see that the Runge–Gross proof can not be generalized

in a straightforward way to the contour case. The same is true for the extended

Runge–Gross proof of Sec. 2.5. For this reason we set ourselves a more modest goal

and will instead prove that the Keldysh linear response function is invertable.

We consider the ground state |Ψ0〉 of a many-body Hamiltonian Ĥ. Then we

add an additional potential φ(rτ) where τi ≤ τ ≤ τf and solve for the forward

solution

|Ψi(τ)〉 = V (τ, τi)|Ψ0〉 (215)

and for the backward solution

〈Ψf (τ)| = 〈Ψ0|V (τf , τ) (216)

of the contour Schrödinger equation (182) with the boundary condition |Ψi(τi)〉 =

|Ψ0〉 and |Ψf (τf )〉 = |Ψ0〉. From this we obtain the contour density

n(rτ) =
〈Ψf (τ)|n̂(r)|Ψi(τ)〉
〈Ψf(τ)|Ψi(τ)〉 . (217)

This yields a density variation δn(rτ) = n(rτ)−n0(r), where n0(r) is the density of

ground state |Ψ0〉. We will show that zero density variations can only be reproduced

by potentials of the form φ(rτ) = C(τ), i.e. purely τ -dependent functions. In order

to prove this we start out from the Keldysh linear response function:

iχ(r1τ1, r2τ2) = θ(τ1 − τ2)〈Ψ0|∆n̂H(r1t1)∆n̂H(r2t2)|Ψ0〉

+ θ(τ2 − τ1)〈Ψ0|∆n̂H(r2t2)∆n̂H(r1t1)|Ψ0〉 . (218)

The density response can be written as

δn(rτ) = δn>(rτ) + δn<(rτ) , (219)

where

δn>(r1τ1) = −i
∫ τ1

τi

dτ2t
′(τ2)

∫
d3r2〈Ψ0|∆n̂H(r1t1)∆n̂H(r2t2)|Ψ0〉φ(r2τ2) (220)
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and

δn<(r1τ1) = −i
∫ τf

τ1

dτ2t
′(τ2)

∫
d3r2〈Ψ0|∆n̂H(r2t2)∆n̂H(r1t1)|Ψ0〉φ(r2τ2) (221)

with the above definitions we find immediately that

(δn<(r1τ1))∗ = δn>(r1τ1) + ν(r1t1) , (222)

where we defined

ν(r1t1) = i

∫ τf

τi

dτ2t
′(τ2)

∫
d3r2〈Ψ0|∆n̂H(r1t1)∆n̂H(r2t2)|Ψ0〉φ(r2τ2) . (223)

We therefore have

δn(rτ) = 2 Re(δn<(rτ)) − ν(rt) . (224)

Because of the term ν the contour density response δn is in general a complex

quantity. We first show that δn = 0 implies that ν = 0. From the above equation

we see immediately that δn = 0 implies that Im (ν) = 0. Now

2i Im (ν(r1t1)) = ν(r1t1)− ν∗(r1t1)

= i〈Ψ0|∆n̂H(r1t1)Φ̂|Ψ0〉+ i〈Ψ0|Φ̂∆n̂H(r1t1)|Ψ0〉 , (225)

where we defined the Hermitian operator

Φ̂ =

∫ τf

τi

dτt′(τ)

∫
d3rn̂H(rt)φ(rτ) . (226)

Multiplying Eq. (225) by φ and integrating over r1 and τ1 yields∫ τf

τi

dτ1t
′(τ1)

∫
d3r1 Im (ν(r1t1))φ(r1τ1) = 〈Ψ0|Φ̂Φ̂|Ψ0〉 . (227)

Therefore Im (ν) = 0 implies that

0 = 〈Ψ0|Φ̂Φ̂|Ψ0〉 = 〈Ψ0|Φ̂†Φ̂|Ψ0〉 , (228)

where we used that Φ̂ is Hermitian. This equation implies immediately that the

norm of Φ̂|Ψ0〉 is zero and thus that Φ̂|Ψ0〉 = 0 and therefore

ν(rt) = i〈Ψ0|n̂H(rt)Φ̂|Ψ0〉 = 0 . (229)

We have therefore shown that δn = 0 implies ν = 0 and therefore also Re(δn>) =

Re(δn<) = 0. Now we can parametrize φ(rτ) by two functions of t(τ) on the upper

and lower part of the Keldysh contour, i.e.:

φ(rτ) =

{
u1(rt(τ)), (τi ≤ τ ≤ τ0),

u2(rt(τ)), (τ0 ≤ τ ≤ τf ).
(230)

Now the condition Re(δn>) = 0 for τi ≤ τ ≤ τ0 yields in the real time interval

t0 ≤ t ≤ t̃ the condition

0 = −i
∫ t1

t0

dt2

∫
d3r2〈Ψ0|[∆n̂H(r1t1),∆n̂H(r2t2)]|Ψ0〉u1(r2t2) . (231)
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One should remember that the turning point t̃ of the Keldysh contour can be taken

to be infinitely large and therefore t1 is an arbitrary time between t0 and infinity.

The analogous condition Re(δn<) = 0 for τ0 ≤ τ ≤ τf yields an identical equation

to Eq. (231) with u1 replaced by u2. The above equation is however just the linear

response function in physical time, for which we already proved invertability (see

Sec. 3.2). We therefore find that, if δn = 0, then u1 and u2 can only be equal to

purely time-dependent functions. Hence the Keldysh response function can only

yield zero response for perturbations of the form φ(rτ) = C(τ). This proves the

invertability of the Keldysh response function.

4.4. An illustrative example

The derivations based on the Keldysh action principle were thusfar rather general

and abstract. We therefore want to show how the formalism works in a simple

example that can be solved exactly, namely the quantum version of the forced

harmonic oscillator.57 The Schrödinger equation for this problem is given by:

−1

2
∂2
xΨ(xt) +

(
1

2
x2 − xF (t)

)
Ψ(xt) = i∂tΨ(xt) (232)

where initial wavefunction is given at t = t0 by Ψ(xt0) = Ψ0(x). In this equation

the function F (t) is an arbitrary time-dependent force. Given the initial state there

is, as we will show, a one-to-one relation between the expectation value of position

〈x(t)〉 and the applied force F (t). To illustrate the Keldysh formalism we will first

define a functional of the external force and we will then construct a functional of

the expectation value of position by the method of Legendre transforms.

In the Keldysh approach one defines a time-contour t(τ) that runs from t(τi) =

t0 to some time t1 and then back to t(τf ) = t0. The physical time interval from

t0 to t1 is thus parametrized by a pseudo-time variable running from τi to τf . In

order to derive quantities from an action functional one needs to make variations in

the potential which are different on the forward and backward parts of the contour.

One therefore needs variations in the potential that are general functions of τ rather

than functions of t(τ). In order to do this we generalize the Schrödinger equation

to:

−1

2
∂2
xΨ(xτ) +

[
1

2
x2 − xF (τ)

]
Ψ(xτ) = i

1

t′(τ)
∂τΨ(xτ) , (233)

where t′(τ) is dt/dτ . The external force F (τ) is now a general function of τ rather

than a function of t(τ). The force F (τ) and the position x are conjugate variables

in the Schrödinger equation. This is analogous to the potential u(rτ) and density

n(rτ) which are conjugate variables in the many-body Hamiltonian. We therefore

start out by defining a functional of the external force F (τ) by

Ã[F ] = i ln〈Ψ0|V (τf , τi)|Ψ0〉 , (234)
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where V is the τ -ordered evolution operator of the system:

V (τf , τi) = TC exp

[
−i
∫ τf

τi

dτt′(τ)Ĥ(τ)

]
. (235)

Here TC denotes ordering in τ and Ĥ is the Hamiltonian of the forced harmonic

oscillator. Functional differentiation of Ã with respect to F yields the expectation

value of the position operator

− δÃ

δF (τ)
=
〈Ψ0|V (τf , τ)xV (τ, τi)|Ψ0〉
〈Ψ0|V (τf , τi)|Ψ0〉

= 〈xH(τ)〉 , (236)

whereas the second derivative yields a response function

− δ2Ã

δF (τ ′)δF (τ)
=
δ〈xH(τ)〉
δF (τ ′)

= −i〈TC∆xH(τ)∆xH(τ ′)〉 (237)

where ∆xH(τ) = xH(τ)−〈xH(τ)〉. If we introduce the notation X(τ) = 〈xH(τ)〉 we

can define the Legendre transform of Ã by

A[X] = −Ã[F ]−
∫
C

dtX(τ)F (τ) , (238)

with functional derivative

δA

δX(τ)
= −F (τ) . (239)

In the following we will calculate all of the above quantities explicitly. For notational

convenience we first introduce the notation:

ḟ(τ) =
1

t′(τ)
∂τf(τ) , (240)

f̈(τ) =
1

t′(τ)
∂τ

(
1

t′(τ)
∂τf(τ)

)
. (241)

The initial state is taken to be the ground state of the harmonic oscillator

Ψ0(x) = π−1/4 exp

(
−1

2
x2

)
. (242)

The ground state energy is E0 = 1/2. The full solution of the forward solution with

boundary condition Ψ(τi) = Ψ0 is:

Ψi(xτ) = π−1/4 exp

[
−1

2
(x− vi(τ))2+ ixv̇i(τ)−i

∫ τ

τi

dτ̄ t′(τ̄)

(
1

2
+ Si(τ̄)

)]
, (243)

where vi(τ) is the solution of the equation

v̈i(τ) + vi(τ) = F (τ) , (244)

with the boundary conditions

vi(τi) = v̇i(τi) = 0 . (245)
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The function Si(τ) is given by

Si(τ) =
1

2
(v̇2
i (τ) − v2

i (τ)) (246)

and corresponds to the classical action of an harmonic oscillator. The explicit so-

lution of Eq. (244) with boundary conditions (245) is given by

vi(τ) =

∫ τ

τi

dτ̄ t′(τ̄) sin(t(τ) − t(τ̄))F (τ̄) . (247)

Now we consider the backward solution which evolves from initial state Ψ0 at

τf backwards in pseudotime. This solution is, of course, described by the same

equations as above. We only have to change the subindex i to f . This procedure

leads for instance to the following expression for the quantity vf (τ):

vf (τ) =

∫ τ

τf

dτ̄ t′(τ̄) sin(t(τ) − t(τ̄))F (τ̄) . (248)

Note that τf occurs in the lower limit of the integral although τ ≤ τf . Interchanging

the boundaries of the integration interval changes of sign of the integral. In order to

evaluate the action we first calculate the expectation value of the evolution operator

ε(τf , τi) = 〈Ψ0|V (τf , τi)|Ψ0〉 . (249)

There are several ways to calculate this quantity. One way is to evolve the state Ψi

to τ = τf and to project on the initial state Ψ0, i.e.

ε(τf , τi) =

∫ +∞

−∞
dxΨ∗0(x)Ψi(xτf ) . (250)

This yields

ε = exp

[
−i
∫ τf

τi

dτt′(τ)Si(τ) − 1

4
(v2
i (τf ) + v̇2

i (τf )) +
i

2
vi(τf )v̇i(τf )

]
. (251)

We therefore find for the action Ã = i ln ε the following expression

Ã[F ] =

∫ τf

τi

dτt′(τ)Si(τ) − 1

2
vi(τf )v̇i(τf )− i

4

[
v2
i (τf ) + v̇2

i (τf )
]
, (252)

which is just a classical action of an harmonic oscillator plus some boundary terms.

It is also easily seen that this action is zero for a driving force that is equal on the

forward and backward parts of the contour.

Let us further calculate some other expectation values. We calculate

〈Ψ0|V (τf , τ)xV (τ, τi)|Ψ0〉 =

∫ +∞

−∞
dxΨ∗f (xτ)xΨi(xτ) . (253)

We find

X(τ) =
〈Ψ0|V (τf , τ)xV (τ, τi)|Ψ0〉
〈Ψ0|V (τf , τi)|Ψ0〉

=
1

2
(vi(τ) + vf (τ)) +

i

2
(v̇i(τ) − v̇f (τ)) . (254)



June 12, 2001 18:19 WSPC/140-IJMPB 00499

2014 R. v. Leeuwen

This is more compactly written as

X(τ) =
i

2

∫ τ

τi

dτ̄ t′(τ̄)e−i(t(τ)−t(τ̄))F (τ̄) +
i

2

∫ τf

τ

dτ̄ t′(τ̄)ei(t(τ)−t(τ̄))F (τ̄) . (255)

Note that X(τ) satisfies the differential equation

Ẍ(τ) +X(τ) = F (τ) (256)

with boundary conditions

Ẋ(τi)− iX(τi) = 0 ,

Ẋ(τf ) + iX(τf) = 0 .
(257)

We see that since we have a second order differential equation for a complex function

X(τ) we need two complex boundary conditions. From the differential equation

for X(τ) we readily see that two different forces F1(τ) 6= F2(τ) can not give the

same X(τ). This establishes the one-to-one relation between the force F (τ) and

pseudotime position X(τ). For a physical potential of the form F (τ) = E(t(τ)) we

have X(τ) = vi(τ) = vf (τ) = u(t(τ)) where u(t) is explicitly given by

u(t) =

∫ t

t0

dt̄ sin(t− t̄ )E(t̄ ) (258)

and satisfies the boundary conditions u(t0) = 0 and du/dt(t0) = 0.

Let us now calculate X(τ) from the action Ã. Using

δvi(τ)

δF (τ̄ )
= θ(τ − τ̄) sin(t(τ) − t(τ̄)) , (259)

δv̇i(τ)

δF (τ̄ )
= θ(τ − τ̄) cos(t(τ) − t(τ̄)) , (260)

we can differentiate the action and we obtain

− δÃ

δF (τ)
=

1

2
(vi(τ) + vf (τ)) +

i

2
(v̇i(τ) − v̇f (τ)) = X(τ) . (261)

The right hand side of this equation is indeed exactly the quantity X(τ) calculated

before in Eq. (254). It should be remembered that the term t′(τ) belongs to the

volume element rather than the functional derivative. Let us now calculate the

linear response function:

χ(τ, τ̄) = −i〈TC∆x(τ)∆x(τ̄ )〉 =
δX(τ)

δF (τ̄)
. (262)

From the expression for X(τ) we immediately find

χ(τ, τ̄) = θ(τ − τ̄)
i

2
exp[−i(t(τ)− t(τ̄))] + θ(τ̄ − τ)

i

2
exp[−i(t(τ̄)− t(τ))] . (263)
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This function is symmetric in τ and τ̄ as it should. Let us investigate the causality

properties of the response function and calculate the response of X(τ) due to a

physical perturbation F (τ) = E(t(τ)). Then

δu(t(τ)) = δX(τ) = −i
∫ τf

τi

dτ̄ t′(τ̄)〈TC∆x(τ)∆x(τ̄ )〉E(t(τ̄ ))

=
1

2

∫ τ

τi

dτ̄ t′(τ̄)[sin(t(τ) − t(τ̄)) + i cos(t(τ)− t(τ̄))]E(t(τ̄ ))

+
1

2

∫ τf

τ

dτ̄ t′(τ̄)[sin(t(τ̄)− t(τ)) + i cos(t(τ̄)− t(τ))]E(t(τ̄ ))

=
1

2

∫ t

t0

dt̄ [sin(t− t̄ ) + i cos(t− t̄ )]E(t̄ )

− 1

2

∫ t

t0

dt̄[sin(t̄− t) + i cos(t̄− t)]E(t̄ )

=

∫ t

t0

dt̄ sin(t− t̄ )E(t̄ ) = −i
∫ ∞
t0

χR(t, t̄ )E(t̄ ) , (264)

where the retarded response function is given by

iχR(t, t̄ ) = θ(t− t̄ )〈[xH(t), xH(t̄ )]〉 = −θ(t− t̄ ) sin(t− t̄) . (265)

Note that the commutator of the Heisenberg representation of the position operator

xH is equal to the commutator of the Heisenberg representation of the position

fluctuation operator ∆xH, i.e.

〈[xH(t), xH(t̄ )]〉 = 〈[∆xH(t),∆xH(t̄ )]〉 . (266)

From Eq. (255) it follows that the linear relation between X(τ) and F (τ) is exact,

and not only valid in linear response. We have the exact relation

X(τ) =

∫
C

dt̄χ(τ, τ̄)F (τ̄) . (267)

This also means that for this particular problem all higher order response functions

are zero. Another consequence is that the functional Ã[F ] is a quadratic functional

of F and we readily find that

Ã[F ] = −1

2

∫
C

dt

∫
C

dt̄F (τ)χ(τ, τ̄ )F (τ̄) . (268)

In combination with Eq. (267) and the definition of the Legendre transform we see

that

A[X] = −1

2

∫
C

dtF (τ)X(τ̄) , (269)
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where F has to be interpreted as a functional of X. With the equation of motion

of X(τ) this yields

A[X] = −1

2

∫
C

dt(Ẍ(τ) +X(τ))X(τ) , (270)

which can be rewritten as

A[X] =
1

2

∫
C

dt(Ẋ(τ)2 −X(τ)2)− 1

2
[X(τ)Ẋ(τ)]

τf
τi . (271)

This functional resembles the action of a classical harmonic oscillator. If we make

variations δX we obtain after partial integration the variation in the action

δA = −
∫
C

dt(Ẍ(τ) +X(τ))δX(τ) +
1

2
[Ẋ(τ)δX(τ) −X(τ)δẊ(τ)]

τf
τi . (272)

Now the constraint must be incorporated that δX is a v-representable variation.

This means that δX is determined from

δẌ(τ) + δX(τ) = δF (τ) (273)

for some perturbation δF . Moreover we must incorporate that the perturbed system

evolves from the same initial state Ψ0 as the unperturbed state. This implies that

we must have the boundary conditions δΨi(τi) = δΨf(τf ) = 0. These conditions

on the wavefunctions imply that δX satisfies

δẊ(τi)− iδX(τi) = 0 ,

δẊ(τf ) + iδX(τf) = 0 .
(274)

With the above boundary conditions we find that

δA = −
∫
C

dtF (τ)δX(τ) (275)

implies

0 =

∫
C

dt[F (τ) − Ẍ(τ) −X(τ)]δX(τ)

+
1

2
[Ẋ(τf ) + iX(τf)]δX(τf )− 1

2
[Ẋ(τi)− iX(τi)]δX(τi) . (276)

This equation is obviously satisfied for arbitrary v-representable variations if X

satisfies

Ẍ(τ) +X(τ) = F (τ) , (277)

Ẋ(τi)− iX(τi) = 0 , (278)

Ẋ(τf ) + iX(τf) = 0 . (279)

It is not obvious that there are not more solutions. However, expressing δX explic-

itly in terms of δF one can convince oneself that the only variational possibility



June 12, 2001 18:19 WSPC/140-IJMPB 00499

Key Concepts in Time-Dependent Density-Functional Theory 2017

is presented by these equations. It is important to note that the variational equa-

tions yield both the equations of motion and the boundary conditions. This must

of course be the case since the initial state is explicitly included in the defini-

tion of the action. The main point we learn from this example is that initial state

and v-representability conditions must be used in order to derive the variational

equations.

5. Conclusions and Outlook

In this review we presented an overview of the underlying principles of time-

dependent density functional theory. We showed that one can transform the problem

of interacting particles in a time-dependent field into an equivalent problem of non-

interacting particles in an effective field, known as the Kohn–Sham potential. This

transformation is based on a fundamental one-to-one relation between the external

potential and the density of the system. This one-to-one relation was discussed in

detail and we studied its dependence on the initial state. It was found that one can

actually construct the potential from the density and the initial states, using the

equations of motion. This construction also elucidates the initial state dependence

of time-dependent density functionals.

We further showed how to calculate response properties and excitation energies

from the time-dependent Kohn–Sham equations and proved invertability of the

response function for switch-on potentials. This proof is valid for a larger class of

potentials than allowed in the Runge–Gross proof and is a new result. In order

to solve the Kohn–Sham response equations in practice approximate functionals

for the exchange-correlation potential vxc and the exchange-correlation kernel fxc
must be used. As a guidance in finding such approximations we discussed some

exactly known properties of these functionals. We concluded that fxc was a rather

singular object. Whether or not this poses a problem for the development of better

functionals remains to be seen.

Finally we discussed the derivation of the time-dependent Kohn–Sham equa-

tion from an action principle and concluded that, in order to avoid paradoxes,

v-representability and boundary conditions require careful consideration. A well-

defined action functional based on the Keldysh formalism was investigated in detail.

With the Keldysh functional a previous paradox in TDDFT, related to the causal-

ity and symmetry properties of response functions, can be avoided. The formalism

was illustrated with an exactly solvable example.

With respect to future developments it is fair to say that TDDFT is by now

a well-established method within the field of quantum chemistry. Many response

properties of molecules have been calculated accurately and at a much lower cost

than other existing methods. However, there are also cases where TDDFT fails

dramatically. This happens in the calculation of the polarizabilities and hyperpo-

larizabilities of long molecular chains.58 It turns out that the simple LDA approx-

imation is too local to notice the accumulation of charge at the ends of the chain.
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There are close connections with density-functional theory of polarization and the

problem may be solved by including a functional dependence on the polarization59

or by orbital dependent functionals.60

The use of TDDFT will certainly increase within solid state physics. There have

been promising results on the calculation of dielectric functions20 and spin waves.61

Since TDDFT calculations are computationally much faster than many-body per-

turbation theory methods, such as the ones based on the GW-approximation62–64

and Bethe–Salpeter equation,65 we may speculate if TDDFT can compete in ac-

curacy with these methods. In the calculation of dielectric functions it has been

been found that some peaks ascribed to excitonic effects are well-reproduced and

in good agreement with Bethe–Salpeter results.20 It may very well be that also

bound excitons will be within reach of TDDFT.

There have been several extensions of density functional theory26 that include

currents, spin-densities, temperature and relativistic effects. These extended ver-

sions of DFT are easily cast into a linear response formalism. This means that

within DFT several reponse functions, such as the spin–spin of current–current re-

sponse functions, are accesible. Whether or not these quantities can be determined

with sufficient accuracy will depend on the quality of approximate functionals. This

will bring a new range of physical phenomena within reach of TDDFT. Based on

recent experience with TDDFT is seems worthwhile to explore these new areas.
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Appendix A. The Sturm–Liouville Equation

In the proof of the extended Runge–Gross theorem of Sec. 2.5 extensive use is made

of the Sturm–Liouville equation in the form of Eq. (72):

∇ · (n(r)∇ω(r)) = ζ(r) . (A.1)

For our current discussion we will drop the time-argument of Eq. (72) as it only

occurs as a parameter. We will now consider the conditions for which this equation

has a unique solution for ω, given the density n(r) and the inhomogeneous term
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ζ(r). As a first step we note that this equation can be obtained as the variational

Euler-Lagrange equation corresponding to minimization of the following functional

Λ[ω] =

∫
d3r

[
1

2
n(r)(∇ω(r))2 + ζ(r)ω(r))

]
, (A.2)

under the subsiduary boundary condition that ω(r) → 0 if |r| → ∞. It is easily

seen, for instance, that in the case ζ = 0 this yields the unique solution ω = 0.

From this fact we can already conclude that if there is a solution to the Sturm–

Liouville equation (A.1) that satisfies the boundary condition, then it is unique. If

there where two solutions ω1(r) and ω2(r) then we would have

∇ · (n(r)∇(ω1(r)− ω2(r))) = 0 , (A.3)

from which we conclude, in combination with the boundary condition, that ω1(r)−
ω2(r) = 0 and hence ω1(r) = ω2(r). Now we know that a solution which satisfies the

boundary condition is either unique, or it does not exist. We further know that the

density n(r) is a physical density of a finite Coulombic system, and hence it decays

exponentially for |r| → ∞. If there is a solution ω(r) with the required boundary

condition that ω(r) be zero at infinity, then it follows immediately from the Sturm–

Liouville equation (A.1) that ζ(r) must decay exponentially for |r| → ∞. In that

case the integrals in the functional Λ[ω] of Eq. (A.2) are finite and the solution of

the Sturm–Liouville equation corresponds to minimum of functional Λ[ω].

On the other hand, if ζ(r) decays slower than exponentially the Sturm–Liouville

equation tells us that ω(r) must contain an exponentially growing term that cancels

the exponential decay of the density n(r). Because of this, ω(r) can not satisfy

the boundary condition. It also means that for functions ζ(r) that do not decay

exponentially the functional Λ[ω] can attain infinite values of arbitrary sign in which

case it is clear that there is no variational minimum.

A solution that satisfies the boundary conditions does not exist in the case that

ζ(r) decays slower than exponentially. If this is the case it means that the quantities

that build up ζ(r), such as the stress-momentum tensor will decay slower than

exponentially. This means in general that we are looking at a system for which the

expectation value of the kinetic energy or potential are infinitely large. That we

can find initial states with these unphysical properties has been shown in Ref. 32.

We give a short account such a case in relation to the Sturm–Liouville equation.

We consider a simple one-particle system in one dimension. The particle evolves

from an initial state ψ1(x) under the influence of a potential v1(xt) which is zero

for |x| → ∞. For this system the density is simply the square of the wavefunction

φ1(xt), i.e. n(xt) = |φ1(xt)|2. For this one-dimensional system the stress-momentum

tensor has only one-component with expectation value

Txx,1(xt) =

∣∣∣∣dφ1(xt)

dx

∣∣∣∣2 − 1

4

d2n(xt)

dx2
. (A.4)

Now we consider a second one-particle system with different initial state ψ2(x)

and a different wavefunction φ2(xt). Now we want that this second system has
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identical density as our first system and therefore we have |φ2(xt)|2 = |φ1(xt)|2.

The wavefunctions φ1 and φ2 can therefore only differ by a phase factor of the form

φ2(xt) = φ1(xt)eiα(xt) , (A.5)

where α(xt) is a real function. In particular we have for the initial states ψ2(x) =

ψ1(x) exp(iα(xt0)). From the continuity equation we then obtain the relation

0 =
d

dx
(j2(xt) − j1(xt)) =

d

dx

(
n(xt)

dα(xt)

dx

)
, (A.6)

where j1 and j2 are the currents of both systems. From the latter equation we

obtain

dα(xt)

dx
=

c(t)

n(xt)
, (A.7)

where c(t) is an arbitrary function of time. Now the potential of the system with

wavefunction φ1 goes to zero at infinity. This means that the force on the system

F1(t) = −
∫
dxn(xt)

dv1(xt)

dx
(A.8)

is finite and therefore also the momentum expectation value is finite. Since the

momentum is given as

P1(t) =

∫
dxj1(xt) , (A.9)

this can only be the case if j1(xt) → 0 for |x| → ∞. We therefore see immediately

that if c(t) is not equal to zero that j2(xt) goes to a finite value at infinity. This

means infinite momentum and infinite expectation value of the kinetic energy for

system 2. It is also clear that then φ2(xt) has a very pathological behavior as it

will oscillate infinitely fast at infinity. It is exactly this pathological behavior that

prevents the Sturm–Liouville equation of Eq. (72) of having a solution for ω. For

our example we have ω(xt) = v1(xt)− v2(xt) and ζ(xt) is equal to

ζ(xt) =
d2

dx2
(Txx,2(xt) − Txx,1(xt)) , (A.10)

where Txx,1 and Txx,2 are the stress-momentum tensors of system 1 and 2. A simple

calculation shows that Eq. (72) in our simple example reduces to

d

dx

(
n(xt)

dω(xt)

dx

)
=

d2

dx2

(
2c(t)j1(xt)

n(xt)
+
c2(t)

n(xt)

)
(A.11)

Now if c(t) 6= 0, then the right hand side of this equation grows exponentially for

|x| → ∞. In that case there is no solution for ω(xt) that vanishes at infinity. From

our example it is clear that this is only due to unphysical infinities. The infinities

can be avoided by requiring that j2(xt) → 0 for |x| → ∞. In that case we obtain

c(t) = 0 and the Sturm–Liouville equation has the unique solution ω(xt) = 0.

It is interesting to note that the infinities in our example do not prevent a second

potential v2(xt) to exist that yields the same density n(xt). The infinities only
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prevent the boundary conditions from being satisfied. In our pathological example

there are infinitely many exponentially growing potentials that, for a given initial

state, yield the correct density at all times.

In the previous example we considered a noninteracting system for which we saw

that the solution of Eq. (A.1) was prevented due to the divergence of the stress-

momentum tensor at infinity. This led to an infinite momentum and infinite kinetic

energy. In the case of interacting particles we may wonder whether infinities due to

the two-particle interaction may arise. It is readily seen that this is not the case. If

we write out Eq. (72)

∇ · (n(rt)∇(v1(rt)− v2(rt))) =
∑
i,k

∂i∂k(Tik,2(rt)− Tik,1(rt))

+
∑
k

∂k(Wk,2(rt)−Wk,1(rt)) , (A.12)

we see that the effects of the two-particle interaction is contained in the terms Wk,1

and Wk,2. These are of the form:

Wk(rt) =

∫
d3r′Γ(r, r′, t)∂kw(|r − r′|) , (A.13)

where Γ is the diagonal two-particle density matrix. We now use that |r− r′| ≈ |r|
for |r| → ∞ and use the following property

(N − 1)n(rt) =

∫
d3r′Γ(r, r′, t) , (A.14)

where N is the number of particles. This yields

Wk(rt) ≈ (N − 1)n(rt)
rk

|r|w
′(|r|), (|r| → ∞) (A.15)

where w′ is the derivative of w with respect to |r|. We therefore see that Wk(rt)

decays like the density and does not cause any infinities.
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