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Abstract

Key-dependent message (KDM) secure encryption schemes provide secrecy even when the
attacker sees encryptions of messages related to the secret-key sk. Namely, the scheme should
remain secure even when messages of the form f(sk) are encrypted, where f is taken from
some function class F . A KDM amplification procedure takes an encryption scheme which
satisfies F-KDM security, and boosts it into a G-KDM secure scheme, where the function class
G should be richer than F . It was recently shown by Brakerski et al. (TCC 2011) and Barak
et al. (EUROCRYPT 2010), that a strong form of amplification is possible, provided that the
underlying encryption scheme satisfies some special additional properties.

In this work, we prove the first generic KDM amplification theorem which relies solely on the
KDM security of the underlying scheme without making any other assumptions. Specifically,
we show that an elementary form of KDM security against functions in which each output bit
either copies or flips a single bit of the key (aka projections) can be amplified into KDM security
with respect to any function family that can be computed in arbitrary fixed polynomial-time.
Furthermore, our amplification theorem and its proof are insensitive to the exact setting of
KDM security, and they hold in the presence of multiple-keys and in the symmetric-key/public-
key and the CPA/CCA cases. As a result, we can amplify the security of most known KDM
constructions, including ones that could not be amplified before.

Finally, we study the minimal conditions under which full-KDM security (with respect to all
functions) can be achieved. We show that under strong notion of KDM security, the existence
of fully-homomorphic encryption which allows to encrypt the secret-key (i.e., “cyclic-secure”)
is not only sufficient for full-KDM security, as shown by Barak et al., but also necessary. On
the other hand, we observe that for standard KDM security, this condition can be relaxed by
adopting Gentry’s bootstrapping technique (STOC 2009) to the KDM setting.

1 Introduction

The study of secure encryption scheme is perhaps the most central subject in cryptography. Since
the introduction of semantic security [28] through the formulation of CCA-security [35, 37, 21] and
more, modern cryptography has successfully developed increasingly stronger notions of security

∗School of Electrical Engineering, Tel-Aviv University, benny.applebaum@gmail.com. Work done in part while a
postdoc at the Weizmann Institute of Science, supported by Koshland and Alon Fellowships, by the Israel Science
Foundation (grant No. 1155/11), and by the Check Point Institute for Information Security. An extended abstract
of this paper appears in the proceedings of Eurocrypt’11.

1



providing secrecy in highly adversarial settings. Still, all these strong notions of security guarantee
secrecy only as long as the encrypted messages are independent of the secret key. This limitation
dates back to the seminal work of Goldwasser and Micali [28] who observed that semantic security
may not hold if the adversary gets to see an encryption of the secret key. For many years, such
usage scenarios were considered as “security bugs” that should be prevented by system designers.

A decade ago, the assumption of independency between the secret key and the encrypted data
was challenged by Camenisch and Lysyanskaya [19] and Black et al. [12]. Specifically, Camenisch
and Lysyanskaya considered schemes that remain secure under a “key cycle” usage, where we have t
keys organized in a cycle and each key is encrypted under its left neighbor. A generalization of this
notion, called key-dependent message (KDM) security, was suggested by Black et al. Informally,
an encryption is KDM(t) secure with respect to a function class F if security holds even when the
adversary can ask for an encryption of the message M = f(sk1, . . . , skt) under the i-th public-key,
where sk1, . . . , skt are the secret keys present in the system and f is an arbitrary function in F .
This notion of security implies cyclic-security if F is expressive enough (e.g., contains all “selector”
functions), and it becomes stronger when the function class F grows. Hence, one would like to
achieve KDM security while making the function class F as large as possible.

The notion of KDM security was extensively studied in the past few years in several flavors
including the symmetric/public-key and the CPA/CCA settings [19, 12, 30, 10, 13, 17, 8, 31, 29,
5, 15, 2, 11, 14]. These works were motivated by the fundamental nature of the question as well
as by concrete applications including encrypted storage systems (e.g., BitLocker [13]), anonymous
credentials [19], and realization of security proofs at the framework of axiomatic security [1, 12, 3].
(See [13] for more motivations and details.)

Although much is known today about KDM security both on the positive and negative sides,
it is still unclear whether a standard encryption scheme can be transformed into a scheme which
provides KDM(t) security, even with respect to a single key (i.e., t = 1) and simple non-trivial
function families (e.g., selectors).1 Hence, it is natural to move forward and explore the possibility
of building strong KDM security given a weak form of KDM security as a primitive. This makes
sense as today, following the seminal work of Boneh et al. [13] and its follow-ups [17, 5, 14], it is
known that a basic form of KDM security (with respect to the family of “affine functions”) can be
achieved in several settings under various concrete cryptographic assumptions. Therefore, we ask:

Is there a generic transformation which amplifies KDM security from a weak family of
functions F to a larger family of functions G ?

The question of KDM amplification was recently addressed by Brakerski et al. [15] and Barak et
al. [11], who made an important progress by showing how to amplify the KDM security of several
existing schemes. While the resulting amplification procedures are relatively powerful (there is
a considerable difference between F and G), they fall short of providing full generality as they
strongly rely on additional properties of the underlying scheme (i.e., simulatable-KDM security
and entropic-KDM security – to be defined later). As a concrete example, it is unknown how to
use any of these techniques to amplify the KDM-security of the symmetric-key encryption scheme
of [5] which is based on the Learning Parity With Noise (LPN) assumption. (See Section 1.3 for
more details about these works and their relation to our approach.)

1Known impossibility results [29, 11] only hold with respect to sufficiently rich families of functions (e.g., capable
of computing poly(k)-independent hash functions, or pseudorandom functions).
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1.1 Our Results

We give an affirmative answer to the above question by providing the first generic KDM am-
plification procedure. In particular, we consider the projection function class of all functions
f : (sk1, . . . , skt) 7→ v in which each output bit depends on (at most) a single bit of the input.
Namely, each output bit vj is either fixed to a constant or copies/flips an original bit of one of the
keys. We show that this elementary function family is complete in the following sense:

Theorem 1.1 (Completeness of projections, Informal). Let G be any function family which can
be computed in some fixed polynomial time. Then, any encryption scheme which satisfies KDM(t)

security with respect to projections can be transformed into a new encryption scheme which is
KDM(t)-secure with respect to G.

Generality. Theorem 1.1 assumes nothing but KDM security regarding the underlying scheme.
Furthermore, the theorem (and its surprisingly simple proof) is insensitive to the exact setting
of KDM security: it holds for any number of keys t, and in both symmetric-key/public-key and
CPA/CCA settings. In all these cases, the new scheme is proven to be secure exactly in the same
setting as the original scheme. This allows us, for example, to amplify the security of the affine-
KDM secure scheme of [5], and obtain the first symmetric-key encryption scheme with strong KDM
security based on the LPN assumption.

Extensions. Theorem 1.1 can be further strengthened as follows. First, we can achieve length-
dependent KDM security [11], which means that the target family G can be taken to be the family
of all polynomial-size circuits whose size grows with their input and output lengths via a fixed poly-
nomial rate (e.g., the circuit size is quadratic in the input and output lengths). This family is very
powerful and it was shown to be rich enough for most known applications of KDM security [11].2

(See Section 2 for details.) In addition, in the case of CPA security (both in the public-key and
symmetric-key settings), we can weaken the requirement from the underlying scheme and ask for
KDM security with respect to projections with a single output : namely, all Boolean functions
f(sk1, . . . , skt) 7→ b which output a single bit of one of the keys, or its negation. This can be
extended to the CCA setting via the transformations of [10, 17] (though in the public-key setting
one has to employ, in addition, non-interactive zero-knowledge proofs).

The relaxation to single-output projections also enables a liberal interface to which we can easily
plug previous constructions. For example, one can instantiate our reduction with schemes that enjoy
KDM security with respect to affine functions, while almost ignoring technical details such as the
underlying field and its representation. (These details required some effort in previous works. See
the appendices in [15, 11, 14].) This, together with the simple proof of our main theorem, allows to
simplify the proofs of [11, 14] for the existence of length-dependent KDM secure encryption scheme
under the Decisional Diffie-Hellman (DDH) assumption [13], the Learning With Errors assumptions
(LWE) [5], and the Quadratic Residuosity (QR) and Paillier’s Decisional Composite Residuosity
(DCR) assumptions [14].

Given this completeness theorem, the current status of KDM security resembles the status of
other “complete” primitives in cryptography such as one-way functions or oblivious transfer [36, 22]:

2Most of the statements in [11] refer to the slightly weaker notion of Bounded KDM security in which the circuit
size grows only as a function of the input via a fixed polynomial rate. However, as observed in [11, Sec. 6] their
construction actually satisfies the stronger definition of length-dependent KDM security.
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We do not know how to build these primitives from generic weaker assumptions, however, any
instantiation of them suffices for an entire world of applications (i.e., all symmetric-key primitives
in the case of one-way functions, and generic secure-computation in the case of oblivious transfer,
cf. [26, 27]).

Beyond length-dependent security. Although length-dependent KDM security seems to suf-
fice for most applications, one can strive for an even stronger notion of security in which the KDM
function class contains all functions (or equivalently all functions computable by circuits of arbi-
trary polynomial size). It is somewhat likely that any length-dependent secure scheme actually
achieves full-KDM security (see the discussion in [11]). Still, one may want to construct such a
scheme in a provably secure way. As a basic feasibility result, it was shown in [11] that any fully
homomorphic encryption scheme [23] which allows to encrypt the secret-key (i.e., “cyclic-secure”) is
also full-KDM secure. Unfortunately, despite the recent progress in the study of FHEs (cf. [38] and
references there) it is still unknown how to construct cyclic-secure FHEs under standard assump-
tions.3 Hence, one may ask whether it is possible to relax this requirement and achieve full-KDM
security under weaker assumptions.

We make two simple observations regarding this question. First, we consider the case of simu-
latable KDM security [11], in which it should be possible to simulate an encryption of f(sk) given
only the corresponding public-key in a way that remains indistinguishable even to someone who
knows the secret-key. We show that in this setting the two notions: circular-secure FHE and full-
KDM are equivalent. Hence, achieving full-KDM security under a relaxed assumption requires to
use non-simulatable constructions.

Our second observation asserts that the bootstrapping technique of Gentry [23] can be used
in the KDM setting as well (even for the case of non-simulatable constructions). That is, if one
can construct an encryption scheme which guarantees KDM security with respect to circuits whose
depth is only slightly larger than the depth of the decryption algorithm, then this scheme is actually
fully KDM secure. Unfortunately, all known amplification techniques [11, 15] including the ones in
this paper, amplify KDM security at the cost of making the decryption algorithm “deeper”. Still,
we view this observation as an interesting direction for future research.

1.2 Our Techniques

To formalize the question of KDM amplification, we define the notion of reduction between KDM
function families G ≤KDM F which means that any scheme that provides KDM security with respect
to F can be transformed via a fully black-box reduction to a new scheme that satisfies KDM security
with respect to G.4 We describe a novel way to derive such KDM reductions based on the machinery
of randomized encoding of functions [33, 7]. Before we explain this notion, let us start with the
simpler case of deterministic encoding.

3One can use standard assumptions to construct a leveled homomorphic-encryption (LHE) which supports homo-
morphic operations up to a-priori known bounded depth (e.g., [16, 24]). However, the only known transformation
from LHE to FHE requires an additional cyclic security assumption. This further motivates the study of KDM
security.

4The term fully black-box reduction means (as usual in cryptography) that the new scheme makes only black-box
use of the original scheme, and that the security proof of the construction is also black-box in the sense that an
adversary breaking the new scheme can be used as an oracle in order to break the underlying scheme. In contrast,
our security proof makes a non black-box use of the KDM family. See later discussion.
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Say that a function f deterministically encodes a function g if for every x the output of f(x)
“encodes” the output of g(x) in the sense that g(x) can be efficiently computed based on f(x) and
vice versa. That is, there are two efficiently computable mappings S and R such that S(g(x)) =
f(x), and R(f(x)) = g(x). Suppose that we are given a scheme which provides KDM security with
respect to the encoding f , and we would like to immunize it against the function g. This can be
easily achieved by modifying the encryption scheme as follows: to encrypt a message M we first
translate it into the f -encoding by computing S(M), and then encrypt the result under the original
encryption scheme. Decryption is done by applying the original decryption algorithm, and then
applying the recovery algorithm R to translate the result back to its original form. Observe that
an encryption of g(sk) in the new scheme is the same as an encryption of S(g(sk)) = f(sk) under
the original scheme. Hence, the KDM security of the new scheme with respect to g reduces to the
KDM security of the original scheme with respect to f .

This simple idea provides a direct reduction with very nice structure: any KDM query for the
new scheme is translated into a single KDM query for the original scheme. This simple single-
query-to-single-query translation leads to high level of generality: the transformation is insensitive
to the exact KDM setting (symmetric-key/public-key and CPA/CCA), to the number of keys, and
it can be used with respect to large function families G and F as long as every function in G is
encoded by some function in F via a pair of universal mappings S and R. On the down side,
one may complain that security was not really amplified, as the function g and its encoding f
are essentially equivalent. It turns out that this drawback can be easily fixed by letting f be a
randomized encoding of g.

In the case of randomized encoding (RE), the function f(x; r) depends not only on x but also
on an additional random input r. For every fixed x, the output of f(x; r) is now viewed as a
probability distribution (induced by a random choice of r) which should encode the value of g(x).
Namely, there are two efficiently computable randomized mappings S and R such that for every
x: (1) the distribution S(g(x)) is indistinguishable from f(x; r), and (2) with high probability over
the choice of r (or even with probability one) R(f(x; r)) = g(x). One can view these conditions as
saying that g(x) is encoded by a collection of functions {fr(x)}r, where fr(x) = f(x; r).

Now suppose that our scheme is KDM secure with respect to the family {fr(x)}r, then we can
apply the above approach and get a scheme which satisfies KDM security with respect to g. The
only difference is that now the message preprocessing step is randomized: To encrypt a message M
first encode it by the randomized mapping S(M), and then use the original encryption function.
The security reduction is essentially the same except that a KDM query for g in the new scheme
is emulated by an old KDM query for a randomly chosen function fr. This idea can be easily
extended to the case where all functions in G are encoded by functions in F :

Theorem 1.2 (Informal). If F is an RE of G, then G ≤KDM F .

The crux of this theorem, is that, unlike deterministic encoding, randomized encoding can
represent complicated functions by collections of very simple functions [33, 34, 7, 6]. Specifically,
by combining the above theorem with the REs of [6], which, in turn, are based on Yao’s garbled
circuit [39], we obtain our main results (Theorem 1.1).

1.3 Comparison with BGK and BHHI

Our techniques are inspired by both [15] (BGK) and [11] (BHHI). We believe that our approach
inherits the positive features of each of these works, and sheds new light on the way they relate to
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each other. Let us review the main ideas behind these constructions and explain how they compare
to our solution.

1.3.1 The BGK reduction

The starting point in [15] is an encryption scheme which satisfies entropic KDM security with
respect to F . Roughly speaking, this means that KDM security should hold not only when sk
is chosen uniformly from the key space K = {0, 1}k but also when it is chosen uniformly from
a smaller domain K′, e.g., K′ = {0, 1}kε . By relying on this notion, BGK shows that for every
efficiently computable injective mapping α : K′ → K, one can amplify security from F to the class
F ◦ α, i.e., with respect to functions f(α(sk)) for every f ∈ F . The idea is to choose the key sk′

from K′ and employ the original scheme with the key sk = α(sk′). This allows to translate a KDM
query f(α(sk′)) for the new scheme into an entropic-KDM query f(sk) for the old scheme.

The deterministic encoding (DE) approach is inspired by the BGK approach, and can be seen as
a complementary solution. BGK extends a function f : K →M to f ◦α : K′ →M by shrinking the
key space (from K to K′), whereas in the DE approach f : K →M is extended to R ◦ f : K →M′
by padding messages which effectively shrinks the message space (from M to M′ = R(M)).

As a result BGK enjoys a similar attractive security reduction with single-query-to-single-query
translation. This leads to flexibility with respect to the KDM setting. Indeed, although the BGK
approach is not fully general due to its use of entropic-KDM security (a notion which seems stronger
than standard KDM security), it immediately generalizes to the CCA and the symmetric-key
settings, as long as the underlying scheme provides entropic-KDM security.

It should be mentioned that in our approach the amplification is achieved by modifying the
encryption algorithm, rather than the key-generation algorithm as in BGK. This minor difference
turns to have a considerable effect. First, it allows to use fresh randomness in every application
of the encryption algorithm, and so the linkage between functions in G to functions in F can be
randomized. Indeed, this is exactly what allows us to exploit the power of randomized encoding.
In contrast, the BGK approach tweaks the key-generation algorithm and so the relation between G
to F is bounded to be deterministic. In addition, since our modification happens in the encryption
(and decryption) phases, we can let the function class G grow not only with the security parameter
but also with the size of the messages. This leads to the strong notion of length-dependent security,
and in addition allows to achieve KDM(t) where the number of keys t grows both with the message
length and the security parameter.

In contrast, the family G of BGK cannot grow with the message length, and it can only contain
a polynomial number of functions. This limitation prevents it from being used in applications
which require KDM security with respect to larger functions classes (e.g., secure realization of
symbolic protocols with axiomatic proofs of security). Furthermore, amplification for large number
of keys can be achieved only at the expense of putting more restrictions on the underlying scheme
(i.e., simulatable KDM security). On the other hand, assuming these additional properties, the
BGK approach can get KDM security for concrete functions (e.g., constant degree polynomials)
which involve an arbitrary unbounded number of keys t, whereas in our approach the arity of the
KDM function is always bounded by some fixed predefined polynomial in the security parameter
and message length.5 Finally, it is important to mention that the BGK reduction treats G in a

5More precisely, our reduction limits the circuit size of the KDM function and therefore also its arity; However, it
puts no restriction on the number of keys in the system. Hence, if our transformation is applied to a scheme which
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black-box way, while the randomized encoding approach treats this class in a non-black-box way.

1.3.2 The BHHI reduction

The BHHI approach relies on a novel connection between homomorphic encryptions and KDM
security. First, it is observed that in order to obtain KDM security with respect to G it suffices
to construct a scheme which provides both cyclic-security (i.e., KDM security with respect to
the identity function) and homomorphism with respect to a function family G, i.e., it should be
possible to convert a ciphertext C = Epk(M) into C ′ = Epk(g(M)) for every g ∈ G. Indeed, the
homomorphism property can be used to convert a ciphertext Epk(sk) into the ciphertext Epk(g(sk)),
and so cyclic-security is amplified to G-KDM security.

BHHI construct such an encryption scheme by combining a two-party secure computation pro-
tocol with two messages (i.e., based on Yao’s garbled circuit [39]) with a strong version of oblivious
transfer which satisfies an additional cyclic-security property. The latter primitive is referred to
as targeted encryption (TE). The basic idea is to view the homomorphic property as a secure-
computation task in which the first party holds the message M and the second party holds the
function g. The cyclic nature of the TE primitive allows to implement this homomorphism even
when the input M is the secret-key. Finally, BHHI show that TE can be constructed based on
affine-KDM secure encryption scheme which satisfies a strong notion of simulation: There exists
a simulator which given the public-key pk can simulate a ciphertext Epk(g(sk)) in a way which is
indistinguishable even for someone who holds the secret-key.

The BHHI construction seems conceptually different from our RE approach (i.e., homomorphism
vs. encoding). Moreover, the construction itself is not only syntactically different, but also relies
on different building blocks (e.g., TE). Still, the RE construction shares an important idea with
BHHI: The use of secure-computation techniques. It is well known that REs are closely related to
secure multiparty-computation (MPC) protocols [33], and, indeed, the role of REs in our reduction
resembles the role of MPC in BHHI. In both solutions at some point the security reduction applies
the RE/MPC to the function g in G. Furthermore, both works achieve strong KDM security by
instantiating the RE/MPC with Yao’s garbled circuit (GC) — a tool which leads to both stand-
alone RE construction [6] and, when equipped with an OT, to a two-party secure-computation
protocol.

It should be emphasized, however, that the actual constructions differ in some important as-
pects. While we essentially encrypt the whole GC-based encoding under the underlying KDM
encryption scheme, BHHI tweak the GC protocol with a cyclic-secure OT (i.e., TE). Pictorially,
our underlying KDM-secure scheme “wraps” the GC encoding, whereas in BHHI the KDM-secure
primitive is “planted inside” the GC protocol. This difference affects both generality and simplicity
as follows.

First, BHHI are forced to implement a KDM-secure OT, a primitive which seems much stronger
than standard KDM secure encryption schemes. For example, KDM-secure symmetric-key en-
cryption schemes can be constructed at the presence of a random oracle [12] while OT protocols
cannot [32].6 Moreover, as we already mentioned, although TE can be based on several known

satisfies KDM(t) security for arbitrary t’s (as in [13, 5]), we obtain an encryption scheme which provides KDM(t)

security even when the number of keys t in the system is unbounded, as long as the size (and arity) of the KDM
functions available to the adversary is bounded by some (predetermined) polynomial. See Remarks 2.2 and 3.8.

6It seems that a similar statement holds even for public-key KDM-secure schemes. See [12, 25].
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affine-secure KDM schemes (i.e., ones which enable strong simulation), the LPN assumption (with
constant error-rate) is a concrete example under which symmetric-key encryption scheme with
KDM-security with respect to affine functions exist, yet OT is not known to exist. Furthermore,
since BHHI send the garbled circuit in the clear, it is not hard to show that the resulting scheme is
not CCA-secure even if the TE provides CCA security. Finally, the modification of the GC protocol
leads to a relatively complicated security proof, which relies on non-standard properties of the GC
(e.g., “Security against outsiders”), and requires non-trivial additional work in order to achieve
KDM(t) security with multiple keys (i.e., for large t).

2 KDM-Security

2.1 Definitions

Notation. For a positive integer n ∈ N, let [n] denote the set {1, . . . , n}. A function ε(k) : N→
[0, 1] is negligible if it tends to zero faster than 1/kc for every constant c > 0. We let neg(k) denote
an arbitrary negligible function in k (i.e., when we say that f(k) < neg(k) we mean that there
exists a negligible function ε(k) such that for every k, f(k) < ε(k)). The term efficient refers to
probabilistic machines that run in polynomial time in the security parameter.

Encryption schemes (syntax). An encryption scheme consists of three efficient algorithms
(KG,E,D), where KG is a key generation algorithm which given a security parameter 1k outputs a
pair (sk, pk) of decryption and encryption keys; E is an encryption algorithm that takes a message
M ∈ {0, 1}∗ and an encryption key pk and outputs a ciphertext C; and D is a decryption algorithm
that takes a ciphertext C and a decryption key sk and outputs a plaintext M ′. We also assume
that both algorithms take the security parameter 1k as an additional input, but typically omit this
dependency for simplicity. We emphasize that the time complexity of E and D is polynomial in
k+ ` where k is the security parameter and ` is the length of the message/ciphertext, respectively.

Encryption schemes should satisfy correctness, which requires that for each message M ∈ {0, 1}∗

Pr
(sk,pk)

R←KG(1k)

[Dsk(Epk(M)) 6= M ] ≤ δ(k),

where the decryption error of the scheme δ(k) should be negligible, and the probability is taken
over the randomness of KG,E and D. For security parameter k, let Kk denote the space from which
decryption keys are chosen. We assume, without loss of generality, that the binary representation
of elements from Kk is k bit long.

Following Goldreich [27], we note that the above definition captures both public-key and
symmetric-key encryption schemes where the latter corresponds to the special case in which the
decryption key sk and encryption key pk are equal. As we will see, the difference between the two
settings will be part of the security definitions.

KDM ensembles. Let t : N → N be a function that determines the number of keys, and let
` : N → N be a length function. A t-ary KDM function ensemble with output length ` is a

collection of functions F =
{
fk,z : Kt(k)k → {0, 1}`(|z|)

}
(k,z)

indexed by the security parameter k

and an identification string z, where each function fk,z maps a tuple of t(k) keys in Kk into a
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• Initialization. The challenger randomly chooses a bit b
R← {0, 1} and t = t(k) key-

pairs (sk1, pk1) . . . , (skt, pkt) by invoking KG(1k) for t times. The adversary A can
send a “public-key” query and get to see all the encryption keys (pk1, . . . , pkt).

• Queries. The adversary A may adaptively make polynomially-many queries of the
following types:

– Encryption queries of the form (i,M) where i ∈ [t] and M ∈ {0, 1}∗. The

challenger responds with C
R← E(pki,M) if b = 1, and C

R← E(pki, 0
|M |) if b = 0.

– KDM queries of the form (i, z) where i ∈ [t] and z ∈ {0, 1}∗. The challenger

computes M = fk,z(sk1, . . . , skt) and responds with C
R← E(pki,M) if b = 1, and

C
R← E(pki, 0

|M |) if b = 0.

– Decryption queries of the form (i, C) where i ∈ [t] and the string C was
not given as an answer of a previous encryption/KDM query. The challenger
responds with M = Dski(C) regardless of the value of b.

• Final phase. The adversary outputs a bit b′ ∈ {0, 1} and wins if b = b′.

Figure 1: The F-KDM game is defined with respect to the function ensemble F = {fk,z} and is
indexed by the security parameter k. The presence (resp., absence) of public-key query captures
the public-key (resp., symmetric-key) setting.

message of length `(|z|).7 By default, the index z represents the circuit that computes the function
fk,z. We sometime abuse notation and identify F with the evaluation algorithm of the ensemble

which maps 1k, z and ~sk ∈ Kt(k)k to fk,z(~sk). By convention, if fk,z is not in the collection we

assume that F(1k, z, ~sk) = 0. The ensemble is efficiently computable if the time-complexity of the
evaluation algorithm F is polynomial in the security parameter k. A weaker form of efficiency (for
which our results also apply) allows the complexity of F to be polynomial in the security parameter
and the output length, namely, to be bounded by (`(|z|) + k)c for some constant c. In this case
we say that F is output efficiently computable. Output-efficient ensembles are strictly richer than
efficient ensembles.

The KDM game. An F-KDM Chosen-Ciphertext Attack (CCA) in the public-key setting is
defined in Fig. 1 as a game that takes place between a challenger and an adversary A. The
advantage of A when attacking a scheme E is α(k) = Pr[A wins the KDM game]− 1

2 .
By restricting the power of the adversary in the KDM game (Fig. 1) we get other KDM settings.

Specifically, the symmetric-key setting corresponds to adversaries of type sym who do not ask
public-key queries, and the CPA setting corresponds to adversaries of type CPA who do not make
decryption queries. Hence, we can classify KDM adversaries into one of the following four types:
(pub,CCA), (pub,CPA), (sym,CCA), and (sym,CPA). An adversary of type T that conducts an
F-KDM attack is denoted as (T,F)-adversary.

7One could let ` depend on z itself, and not only on its length |z|. We prefer the current formulation for simplicity.

9



Definition 2.1. (KDM-secure encryption) Let T be a type, and F be a function ensemble. An
encryption scheme is (T,F)-KDM secure if every efficient (T,F) adversary has at most negligible
advantage when attacking the scheme.

Remark 2.2 (Refined arity). Following previous works, we define KDM security with a single
parameter t which denotes both the number of keys in the system and the arity of the KDM ensemble
F . We note that it is possible to use a more refined two-parameter definition, in which the arity of
F is t and the total number of the keys that participate in the game is τ ≥ t. For example, imagine
a scheme which remains secure when the KDM game is initialized with large (or even unbounded)
number of keys, but the adversary is allowed to employ KDM functions which are applied to any
pair of keys. This refined notion can be formalized by augmenting a KDM query (i, z) with an
ordered t-size subset S ⊂ [τ ], meaning that fz should be applied to (ski)i∈S. For simplicity, we use
a single parameter definition which assumes that τ , the number of keys in the system, is equal to t,
the arity of the KDM ensemble. We note that some of our results hold even when τ is unbounded.
(See Remark 3.8.)

2.2 Examples of KDM ensembles

We consider several examples of t-ary KDM ensembles F = {Fk}.

Constants, selectors, and projections. If Fk contains all constant functions {fM : (sk1, . . . ,
skt) 7→M}M , then, as observed in [13], KDM queries are equivalent to standard encryption queries
and KDM security is nothing but standard security (with respect to the type T ). If the ensemble Fk
contains all selector functions {fj : (sk1, . . . , skt) 7→ skj}j∈[t], we get the notion of clique security [13]

(which is stronger than circular security [19]), that is, the scheme is secure even if the adversary
sees encryptions of the form Epki(skj) for every i, j ∈ [t]. Another elementary class that slightly

generalizes the previous ones is the class of all functions f : ~sk 7→ v in which each output bit depends
on (at most) a single bit of the input ~sk = (sk1, . . . , skt). Namely, the j-th output bit vj is either
fixed to a constant or copies/flips an original bit of one of the keys, i.e., vj ∈ {0, 1, ski,q, 1− ski,q},
where ski,q is the q-th bit of the i-th secret key. We refer to this class as the class of projections and
let Πt

k,` denote the restriction of this class to functions of input length kt and output length `(k).

Projections is a proper subclass of the class of affine functions L : Fkt2 → F`(k)2 . Observe that all the
above classes are efficiently computable. We also consider the class of projections of unbounded
polynomial length Πt

k =
⋃
a∈N Πt

k,ka which is output-efficiently computable. The constructions

of [13, 5, 14] (or variants of them) achieve (pub,CPA)-KDM security with respect to Πt
k for every

polynomial t(k).8

Polynomial-size circuits [11]. For polynomials p(·) and `(·), let Ctk,`,p denote the class of all

Boolean circuits C : {0, 1}kt → {0, 1}`(k) of size at most p(k + `(k)). For example, if t = 1 and `, p
are quadratic we get the family of all circuits C : {0, 1}k → {0, 1}k2 of size (k + k2)2 ≈ k4. It is
not hard to see that Ctk,`,p is efficiently computable as it can be computed by an efficient universal

8More precisely, [13, 5] present a single construction which works for every polynomial t(k), while [14] provide for
every polynomial t a different construction.
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algorithm F which given ~sk and a circuit C of size p(k + `(k)) evaluates C(~sk) in time poly(kt).
Security with respect to the class Ctk,`,p is denoted by (p, `)-bounded circuit-size KDM security.

We also consider a stronger variant of this notion as follows. A scheme is p-length-dependent
KDM secure if it is (p, `)-bounded circuit-size KDM secure for every polynomial `(·). Equivalently,
it is KDM secure with respect to the class Ctk,p =

⋃
a∈N Ctk,ka,p. For example, if t = 1 and p is

quadratic, we get security with respect to every circuit C whose size is quadratic in the output
length. Although Ctk,p is not efficiently computable, it is output efficiently computable as it can be
evaluated in time poly(k, `).

Remark 2.3 (length-dependent security vs. full security). Full-KDM security corresponds to the
case where F is the class of all functions. Recall that adversaries are assumed to be efficient,
and each KDM query fz is assumed to be specified via a description z of the circuit that com-
putes fz. Under these conventions, adversaries are always restricted to KDM functions which are
polynomial-time computable (with respect to an arbitrary polynomial), and so, a scheme which is
p-length-dependent secure with respect to every polynomial p(·) is also fully secure. We note that in
some scenarios p-length-dependent security, say for quadratic p, may be considered to be almost as
powerful as full KDM security. Indeed, length-dependent security allows the adversary to use larger
circuits by encrypting longer messages. Therefore, although quadratic-length dependant scheme
does not guarantee security when the adversary sees Epk(f(sk)) for a function f of complexity, say
O(k3), we can prove security under a similar attack in which f is replaced with a padded version
f ′(sk) = (f(sk), 0k

3
). It seems that, at least in some scenarios, security against the latter attack is

as useful as the former. Furthermore, in [11] it was shown that p length-dependent security (say
for quadratic p) is sufficient for axiomatic-security applications (i.e., it gives the ability to securely
instantiate symbolic protocols with axiomatic proofs of security).

Remark 2.4 (The role of the arity t). Clearly, F-KDM security becomes stronger when the arity
t grows. At one extreme, one may consider a single encryption scheme which satisfies F-KDM
security for an arbitrary polynomial t(k), and at the other extreme one may consider the case of
t = 1, which is still non-trivial even for projection functions.

2.3 Encoding KDM ensembles

Intuitively, a randomized encoding of a function g(x) is a randomized mapping f(x; r) whose
output distribution (which is induced by a random choice of r) depends only on the output of g.
We formalize this intuition via the notion of computationally private randomized encoding of [6],
while adopting the original definition from a non-uniform adversarial setting to the uniform setting
(i.e., adversaries are modeled by probabilistic polynomial-time Turing machines), and tailoring it
to the case of KDM ensembles.

Definition 2.5 (Randomized encoding). Let G : 1k × {0, 1}n → {0, 1}`(k,n) be a function, and
let F : 1k × {0, 1}n × {0, 1}m(k,n) → {0, 1}s(k,n) be a randomized function whose third argument is
its random tape. We say that G(1k, x) is encoded by F (1k, x; r) if there exist a recovery algorithm
Rec : 1k × {0, 1}s(k,n) → {0, 1}`(k,n) and a randomized simulator algorithm Sim : 1k × {0, 1}`(k,n) →
{0, 1}s(k,n) that satisfy the following:

• Perfect correctness. For every k, n and x ∈ {0, 1}n, the error probabilities

Pr
r

[Rec(1k, F (1k, x; r)) 6= G(1k, x)] and Pr[Rec(1k, Sim(1k, G(1k, x))) 6= G(1k, x)]
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are both zero.9

• Computational privacy. For every adversary A of complexity poly(k) we have that∣∣∣Pr[AF (1k,·;U)(1k) = 1]− Pr[ASim(1k,G(1k,·))(1k) = 1]
∣∣∣ < neg(k),

where the oracles are defined as follows: Given x the first oracle returns a sample from
F (1k, x; r) where the randomness r is chosen uniformly at random, and the second oracle
returns a sample from Sim(1k, G(1k, x)).

• Efficiency. Typically, efficiency requires that both F and G are computable in time kc for
some constant c. In our context, we relax this requirement and say that the encoding is
efficient if F and G are computable in time (k + `)c where `(|x|) is the output length of
G(1k, x). This means that the output length s of F (1k, x; r) is polynomial in k + `(|x|). In
addition, the complexity of Rec and Sim is assumed to be polynomial in the length of their
inputs, and therefore it is also polynomial in k + `(|x|).

Let G(1k, z, ~sk) and F(1k, (z, r), ~sk) be a pair of KDM function ensembles with the same arity
t = t(k). We say that G is encoded by F if the function G(1k, (z, ~sk)) is encoded by the function
F ′(1k, (z, ~sk); r) := F(1k, (z, r), ~sk), where r is treated as a random input of F ′.

2.4 Reductions among KDM-ensembles

We say that a KDM function ensemble G KDM-reduces to another KDM function ensemble F (in
symbols G ≤KDM F) if there exists a transformation which converts an encryption scheme E that
is F-KDM secure to an encryption scheme Ê which is G-KDM secure. Formally, such a (black-
box) reduction is composed of (1) (construction) an encryption scheme Ê which is given an oracle
access to the scheme E ; and (2) (security reduction) an efficient algorithm B such that for any
F-adversary A which attacks E with advantage α, the G-adversary BA,E attacks the scheme Ê with
polynomially related advantage (e.g., α/poly(k)). This definition can be instantiated with respect
to all four different types. We say that the reduction is type-preserving if BA,E is always of the
same type as A (i.e., B always ask the same type of queries that A asks in the KDM game.) Type
preserving reduction extends KDM-security while being insensitive to the concrete setting which is
being used. Formally,

Lemma 2.6 (KDM-reductions). Suppose that the KDM function ensemble G KDM-reduces to the
ensemble F via a type-preserving reduction (Ê ,B). For every T ∈ {pub, sym} × {CCA,CPA}, if the
encryption scheme E is (T,F)-KDM secure then the scheme ÊE is (T,G)-KDM secure.

3 KDM Reductions via Randomized Encoding

Our main theorem shows that randomized encoding gives rise to KDM reductions.

Theorem 3.1 (main theorem). Suppose that the KDM function ensemble F encodes the KDM
function ensemble G. Then, G KDM-reduces to F via a type-preserving reduction.

9Previous definitions require only that the first quantity is zero, however, all known constructions (of perfectly-
correct randomized encoding) satisfy the current (stronger) definition.
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To prove the theorem we need to describe a construction and a security reduction. From now
on, let Sim and Rec be the simulator and recovery algorithm which establish the encoding of G by
F .

Construction 3.2. Given an oracle access to the encryption scheme E = (KG,E,D), we define the
scheme Ê as follows

K̂G(1k) = KG(1k) Êpk(M) = Epk(Sim(M)) D̂sk(C) = Rec(Dsk(C)),

where all algorithms (i.e., encryption, decryption, simulator and recovery) get the security param-
eter 1k as an additional input.

It is not hard to show that Ê satisfies the syntactic requirements of encryption schemes. Indeed,
the complexity of K̂G(1k) is polynomial in the security parameter k, while the efficiency of the
encoding ensures that the complexity of Êpk(M) (resp., D̂sk(C)) is polynomial in k and |M | (resp.,
k and |C|). Correctness also follows easily as shown in the following lemma.

Lemma 3.3 (correctness). The decryption error of the scheme Ê is the same as the decryption
error δ of E, and so it is negligible.

Proof. The probability that a message M is incorrectly decrypted is bounded by

Pr
(pk,sk)

R←KG(1k),M ′
R←Sim(M)

[Dsk(Epk(M
′)) 6= M ′] + Pr[Rec(M ′) 6= M ],

since the second term is 0, due to the (perfect) correctness of the encoding, we can bound the
above by maxM ′ Pr[Dsk(Epk(M

′)) 6= M ′] ≤ δ(k), where M ′ ranges over the support of Sim(M) and

(pk, sk)
R← KG(1k).

Next, we show that the security of Ê can be based on that of E . Given an oracle access to
a (T,G) adversary A that attacks Ê , we define a (T,F) adversary B that attacks E by randomly
choosing one of two strategies B0 and B1.

Reduction 3.4 (The adversary BA,E). Toss a coin σ
R← {0, 1}. If σ = 1 invoke the following

adversary B1:

• Initialization: B1 invokes A. If A asks for the encryption keys then B1 makes a similar
query and passes the answer to A.

• Encryption query: If A makes an encryption query (i,M), for i ∈ [t] and M ∈ {0, 1}∗,
then B1 samples M ′ = Sim(M), sends (i,M ′) as an encryption query (wrt to E) and passes
the answer of the challenger to A.

• KDM query: If A makes a KDM query (i, z), for i ∈ [t] and z ∈ {0, 1}∗ (i.e., for the
function G(1k, z, ·)), then the adversary B1 uniformly chooses randomness r and asks the
KDM query (i, (z, r)) (i.e., for the randomized encoding F ′(1k, z, ·; r) = F(1k, (z, r), ·)). The
answer of the challenger is being sent to A.
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• Decryption query: If A makes a decryption query (i, C), then B1 checks that it is legal (by
inspecting all previous encryption/KDM queries), and if so, (1) passes the same decryption
query to the challenger, (2) applies the recovery algorithm Rec to the result, and (3) sends it
back to A1.

• Termination: B1 terminates with the same output of A.

If σ = 0 then invoke the adversary B0. This adversary is similar to B1 except that encryption
and KDM queries of A are both translated into encryption queries as follows: given an encryption
query of A of the form (i,M) (resp., KDM query of the form (i, z)), the adversary B0 samples
M ′ = Sim(0`) and asks for the ciphertext Epki(M

′), where ` is the length of M (resp., output length
of G(1k, z, ·)).10 At the end, B0 flips the output of A and terminates.

Note that the above reduction is indeed type-preserving. Before we analyze the reduction, we
need some notation. Let VA,0(k) (resp., VA,1(k)) be the random variable which describes the view

of A in the G-KDM game with respect to Ê conditioned on the event that the challenger sets the
challenge bit b to 0 (resp., 1). Similarly, for b ∈ {0, 1} and σ ∈ {0, 1} let VA,Bσ ,b(k) be the view of
A as emulated by Bσ conditioned on the event that the challenge bit (in the F-KDM game that
Bσ plays) is b.

Let us first focus on the adversary B1. If the challenge bit b is 1 (i.e., when the challenger
is in the “real-mode”), then the difference between the emulated view VA,B1,1(k) and the view of
A in the actual KDM game VA,1(k), is only due to the difference in the way KDM queries are

answered. In the real game answers to KDM queries are computed properly as Êpki(G(1k, z, ~sk)) =

Epki(Sim(G(1k, z, ~sk))), whereas in the emulated game they are computed by Epki(F(1k, (z,U), ~sk)).
However, this difference should not be noticeable due to the privacy of the randomized encoding.
Formally, let αb(k) (resp., βσb (k)) denote the probability that A (resp., Bσ) guesses the challenge
bit when it takes the value b. Then,

Lemma 3.5.
∣∣β11(k)− α1(k)

∣∣ ≤ neg(k).

Proof. We define the following distinguisher D which, given an oracle access to either Sim(G(1k, ·, ·))
or to F ′(1k, (·, ·);U) = F(1k, (·;U), ·), attempts to distinguish between the two. The adversary
D emulates the challenger with challenge bit b = 1. It generates a key vector (ski, pki)i∈[t] by

executing the key-generation algorithm KG(1k) for t times. Then D invokes A. If A asks a KDM
query (i, z) then D calls its oracle with the value (z, ~sk). Let M denote the answer of the oracle.
The distinguisher computes the ciphertext C = Epki(M) and sends the ciphertext C to A. If A
asks other types of queries such as public-key queries, encryption queries, and decryption queries,
the distinguisher D answers them properly exactly as the real challenger does when it’s in the real
mode b = 1. (For the case of a decryption query (i, C), the distinguisher checks that it is legal by
inspecting all previous KDM/encryption queries, and if so, sends Dski(C).) The distinguisher halts
with output 1 if and only if A outputs 1.

Note that: (1) If D gets an oracle access to Sim(G(1k, ·, ·)) then the view of A is distributed
exactly as VA,1(k) and so in this case D outputs 1 with probability α1(k); (2) If D gets an oracle
access to F ′(1k, (·, ·);U) then the view of A is distributed exactly as in VA,B1,1(k), and so in this
case D outputs 1 with probability β11(k). Hence, by the privacy of the encoding, it follows that∣∣β11(k)− α1(k)

∣∣ ≤ neg(k).

10Recall that the output length can be efficiently computed given z.

14



We would like to argue now that a similar thing happens in the “fake” mode when b = 0; namely,
that VA,B1,0(k) is indistinguishable from VA,0(k), and therefore β10 is close to α0. However, when A
attacks the original scheme (and the challenger is in the “fake” mode) his KDM queries are answered
with Êpki(0

`) = Epki(Sim(0`)), whereas in the game emulated by B1 these queries are answered by

Epki(0
s), where ` = |G(1k, z, ~sk)| and s = |F(1k, (z;U), ~sk)|. Although the privacy of the encoding

ensures that the plaintexts are of the same length, i.e., s = |Sim(0`)|, the actual distributions of the
plaintexts may differ, and so it may be the case that the two views are distinguishable. Intuitively,
such a scenario would violate the ciphertext-indistinguishability of the encryption. To make this
intuition formal, we need the adversary B0 which breaks the standard ciphertext-indistinguishability
security of E whenever such a gap exists. As a result we will show that the average success
probability of B1 and B0 is roughly half the success probability of A. To this aim we prove the
following

Lemma 3.6. β01(k) = α0(k) and β00(k) + β10(k) = 1.

Proof. First, we note that VA,B0,1(k), the view of A as emulated by B0 when the challenge bit b = 1,
is identical to VA,0(k) the view of A in the real game when the challenge b = 0. Indeed, in both cases

a KDM query (i, z) (resp., an encryption query (i,M)) is answered with Êpki(0
`) = Epki(Sim(0`))

where ` is the output length of G(1k, z, ·) (resp., ` = |M |). Since B0 flips the output of A it follows
that β01(k) equals to α0(k).

To prove the second equality we first claim that VA,B0,0(k), the view of A when emulated by B0
when the challenge bit b = 0, is identically distributed to VA,B1,0(k), the view of A as emulated by
B1 when the challenge bit b = 0. Indeed, the only difference is that in the first case KDM queries

(i, z) are answered by E(0|Sim(G(1k,z,~sk))|), while in the second case the answer is E(0|F(1
k,(z;r),sk)|).

Since z and k are fixed, the output lengths of F(1k, z; (r, ·)) and Sim(G(1k, z, ·)) are fixed and equal,
and so the claim follows. The claim implies that β00(k) + β10(k) = 1, as B1 outputs the outcome of
A, and B0 flips it.

By combining the two lemmas (3.5 and 3.6), it follows that the advantage β = (β11 + β10 + β00 +
β01)/4− 1

2 of B is at least 1
2α− neg(k) where α = 1

2(α1 + α0)− 1
2 is the advantage of A. Hence, we

established the correctness of the reduction.

Theorem 3.7. If A is an efficient adversary that breaks Ê with respect to G with advantage α(k),
then the adversary BA,E breaks E with respect to F with advantage β(k) ≥ α(k)/2− neg(k).

Remark 3.8. By inspecting the above proof, we can see that Theorem 3.1 tolerates the following
relaxations:

1. Assume that G(1k, (z, ~sk)) is encoded by the function F ′(1k, (z, ~sk); r) and that the ensemble
F(1k, z′, ~sk) is indexed by z′. Then, the reduction works as long as there exists an effi-
ciently computable translation function ρ : (1k, z, r) 7→ z′ such that F(1k, ρ(1k, z, r), ~sk) =
F ′(1k, (z, ~sk); r). (Recall that the original definition of encoding in Section 2.3 corresponds to
the special case where ρ is the identity function.)

2. The proof goes through even if the encoding itself makes use of the underlying encryption
scheme E as long as this usage is done in a fully black-box way (the same holds for any cryp-
tographic primitive which can be based on E via a black-box reduction e.g., one-way function).
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More precisely, Theorem 3.1 holds (i.e., lead to black-box KDM reduction/construction) as
long as the security of the encoding reduces to the security of the underlying primitive (i.e., E)
via a black-box reduction, and as long as the simulator, decoder, and the translation function
ρ can be implemented given a black-box access to the underlying primitive.

3. The reduction is insensitive to the number of keys in the system. Specifically, under the
refined notion of KDM(τ) security (Remark 2.2), the proof essentially shows that if F encodes
the KDM function ensemble G, then, for every τ , G KDM(τ)-reduces to F via a type-preserving
reduction.

4 Completeness of Projections

In [6] it is shown that Yao’s garbled circuit technique allows to encode any efficiently computable
function by a decomposable encoding in which every bit depends on at most a single bit of the
deterministic input. This means that, for every fixed randomness, the encoding is a projection.
(See Section 2.2 for a definition.) Formally,

Fact 4.1 ([6]). Let ε > 0 be an arbitrarily small constant. Every function G(1k, x) of circuit-size
a(k) can be encoded by a function F (1k, x; r) with the following properties:

1. The simulator and decoder use a black-box access to a symmetric encryption (equivalently, to
a one-way function).

2. For every fixed randomness r, the resulting function Fk,r(x) = F (1k, x; r) is a projection
function of output length a(k)1+ε.

3. The mapping from the circuit of G(1k, ·) to the circuit of Fk,r is efficiently computable given
a black-box access to the symmetric encryption scheme.

4. The security of the encoding reduces to the security of the symmetric encryption scheme via
a black-box reduction.

By combining this fact with Theorem 3.1 we get the following:

Proposition 4.2 (Completeness of projections). Let Gtk be a t-ary KDM ensemble with output
length `(|z|) where t(·), `(·) are polynomials.

• If Gtk is efficiently computable in time kc then Gtk ≤KDM Πt
k,kc+ε, where ε > 0 is an arbitrarily

small constant and Πt
k,q is the t-ary ensemble of projections of output length q.

• If Gtk is output efficiently computable then Gtk ≤KDM Πt
k where Πt

k =
⋃
a∈N Πt

k,ka.

Moreover, the reductions are type preserving.

Hence, one can upgrade KDM security from (almost) the weakest KDM function ensemble to
the very powerful notion of p-length-dependent KDM security.
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Proof. Fix some ε > 0 and let G(1k, z, ~sk) be the evaluation algorithm of Gtk whose complexity is

kc. By applying Fact 4.1, we obtain an encoding F ′(1k, (z, ~sk); r) such that for every fixing of r the
resulting function is in Πt

k,k(1+ε)c
. By applying Theorem 3.1 (together with Remark 3.8), it follows

that Gtk ≤KDM Πt
k,k(1+ε)c

. The same argument holds if Gtk is output efficiently computable, except

that now Gtk is computable in time (k+ `(|z|))c and so the encoding (with some fixed randomness)
is a projection of output length (k + `(|z|))c(1+ε) which falls into Πt

k.

Specifically, (p, `)-bounded circuit-size KDM security reduces to KDM-security with respect to
polynomially bounded projections (of output length q(k) = p1+ε(k)) and p-length-dependent KDM
security reduces to KDM-security with respect to projections of arbitrary output length.

In the case of CPA KDM security, one can actually derive KDM-security with respect to pro-
jections of arbitrary output length (i.e., Πt

k) from single-output projections Πt
k,1.

Lemma 4.3 (Completeness of single-output projections for CPA-KDM). For every polynomial t(·),
we have Πt

k ≤KDM Πt
k,1, where the reduction holds for both (sym,CPA) and (pub,CPA) types.

Proof. The proof follows by simple concatenation: the new encryption/decryption algorithms en-
crypts/decrypts the message/ciphertext by applying the original encryption/decryption algorithm
in a bit by bit manner. Hence, a KDM query in Πt

k,ka for the new scheme can be emulated by ka

KDM queries in Πt
k,1 for the original scheme.

As shown in [10], we can use the standard encrypt-then-MAC transformation to upgrade the
security of a scheme that satisfies (sym,CPA)-KDM security into a scheme that satisfies (sym,CCA)-
security with respect to the same KDM class. A similar result was proven for the public-key setting
by [17] via the Naor-Yung double-encryption paradigm (which relies on the existence of NIZK).
Hence, by Proposition 4.2 and Lemma 4.3, we have:

Corollary 4.4 (KDM Collapse). For every polynomials t and p, there exists a Πt
k,1-KDM secure

scheme if and only if there exists a t-ary p-length-dependent KDM secure encryption scheme. This
holds unconditionally for the KDM types (sym,CPA), (sym,CCA), and (pub,CPA), and it holds for
(pub,CCA) assuming the existence of non-interactive zero-knowledge proof system for NP.

We remark that all the known constructions of affine-KDM secure encryption schemes [13, 5, 14]
can be adapted to yield KDM security with respect to single-output projections (see Appendix A).
Hence, we get p-length-dependent (pub,CPA)-KDM (resp., (sym,CCA)) based on the DDH, LWE,
QR, or DCR assumptions (resp., LPN assumption), which can be boosted into (pub,CCA)-KDM
assuming the existence of NIZK for NP. Furthermore, the schemes based on [13, 5] remain secure
even when there is an arbitrary number of keys in the system. (See Remarks 2.2 and 3.8).

5 On Full KDM Security

In this section, we study the possibility of constructing a scheme which satisfies KDM security
for the class of all efficiently computable functions. In [11] it was shown that such a scheme can
be constructed based on the existence of cyclic-secure fully homomorphic encryption (FHE) [23].
We show that a similar assumption is inherently required for full KDM security which is also
simulatable. For simplicity, we focus on the case of arity t = 1 and single-query adversaries.
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A public-key encryption scheme E = (KG,E,D) is simulatable F-KDM secure if there exists a
polynomial-time simulator S such that for every (sk, pk) ∈ KG(1k), and every circuit family fk ∈ Fk
of size poly(k), the ensemble S(pk, fk) is indistinguishable from Epk(fk(sk)). (Note that this means
that the distinguisher holds the secret-key sk.) The notions of simulatable circular-security and
simulatable full-KDM security correspond to the two extreme cases where F contains only the
identity function, and F contains all functions.

An FHE allows to translate encryptions of a message M into an encryption of a related message
h(M) for any polynomial-size circuit h. More formally, we say that E is fully homomorphic if there
exists an efficient algorithm Eval such that for every (sk, pk) ∈ KG(1k), every circuit family {hk} of
size poly(k), and every sequence of messages Mk ∈ {0, 1}poly(k), the ensemble Eval(pk, hk,Epk(Mk))
is computationally indistinguishable from the ensemble Epk(hk(Mk)).

In [11], it was shown that if an encryption scheme is both simulatable circular-secure and fully-
homomorphic then it is also simulatable fully-KDM secure. We show that the other direction holds
as well, and so the two notions are equivalent.

Proposition 5.1. Any simulatable fully-KDM secure encryption scheme is also fully-homomorphic
circular-secure.

Proof. Given a simulatable fully-KDM secure encryption scheme (KG,E,D) with simulator S, we
define Eval(pk, h, C) by invoking S on the pair (pk, fh,C) where fh,C is the mapping sk 7→ h(Dsk(C)).
Note that the circuit size of fh,C is polynomial in the circuit size of h (since D is efficient). Also,
by definition, we have for every (sk, pk) ∈ KG(1k), sequence {Mk} and sequence {hk},

Eval(pk, hk,Epk(Mk)) ≡ S(pk, fhk,Epk(Mk))
c≡ Epk(hk(Dsk(Epk(Mk))))

≡ Epk(hk(Mk)),

where ≡ (resp.,
c≡) denotes statistical (resp., computational) indistinguishability.

Let us waive the simultability requirement, and move back to the standard notion of KDM
security. We show that if an encryption scheme E = (KG,E,D) provides KDM security gainst a
function which is slightly “stronger” than its decryption algorithm D, then E is actually fully-KDM
secure. This is done by observing that Gentry’s “bootstrapping technique” can be adapted to the
KDM setting.

Proposition 5.2. Let T ∈ {(pub,CPA), (sym,CPA)}, and let E = (KG, E,D) be T -KDM secure
encryption with respect to single-output projections and with respect to the function family Fk =
{fC1,C2 : sk 7→ NAND(Dsk(C1),Dsk(C2))}, where C1, C2 range over {0, 1}p(k) and p(k) is the length
of an encryption of one-bit message under secret-key of length k. Then, E is fully KDM secure of
type T .

Proof. In the CPA setting it suffices to prove full KDM security with respect to all circuits of single
output. We show how to convert an attacker which sends arbitrary KDM queries into one which
uses only queries from Fk. Let h be a circuit of size s, which is, without loss of generality, composed
of NAND gates, and let hi denote the function computed by the i-th gate of h, where gates are
ordered under some topological ordering. We translate a KDM query for h into s KDM calls to
Fk by traversing the circuit from bottom to top in a gate by gate manner preserving the following

18



invariant: The i-th query will be answered by a ciphertext Ci such that, if the oracle is in the real
mode Ci = Epk(hi(sk)) and if it is in the fake mode Ci = Epk(0). For an input gate, this can be
achieved directly by making a single KDM query with a single-output projection. To do this for
an internal gate h` whose input wires are connected to hi and hj for some i, j < `, we use a KDM
query to fCi,Cj . It is not hard to see that the invariant holds, and therefore the claim follows.
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A From affine functions to projections

Converting affine-security to security under single-output projections is immediate if the affine
functions are defined over the binary field F2 (as in the LPN based scheme of [17] or the QR based
schemes of [14]), but can also be established in more general cases, which capture most known
schemes, as follows.
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Suppose that we have a scheme E which encrypts ring elements M ∈ R, using a secret-key
sk = (ski)i∈[n] ∈ Rn. The scheme provides KDM security with respect to the class of affine
functions from Rn to R namely:

L = {La,b|a ∈ Rn, b ∈ R} , where La,b : sk 7→ b+
∑
i

ai · ski.

BHHO like schemes. Assume that each key element ski is either the additive identity element
0 of the ring R or the multiplicative identity element 1 of R. Let us represent each key element
ski by a single bit 〈sk〉i in the natural way. In this case, the ensemble of bit-wise projections is a
sub-class of affine functions over R. Indeed, the projection fi,σ(〈sk〉) = 〈sk〉i ⊕ σ can be written
as ski if σ = 0, and as 1 − ski if σ = 1. Hence, KDM security with respect to projections follows
immediately from affine-KDM security. This case captures the DDH-based schemes of [13] and the
schemes of [14] which are based on the DCR or QR assumptions (or more generally on the subgroup
indistinguishability assumption).

Efficiently computable bit-wise representation. We proceed with a more general approach.
Assume the the secret key sk ∈ Rn is represented by a k-bit string denoted by 〈sk〉 = (〈sk〉1, . . . , 〈sk〉k).
Furthermore, assume that the mapping from sk to each bit of the representation 〈sk〉 can be com-
puted by a polynomial-size arithmetic formula (or, more generally, arithmetic branching program,
see [9, 18]) over R. Then, the mappings fi,0 : sk 7→ 〈sk〉i and fi,1 : sk 7→ 1− 〈sk〉i can also be com-

puted by a polynomial-size formula. Hence, by [18], there exists a perfect (universal) RE f̂i,σ(sk; r)

such that for every fixed choice of r, f̂r,i,σ(sk) = f̂i,σ(sk; r) is an affine function over R. Therefore,
by Theorem 3.1, the security of the scheme can be amplified to hold with respect to single-output
projections.

This approach is useful, for example, when the ring is of polynomial size in the security param-
eter (as in the LWE-based scheme of [5]). In this case, one can trivially compute the (standard)
binary-decomposition of ring elements by a polynomial size formula. For example, if the multi-
plicative order of the ring is p then the i-th bit of the representation of a ring element x can be
computed by the formula

∏
r(x− r)p−1 where r ranges over all polynomially-many elements in R

having 0 in the i-th coordinate of their binary decomposition.
This example can be easily extended to the case where the ring R can be decomposed into

several rings of polynomial-size. For example, consider the ring R = Zp where p =
∏
pi, and

the pi’s are polynomially bounded co-primes. Then, by the CRT, we can first project an element
x ∈ Zp to the sub-ring Zp1×1×. . .×1 via the formula xq/p1 , and then recover the bit-representation
inside Zp1 via the previous brute-force formula. By repeating the process for each factor pi, and
accumulating the sub-ring representations, we obtain a bitwise representation of x. A similar
approach can be used by decomposing the multiplicative (resp., additive) group of the ring to
polynomially bounded multiplicative (resp., additive) subgroups. This can be done, for example, if
Zq is an exponentially large ring whose multiplicative order φ(q) factors into polynomially bounded
co-primes p1, . . . , p` (e.g., when q is a prime). More generally, it suffices to break the set R into a
product of polynomially bounded sets S1 × . . . × Sk (not necessarily sub-rings) such that the i-th
coordinate of an element x ∈ R can be computed by arithmetic formula over R. We believe that
such strategy can be applied to the scheme of [16] (at least for some range of the parameters).
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