
INFORMATICA, 2009, Vol. 20, No. 1, 23–34 23
© 2009 Institute of Mathematics and Informatics, Vilnius

Key-Dependent S-Box Generation in AES Block
Cipher System

Kazys KAZLAUSKAS, Jaunius KAZLAUSKAS
Institute of Mathematics and Informatics
Akademijos 4, 08663 Vilnius, Lithuania
e-mail: kazlausk@ktl.mii.lt

Received: June 2008; accepted: September 2008

Abstract. Advanced Encryption Standard (AES) block cipher system is widely used in crypto-
graphic applications. A nonlinear substitution operation is the main factor of the AES cipher sys-
tem strength. The purpose of the proposed approach is to generate the random S-boxes changing for
every change of the secret key. The fact that the S-boxes are randomly key-dependent and unknown
is the main strength of the new approach, since both linear and differential cryptanalysis require
known S-boxes. In the paper, we briefly analyze the AES algorithm, substitution S-boxes, linear
and differential cryptanalysis, and describe a randomly key-dependent S-box and inverse S-box
generation algorithm. After that, we introduce the independency measure of the S-box elements,
and experimentally investigate the quality of the generated S-boxes.

Keywords: advanced encryption standard, key-dependent S-boxes, generation algorithm.

1. Introduction

Cryptography has an important role in the security of data transmission and is the best
method of data protection against passive and active fraud. The growing number commu-
nication users has led to increasing demand for security measures to protect data transmit-
ted over open channels (Chen et al., 2008; Li et al., 2007; Sakalauskas, 2005). A cipher
system is a set of reversible transformations from the set M of a plaintext into the set C
of a ciphertext. Each transformation depends on a secret key and the ciphering algorithm.
In the block cipher system, the plaintext is divided into the blocks and the ciphering is
carried out for the whole block (El-Ramly et al., 2001).

Two general principles of block ciphers are diffusion and confusion. Diffusion is
spreading of the influence of a one plaintext bit to many ciphertext bits with intention
to hide the statistical structure of the plaintext. Confusion is transformation that change
dependence of the statistics of ciphertext on the statistics of plaintext. In most cipher sys-
tems the diffusion and confusion is achieved by means of round repetition. Repeating a
single round contributes to cipher’s simplicity (Masuda et al., 2006). Modern block ci-
phers consist of four transformations: substitution, permutation, mixing, and key-adding
(Schneier, 1996; Menezes et al., 1997).

Cryptographic objects are private key algorithms, public key algorithms and pseudo-
random generators. Block ciphers transform usually the 128 or 256 bits string to a string

24 K. Kazlauskas, J. Kazlauskas

of the same length under control of the secret key. Private key cryptography, such as DES
(DES, 1977), 3DES, and Advanced Encryption Standard (AES) (AES, 2001), uses the
same key for the sender and receiver to encrypt the plaintext and decrypt the ciphertext.
Private key cryptography is more suitable for the encryption of a large amount of data.
Public key cryptography, such as the Rivest-Shamir-Adleman (RSA) or Elliptic Curve al-
gorithms, uses different keys for encryption and decryption. The AES algorithm defined
by the National Institute of Standards and Technology of the United States has been ac-
cepted to replace DES as the new private key encryption algorithm. AES overpass DES
in improved security because of larger key sizes. AES is suitable for 8 bit microprocessor
platforms and 32 bit processors (Su et al., 2003).

Block cipher systems depend on the S-boxes, which are fixed and have no relation
with the secret key. So only changeable parameter is the secret key. Since the only nonlin-
ear component of AES is S-boxes, they are an important source of cryptographic strength.

The use of key-dependent S-boxes in block cipher design has not been widely investi-
gated in the literature. Research into S-box design has focused on determination of S-box
properties which yield cryptographically strong ciphers, with the aim of selecting a small
number of good S-boxes for use in a block cipher DES and CAST (Menezes et al., 1997).
Some results have demonstrated that a randomly chosen S-box of sufficient size will have
several of these desirable properties with high probability (Keliher, 2003).

This paper outlines the work of the authors’ investigation into the design of a new
pseudo-randomly generated key-dependent S-boxes. Other systems using key-dependent
S-boxes have been proposed in the past, the most well-known is Blowfish (Schneier,
1996) and Khufu (Merkle, 1991). Each of these two systems uses the cryptosystem itself
to generate the S-boxes. Preliminary results show, that our proposed algorithm has good
cryptographic strength, with the added benefit that is resistant to linear and differential
cryptanalysis, which require that the S-boxes be known.

A new method to generate pseudo-random S-boxes as a function of the secret key
will be presented. In the next section, we briefly introduce the AES algorithm. In the
following two sections, we analyze AES S-boxes, differential and linear cryptanalysis. A
central part of the paper describes the pseudo-randomly key-dependent S-box and inverse
S-box generation algorithm. After that, the paper discusses experimental results and gives
conclusions.

2. The AES Algorithm

The AES is a private key block cipher that processes data blocks of 128 bits with key
length of 128, 192, or 256 bits. The AES algorithm’s operations are performed on a 2-D
array of 4 times 4 bytes called the State. The initial State is the plaintext and the fi-
nal State is the ciphertext. The State consists of 4 rows of bytes. As the block length is
128 bits, each row of the State contains 4 bytes. The four bytes in each column form
a 32 bit word. After an initial round key addition, a round function consisting of four
transformations – SubBytes, ShiftRows, MixColumns, and AddRoundKey is applied to

Key-Dependent S-Box Generation in AES Block Cipher System 25

each data block. The round function is applied 10, 12, or 14 times depending on the key
length. AES-128 applies the round function 10 times, AES-192 – 12 times, and AES-256
– 14 times. The transformations are reversible linear and non-linear operations to allow
decryption using their inverses. Every transformation affects all bytes of the State. The
transformation SubBytes is a nonlinear byte substitution that operates on each byte of
the State using a table (S-box). The numbers of the table is computed by a finite field
inversion followed by an affine transformation. The resulting table is called an S-box.
The ShiftRows transformation is a circular shifting operation, which rotates the rows of
the State with different numbers of bytes (offsets). The offset equals to the row index: the
second row is shifted one byte to the left, the third row – two bytes to the left, the fourth
row – three bytes to the left, and first row – four bytes to the left. MixColumns trans-
formation mixes the bytes in each column by multiplying the State with the polynomial
modulo x4+1. The State bytes are the coefficients of the polynomial. The AddRoundKey
transformation is an XOR operation that adds the round key to the State in each round.
The round keys are generated during the key expansion process. The initial round key
equals to secret key (Zhang and Parhi, 2002; Su et al., 2003; Hsiao et al., 2005; Feldhofer
et al., 2005).

3. Substitution S-Boxes

Substitution is a nonlinear transformation which performs confusion of bits. A nonlinear
transformation is essential for every modern encryption algorithm and is proved to be
a strong cryptographic primitive against linear and differencial cryptanalysis. Nonlinear
transformations are implemented as lookup tables (S-boxes). An S-box with p input bits
and q output bits is denoted p → q. The DES uses eight 6 → 4 S_boxes. S-boxes are
designed for software implementation on 8-bit processors. The block ciphers with 8 → 8
S-boxes are SAFER, SHARK, and AES. For processors with 32-bit or 64-bit words, S-
boxes with more output bits provide high efficiency. The Snefru, Blowfish, CAST, and
SQUARE use 8 → 32 S-boxes. The S-boxes can be selected at random as in Snefru,
can be computed using a chaotic map, or have some mathematical structure over a finite
Galois field. Examples of the last approach are SAFER, SHARK, and AES. S-boxes that
depend on key values are slower but more secure than key independent ones (Schneier,
1996). Use of key independent chaotic S-boxes are analyzed in (Jakimovski and Kocarev,
2001), in which the S-box is constructed with a transformation F ((X + K)mod M),
where K is the key (Masuda et al., 2006).

In the AES, the S-box generate two transformations in the Galois fields GF(2) and
GF(28). S-box is a nonlinear transformation where each byte of the State is replaced
by another byte using the substitution table. The first transformation: S-box finds the
multiplication inverse of the byte in the field GF(28). Since it is a algebraic expression, it
is possible to mount algebraic attacks. Hence, it is followed by an affine transformation.
The affine transformation is chosen in order to make the SubBytes a complex algebraic

26 K. Kazlauskas, J. Kazlauskas

expression while preserving the nonlinearity property. The both S-box transformations
can be expressed in a matrix form as (Hsiao et al., 2005; Hsiao et al., 2006)

S′ = M • S−1 + C, (1)

where the sign • is multiplication and the sign + is addition in the field GF(28). The
8 × 1 vector S′ denotes the bits of the output byte after the S-box transformations. The
inverse S-box transformation can be get by multiplying both sides of equation (1) by M −1

and it performs the inverse affine transformation followed by the multiplicative inverse in
GF(28):

S−1 = M −1 • S′ + M −1 • C. (2)

4. Linear and Differential Cryptanalysis

Linear and differential cryptanalysis uses the input-output correlation and the difference
propagations of the cipher in order to extract partial or whole bits of the secret key. Linear
cryptanalysis exploits a cipher’s weakness expressed in terms of “linear expressions”. In
Matsui’s terminology (Matsui, 1994) a linear expression for one round is an equation for
a certain modulo two sum of round input bits and round outputs bits as a sum of round
key bits. The expression should be satisfied with probability much more than 0.5 to be
useful (Jakimovski and Kocarev, 2001).

In 1991 was introduced a cryptoanalytic technique known as differential cryptanalysis
(Biham and Shamir, 1991). It was successfully applied to attack a variety of SPNs, includ-
ing DES. Differential cryptanalysis requires knowledge of the XOR tables of S-boxes. For
an n × n S-box, S, the XOR table has rows and columns indexed by 0, 1, . . . , 2n − 1,
and the table entries are defined as follows: if i, j ∈ {0, 1, . . . , 2n − 1}, position (i, j)
in the XOR table contains value | {X ∈ {0, 1}n: S(X) ⊕ S(X ⊕ i) = j}|, where i and
j are n bits strings. The essential part of every block cipher is an S-box. To secure the
cipher against these attacks, the nonlinearity of the S-box should satisfy: the maximum
input-output correlation and the difference propagation probability should be minimum
(Keliher and Meijer, 1997).

There are two ways to fight against linear and differential cryptanalysis. One is built
S-boxes with low linear and differential probabilities. The other is to design the round
transformation so that only trails with many active S-boxes occur. The round transforma-
tion must be designed in such a way that differential steps with few active S-boxes are
followed by differential steps with many active S-boxes (Masuda et al., 2006).

The object of this proposal is an AES cipher using key-dependent S-boxes. The fact
that the S-boxes are unknown is one of the main strength of our cipher system, since
both linear and differential cryptanalysis require known S-boxes. If the S-boxes are gen-
erated from the key in sufficiently random fashion, each S-box has a high probability of
being complete, possessing fairly high nonlinearity. It is not apparent that the pseudoran-
dom nature of the S-boxes introduces any weakness into the system. Ideal randomness

Key-Dependent S-Box Generation in AES Block Cipher System 27

of S-box cannot be achieved. Ideal randomness is not mathematically possible for the
following reasons: the value of all elements in the S-box difference table should be even,
since a ⊕ b = b ⊕ a. Since the S-box is bijective, the input difference of 0 will lead to an
output difference of 0. So the element corresponding to row = 0 and column = 0 at the
difference table will be 2n and all other elements in row = 0 and column = 0 will be 0
(Sakthivel, 2001).

5. A Randomly Key-Dependent S-Box and Inverse S-Box Generation Algorithm

A randomly key-dependent S-box and inverse S-box is constructed by composing two
transformations: key pseudo-expansion and key-dependent S-box and inverse S-box gen-
eration.

5.1. Key Pseudo-Expansion

The key pseudo-expansion transformation takes the 16, 24, or 32 bytes secret key, use
round constant rcon and generates a 176 byte long key pseudo-schedule b, which we use
in the second transformation. The bytes of the secret key are row-wise rearranged into
a 4 × 4 size key matrix. The method of the key pseudo-expansion is an element-wise
XOR of the row of key matrix and the row four rows up. In every fourth row, before
applying the XOR, the initial row is cyclically rotated and XOR-ed with constant rcon
(AES, 2001).

Algorithm 1. Key pseudo-expansion
Input: key, rcon.
Output: key-dependent 176 bytes b.

1: b = (reshape(key, 4, 4))′

2: for i = 5, . . . , 44 do
3: laik = b(i − 1, :)
4: if i mod4 = 1
5: laik = laik([2 3 4 1])
6: v = rcon((i − 1)/4, :)
7: laik = XOR(laik, v)
8: end if
9: b(i, :) = XOR(b(i − 4, :), laik)

10: end for

Input of the key pseudo-expansion algorithm is the secret key and round constant rcon.
Output of the key pseudo-expansion algorithm is the key pseudo-expanded schedule b

(176 bytes). Command reshape in line 1 rearrange the bytes of the secret key into a
4 × 4 size matrix. Sign ′ means transpose operation. The remaining 160 bytes of the key
pseudo-schedule are generated in the for . . . end for cycle (lines 2–10). In line 3 laik
is the previous row, which in line 9 is XOR-ed with the row four rows before. If the row
index is equal to 5, 9, . . ., then laik is cyclically rotated and XOR-ed in line 7 with the

28 K. Kazlauskas, J. Kazlauskas

round constant rcon. Rotating is done in line 5, where the laik is a row of four bytes and
is cyclically permuted by using the new index vector [2 3 4 1]. The hexadecimal numbers
of the first column of the 10 × 4 matrix rcon are {01, 02, 04, 08, 10, 20, 40, 80, 1b, 36}.
Remaining three columns of the matrix rcon are zero columns.

Note 1. If the secret key length is 192 or 256 bytes, we use only the first 128 bytes of
the key.

Note 2. The key pseudo-expansion algorithm don’t use the SubByte function and S-
box, while key expansion function in AES uses S-box and SubByte function (AES, 2001).

5.2. Key-dependent S-Box and Inverse S-Box Generation

The output of the key pseudo-expansion algorithm is 176 byte long key pseudo-schedule
b, which is the function of the key. The key pseudo-schedule b is used to generate a
randomly key-dependent S-box and inverse S-box.

Algorithm 2. Generation a randomly key-dependent S-box and inverse S-box.
Input: key-dependent 176 bytes b from the output of the key pseudo-expansion algo-

rithm.
Output: integer numbers from the interval [0, 255] of the key-dependent S-box (Sbox)

and the inverse S-box (invSbox)
1: Initialization:

i = 0
k = 1
l = 1

2: Compute the first subtotal modulo 256:
S(1) = (b(1) + b(2))mod 256
Sbox(1) = S(1)

3: while k < 256
i = i + 1
m = 1 + (k + i ∗ l)mod 176
S(i + 1) = (S(i) + b(m))mod 256
l = 0

4: for j = 1, . . . , k do
Compare subtotal S(i+1) with the elements Sbox (j) and count the number
l of the S-box elements which are not equal to S(i + 1)

end for
5: if l = j

Sbox(k + 1) = S(i + 1)
k = k + 1
end if

end while
6: for k = 1, . . . , 256 do

invSbox(Sbox(k) + 1) = k − 1
end for

Key-Dependent S-Box Generation in AES Block Cipher System 29

Note 3. Randomness of the key-dependent S-box and inverse S-box is achieved by
choosing the index m of the bytes b, which depends on the variables i, k, and l.

6. Experimental Results

We introduce the independency measure of the S-box elements:
1) Normalize the S-box elements

y =
x − mean(x)

std(x)
, (3)

where mean(x) = (max(x) + min(x))/2, std(x) = sqrt((max(x) − min(x))2/12).
2) Compute the correlation function corr of the normalized S-box.
3) Find the maximal value MAX of the correlation function and form a new function

CORR, in which the maximal value MAX of the correlation function corr is changed to
zero.

4) Calculate the independency measure of the S-box elements

ratio =
std(CORR)

MAX
. (4)

Experiment 1. We experimentally checked how the independency measure ratio of
the S-box elements depends on the interval length. For the generation of the random
integer numbers from some interval we applied Matlab function randperm. We repeated
the experiment 500 times and calculated mean and standard deviation of the ratio. The
results are given in the Table 1.

Table 1

The mean of the ratio of the dependent and independent integer numbers via the interval length

Interval length
Mean of the ratio of the linearly

dependent numbers
Mean of the ratio of the
independent numbers

8 0.362427 ±1.6737 · 10−16 0.230258 ±0.0627

16 0.388781 ±5.0212 · 10−16 0.166652 ±0.0381

32 0.401525 ±4.4632 · 10−16 0.125118 ±0.0206

64 0.407811 ±5.0211 · 10−16 0.086057 ±0.0118

128 0.410932 ±5.5791 · 10−16 0.062037 ±0.0069

256 0.412488 ±7.2528 · 10−16 0.044390 ±0.0032

512 0.413264 ±7.2528 · 10−16 0.031398 ±0.0015

1024 0.413652 ±6.6949 · 10−16 0.022096 ±8.3026 · 10−4

2048 0.413846 ±2.7895 · 10−16 0.015646 ±4.4133 · 10−4

4096 0.413942 ±5.5791 · 10−16 0.011044 ±1.9339 · 10−4

40960 0.414029 ±1.6737 · 10−16 0.003497 ±2.0673 · 10−5

409600 0.414038 ±8.9265 · 10−16 0.001105 ±2.0026 · 10−6

30 K. Kazlauskas, J. Kazlauskas

From Table 1 we can see, that ratio depends on the interval length of the integer num-
bers. For the AES, the S-box elements are integers from the interval [0, 255]. In that case,
the measure ratio for randomly generated elements has value 0.044390 ±0.0032, and ra-
tio has the maximal value 0.4124876 ±7.2528 · 10−16 for linearly dependent elements. If
we analyze only the interval [0,255] (16 × 16 S-box), and suppose that function randperm
permutes the integer numbers “ideally”, the ratio = 0.0443904 ±0.0032 can be used as an
“ideal” ratio for the random 16 × 16 S-box. So, the ratio can be used as the independency
measure of the integer numbers from the finite interval. Theoretically, in case the interval
of the integer numbers is infinitely long, for the independent integer numbers the ratio is
equal to zero.

Experiment 2. The purpose is to verify the proposed S-box and inverse S-box gener-
ation algorithm. Consider the 128 bit length secret key in the hexadecimal form:

key hex =
{
2f, e3, c2, d3, bf, e5, 56, c7, f8, 79, dc, cb, 8c, fd, 6e, 5f

}
. (5)

1) We generate the key-dependent S-box using the transformations described in the
paper. The key-dependent S-box is given in the Table 2. The independency measure ratio
of the S-box elements is equal to 0.0432548 and is approximately equal to “ideal” ratio =
0.044390 for independent numbers generated using function randperm. The correlation
function of the normalized S-box is in the Fig. 1.

2) We change two bits in the secret key (5), for example, 2f → 1f :

key hex =
{
1f, e3, c2, d3, bf, e5, 56, c7, f8, 79, dc, cb, 8c, fd, 6e, 5f

}
, (6)

Table 2

Key-dependent S-box. Key is as in (5)

238 111 194 228 165 51 54 157 216 18 202 92 74 129 188 250

230 154 0 72 208 151 125 24 83 146 114 218 121 227 21 2

185 37 17 8 214 134 220 80 39 181 6 128 207 77 191 231

10 118 96 79 187 226 50 247 110 15 245 171 86 81 126 224

234 3 53 108 65 192 35 26 150 14 57 144 167 38 106 91

236 89 205 88 155 55 104 178 85 215 123 193 76 229 112 56

75 44 163 97 174 52 199 243 30 133 143 232 137 61 87 211

179 235 241 223 4 59 201 42 90 225 162 47 22 139 253 13

136 120 82 170 101 180 102 189 23 78 45 64 63 131 198 153

183 210 169 251 43 115 173 46 244 164 168 116 20 212 9 33

200 93 100 36 49 130 109 132 66 248 246 41 124 221 254 141

28 95 204 252 69 27 209 1 71 242 122 103 213 196 190 67

182 34 135 219 140 48 147 98 60 177 142 148 237 195 175 99

5 186 70 166 184 117 7 107 239 217 62 176 159 138 11 113

68 249 105 149 127 58 73 145 32 19 84 197 94 156 161 160

172 40 25 158 222 31 16 206 12 255 152 233 29 240 119 203

Key-Dependent S-Box Generation in AES Block Cipher System 31

and generate another S-box (Table 3). In that case the ratio is equal to 0.043231 and is
approximately equal to “ideal” ratio. The correlation function of the normalized S-box
(Table 3) is similar to correlation function of the key (5) (see Fig. 1).

Fig. 1. Correlation function of the normalized S-box (Table 2).

Table 3

Key-dependent S-box. Key is as in (6)

222 84 187 195 174 14 78 45 197 181 121 242 129 142 186 90

214 184 21 172 109 83 63 92 244 252 95 238 51 0 249 70

185 246 18 183 29 196 6 81 162 223 73 221 23 55 126 149

10 44 139 103 19 67 31 164 251 225 71 76 178 148 191 87

218 247 156 151 36 153 117 143 171 110 88 182 146 165 39 27

220 144 175 204 37 239 115 235 79 202 245 135 208 42 253 22

75 161 188 52 100 17 123 96 133 65 233 82 40 212 48 113

179 134 206 125 35 25 50 207 190 46 89 154 38 118 102 111

152 157 227 180 2 114 193 147 250 54 119 105 145 9 32 192

199 226 229 16 200 49 41 243 13 173 176 4 255 234 205 159

232 213 241 108 254 47 136 91 15 216 28 7 120 69 94 80

60 177 248 168 201 170 198 141 194 20 26 85 56 12 231 30

230 124 3 59 132 203 1 215 66 43 33 127 57 106 237 86

53 101 62 140 236 99 58 128 240 112 68 189 211 150 77 158

116 155 166 104 228 130 5 217 167 137 163 72 131 97 98 107

219 138 209 93 64 24 61 160 11 169 210 8 74 122 224 34

32 K. Kazlauskas, J. Kazlauskas

Fig. 2. Plot of the difference of the S-boxes elements (Table 2 and Table 3).

Fig. 3. Correlation function of the normalized difference between the elements of two S-boxes (Table 2 and
Table 3).

Key-Dependent S-Box Generation in AES Block Cipher System 33

We calculate the difference of these two S-boxes (Fig. 2) and mutual independency ra-
tio = 0.040642, which is approximately equal to “ideal” independency ratio = 0.044390,
i.e., the mutual dependence of these two S-boxes is insignificant. Correlation of the nor-
malized difference between the elements of S-boxes (Table 2 and Table 3) are given in
the Fig. 3.

3) We change only one bit of the secret key (5) (2f → 3f), generate the S-box and
calculate difference among the elements of this S-box and the elements of Table 2. The
mutual independency ratio of these two S-boxes is 0.0445, i.e., approximately is equal to
“ideal” ratio, so the mutual dependence of these two S-boxes is insignificant.

7. Conclusions

We presented a new approach to generate the AES randomly key-dependent S-boxes.
The quality of this approach is tested by changing only one bit of the secret key to gener-
ate new S-boxes. For that purpose the independency measure ratio based on correlation
method was introduced. It was established that for any change of the secret key, the struc-
ture of the S-box will be changed essentially. The randomly key-dependent S-boxes make
our approach resistant to linear and differential cryptanalysis. This approach will lead to
generate more secure block ciphers, solve the problem of the fixed structure S-boxes,
and will increase the security level of the AES block cipher system. The main advantage
of such approach is that an enormous number of S-boxes can be generated by changing
secret key.

Acknowledgements

The authors thank anonymous reviewer for the comments and suggestions that con-
tributed to improve the quality of the paper. Research in part was supported by the Lithua-
nian State Science and Studies Foundation.

References

Advanced Encryption Standard (AES) (2001). Federal Information Processing Standards. Publication 197,
November 26.

Biham, E., and A. Shamir (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology,
4(1), 3–72.

Chen, T.-H., G. Horng and Ch.-S. Yang (2008). Public key autentification schemes for local area networks.
Informatica, 19(1), 3–16.

Data Encryption Standard (DES) (1977). National Bureau of Standards. FIPS Publication 46.
El-Ramly, S.H., T. El-Garf and A.H. Soliman (2001). Dynamic generation of S-boxes in block cipher systems.

In Eighteen National Radio Science Conference. Mansoura Univ., Egypt. pp. 389–397.
Feldhofer, M., J. Wolkerstorfer and V. Rijmen (2005). AES implementation on a grain of sand. IEEE Proc. Inf.

Secur., 152(1), 13–20.
Hsiao, S.-F., M.-C. Chen, M.-Y. Tsai and C.-C. Lin (2005). System on chip implementation of the whole

advanced encryption standard processor using reduced XOR-based sum-of-product operations. IEEE Proc.
Inf. Secur., 152(1), 21–30.

34 K. Kazlauskas, J. Kazlauskas

Hsiao, S.-F., M.-C. Chen and C.-S. Tu (2006). Memory-free low-cost designs of advanced encryption standard
using common subexpression elimination for subfunctions in transformations. IEEE Trans. on Circuits and
Systems – I: Regular Papers, 53(3), 615–626.

Jakimovski, G., and L. Kocarev (2001). Chaos and cryptography: block encryption ciphers based on chaotic
maps. IEEE Trans. on Circuits and Systems – I: Fundamental Theory and Applications, 48(2), 163–169.

Keliher, L. (2003). Linear Cryptanalysis of Substitution-Permutation Networks. PhD thesis, Queen’s University,
Kingston, Canada.

Li, Ch.-M., T. Hwang and N.-Y. Lee (2007). Security flow in simple generalized group-oriented cryptosystem
using ElGamal cryptosystem. Informatica, 18(1), 61–66.

Masuda, N., G. Jakimovski, K. Aihara and L. Kocarev (2006). Chaotic block ciphers: from theory to practical
algorithms. IEEE Trans. on Circuits and Systems – I: Regular Papers, 53(6), 1341–1352.

Matsui, M. (1994). Linear cryptanalysis method for DES ciphers. In Advances in Cryptology – EURO-
CRYPT’93, Berlin, Germany. Springer-Verlag. pp. 386–397.

Menezes, A.J., P.C. van Oorschot and S.A. Vanstone (1997). Handbook of Applied Cryptography. Boca Raton,
FL: CRC.

Sakalauskas, E. (2005). One digital signature scheme in semomodule over semiring. Informatica, 16(3), 383–
394.

Merkle, R. (1991). Fast software encryption functions. In Advances in Cryptology: Proceedings of CRYPTO’90.
Springer-Verlag, Berlin. pp. 476–501.

Sakthivel, G. (2001). Differential Cryptanalysis of Substitution Permutation Networks and Rijndael-Like Ci-
phers. Master’s project report. Rochester Institute of Technology.

Schneier, B. (1996). Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, New York.
Schneier, B. (1996). Description of a new variable-length 64-bit block cipher. Fast Software Encryption, 191–

204.
Su, C.-P., T.-F. Lin, C.-T. Huang and C.-W. Wu (2003). A high-throughput low-cost AES processor. IEEE

Communications Magazine, 41(12), 86–91.
Zhang, X., and K.K. Parhi (2002). Implementation approaches for the advanced encryption standard algorithm.

IEEE Circuits Syst. Mag., 2(4), 24–46.

K. Kazlauskas received a PhD degree from Kaunas Polytechnic Institute and a doctor
habilius degree from Institute of Mathematics and Informatics and Vytautas Magnus Uni-
versity. He is a senior researcher of the Recognition Processes Department at the Institute
of Mathematics and Informatics and a professor at the Informatics Department of Vil-
nius Pedagogical University. His research interests include signal processing, parameter
estimation, and digital system design.

J. Kazlauskas received a MSc degree from Vilnius University in 2000. Now he is a
junior researcher of the Process Recognition Department at the Institute of Mathematics
and Informatics. His scientific interests include digital signal processing and parameter
estimation.

AES blokinės šifravimo sistemos nuo rakto priklausom ↪u S lenteli ↪u
generavimas

Kazys KAZLAUSKAS, Jaunius KAZLAUSKAS

AES blokinė šifravimo sistema plačiai naudojama praktikoje. Šios sistemos atsparumas labai
priklauso nuo netiesinės bait ↪u pakeitimo operacijos. Straipsnio tikslas – pasiūlyti algoritm ↪a, kuris
generuot ↪u atsitiktines priklausomas nuo rakto bait ↪u pakeitimo S lenteles. Trumpai analizuoja-
mas AES algoritmas, jo pakeitimo S lentelės, tiesinė ir diferencialinė kriptoanalizė bei aprašomas
naujas nuo rakto priklausom ↪u atsitiktini ↪u S lenteli ↪u ir inversini ↪u S lenteli ↪u generavimo algorit-
mas. Pasiūlytas S lenteli ↪u element ↪u nepriklausomumo patikrinimo matas bei tiriama sugeneruot ↪u
S lenteli ↪u kokybė.

