Key-Dependent S-Box Manipulations

Sandy Harris' and Carlisle Adams?

! Kaya Consulting, 6 Beechwood Avenue, Suite 16
Vanier, Ontario,Canada, K1L 8B4
sandy.harris@sympatico.ca
2 Entrust Technologies, 750 Heron Road
Ottawa, Ontario, Canada, K1V 1A7
cadams@entrust.com

Abstract. This paper discusses a method of enhancing the security of
block ciphers which use s-boxes, a group which includes the ciphers DES,
CAST-128, and Blowfish. We focus on CAST-128 and consider Blowfish;
Biham and Biryukov [2] have made some similar proposals for DES.
The method discussed uses bits of the primary key to directly manipu-
late the s-boxes in such a way that their contents are changed but their
cryptographic properties are preserved. Such a strategy appears to sig-
nificantly strengthen the cipher against certain attacks, at the expense of
a relatively modest one-time computational procedure during the set-up
phase. Thus, a stronger cipher with identical encryption / decryption
performance characteristics may be constructed with little additional
overhead or computational complexity.

1 Introduction

Both carefully-constructed and randomly-generated s-boxes have a place in sym-
metric cipher design. Typically, a given cipher will use one or the other para-
digm in its encryption “engine”. This paper suggests that a mixture of the two
paradigms may yield beneficial results in some environments. In our examples, we
use the four 8 x 32 s-boxes which the Blowfish and CAST-128 ciphers employ,
but variations of this technique could be applied to any cipher using s-boxes,
whatever their number and sizes.

We propose using strong s-boxes and applying key-dependent operations to
them at the time of key scheduling, before the actual encryption begins. The goal
is to get the benefits of strong s-boxes (as in CAST-128) and of key-dependent
s-boxes (as in Blowfish) without the drawbacks of either.

The technique can be powerful. If a basic cipher can be broken in a second
by exhaustive search over the key space and if key-dependent operations on the
s-boxes add 32 bits to the effective key length, then breaking the improved cipher
by brute force takes 232 seconds (just over a century). If these operations add
64 effective bits, then it would take 232 centuries to break the improved cipher.

Key-dependent operations on s-boxes can use large numbers of bits. For 8 x 32
s-boxes, XORing constants into the inputs and outputs can use 40 bits per s-box.

S. Tavares and H. Meijer (Eds.): SAC’98, LNCS 1556, pp. 15-1l 1999.
© Springer-Verlag Berlin Heidelberg 1999

16 Sandy Harris and Carlisle Adams

Permuting the inputs and outputs can use log,(8!) + log,(32!) > 130 bits per
s-box. A cipher with four such s-boxes could use 680 bits of additional key with
these operations (although it is recognized that this will not necessarily be the
increase in the effective key length).

We start with the CAST-128 cipher and propose using between 148 and
256 additional key bits for s-box transformations. The increase in effective key
length (although difficult to compute precisely) is likely to be considerably lower
than this, but the transformations still appear to be worthwhile in at least some
applications. In particular, the cost is moderate and the resulting cipher appears
to be more resistant to attacks that rely upon knowledge of the s-box contents.

It is important to note that the technique is inherently efficient in one sense:
all the s-box transformations are done at set-up time. Thus, there is no increase
in the per-round or per-block encryption time of the strengthened cipher.

2 Considerations

2.1 The Extra Key Bits

The additional bits required for this proposal may come from one of two sources:
derived key bits or primary key bits. As an example of the former, CAST-128
[1] expands the 128-bit key to 1024 bits but does not use all of them. The actual
encryption uses 37 bits per round (592 in the full 16 rounds) so that 432 bits
are generated by the key scheduling algorithm but are unused by the cipher.
These currently unused bits may be good candidates for the bits needed for
s-box manipulation.

Alternatively, additional primary key bits may be used for the proposal in this
paper. This has the advantage of increasing the key space for exhaustive search
attacks, at the cost of increased key storage and bandwidth requirements. Note,
however, that in some environments the bandwidth required for key transfer or
key agreement protocols need not increase. In one common use of symmetric
ciphers, session keys are transmitted using a public key method such as RSA [5]
or Diffie-Hellman [3]. Public key algorithms use large numbers of bits so that to
transmit a 128-bit session key, you may need to encrypt, transmit and decrypt a
full public-key block of 1024 bits or more. In such a case, any key up to several
hundred bits can be transmitted with no additional cost compared with a 128-bit
key.

Using derived key bits has no impact on primary key size, but depends upon a
key scheduling algorithm that generates extra (i.e., currently unused) bits. Using
primary key bits places no such requirement on the key scheduling algorithm, but
has storage and bandwidth implications, and may show some susceptibility to
chosen-key-type attacks (since the two pieces of the primary key are “separable”
in some sense).

2.2 CAST’s Strong S-Boxes

The CAST design procedure uses fixed s-boxes in the construction of each spe-
cific CAST cipher. This allows implementers to build strong s-boxes, using bent

Key-Dependent S-Box Manipulations 17

Boolean functions for the columns and choosing combinations of columns for
high levels of s-box nonlinearity and for other desirable properties. Details can
be found in Mister and Adams [4].

For example, the CAST-128 s-boxes appear to be strong but they are fixed
and publicly-known. This may allow some theoretical attacks (e.g., linear or
differential cryptanalysis) to be mounted against a given CAST cipher which
uses these s-boxes, although the computational cost of these attacks can be
made to be infeasibly high with a suitable choice in the number of rounds.

2.3 Blowfish’s Key-Dependent S-Boxes

Blowfish generates key-dependent s-boxes at cipher set-up time. This means the
attacker cannot know the s-boxes, short of breaking the algorithm that generates
them.

There are at least two disadvantages, which can to some extent be traded off
against each other. One is that generating the s-boxes has a cost. The other is
that the generated s-boxes are not optimized and may even be weak.

A Blowfish-like cipher might, with some increase in set-up cost, avoid spe-
cific weaknesses in its s-boxes. Schneier discusses checking for identical rows in
Blowfish [6, page 339] but considers this unnecessary. In general, it is clearly
possible to add checks which avoid weaknesses in randomly-generated s-boxes
for Blowfish-like ciphers, but it is not clear whether or when this is worth doing.

On the other hand, generating cryptographically strong s-boxes at run time
in a Blowfish-like cipher is impractical, at least in software. Mister and Adams
[4] report using 15 to 30 days of Pentium time to generate one 8 x 32 s-box
suitable for CAST-128, after considerable work to produce efficient code. This is
several orders of magnitude too slow for a run-time operation, even for one used
only at set-up time and not in the actual cipher.

2.4 Resistance to Attack

Schneier [6, p.298] summarizes the usefulness of randomly-generated s-boxes
with respect to the most powerful statistical attacks currently known in his
introduction to the Biham and Biryukov work on DES with permuted s-boxes
[2]:

“Linear and differential cryptanalysis work only if the analyst knows the
composition of the s-boxes. If the s-boxes are key-dependent and chosen by a
cryptographically strong method, then linear and differential cryptanalysis are
much more difficult. Remember, though, that randomly-generated s-boxes have
very poor differential and linear characteristics, even if they are secret.”

This inherent dilemma leads to the proposal presented in this paper: we
suggest s-boxes that are key-dependent but are not randomly generated.

18 Sandy Harris and Carlisle Adams

3 The Proposal

Start with carefully-prepared strong s-boxes, such as those described for CAST
in Mister and Adams [4] and apply key-dependent operations to them before
use. The goal is to introduce additional entropy so that attacks which depend
on knowledge of the s-boxes become impractical, without changing the properties
which make the s-boxes strong.

We apply the operations before encryption begins and use the modified s-
boxes for the actual encryption, so the overhead is exclusively in the set-up
phase. There is no increase in the per-block encryption cost.

It can be shown that important properties of strong s-boxes are preserved
under carefully-chosen key-dependent operations. Given this, it is possible to
prepare strong s-boxes off-line (as in CAST-128) and manipulate them at ci-
pher set-up time to get provably strong key-dependent s-boxes (in contrast with
ciphers such as Blowfish).

The question is what operations are suitable; that is, what operations are key-
dependent, reasonably efficient, and guaranteed not to destroy the cryptographic
properties of a strong s-box.

The first two requirements can be met relatively easily; simultaneously achiev-
ing the third is somewhat more difficult. However, several classes of operations
may be used.

— Permuting s-box columns
e this has the effect of permuting output bits.
— Adding affine functions to s-box columns

e this has the effect of complementing output bits, possibly depending
upon the values of other output bits.

— Permuting s-box inputs
e this has the effect of producing certain s-box row permutations.
— Adding affine functions to s-box inputs

e this has the effect of producing other s-box row permutations, possibly
depending upon the values of other input bits.

In general, then, the Boolean function for an s-box column may be modified
from
f(f) = f(xlaanaxSa"'aajm))

for binary variables x;, to

f(P (gl (T)aQQ(T)agd(T)aagm(T)))EBh(T))

for some Boolean functions g;(Z) and h(Z) and a permutation P. The set of
columns may then be further permuted. We will consider the above classes of
operations in the order presented.

Key-Dependent S-Box Manipulations 19

3.1 Permuting S-Box Columns

Permuting s-box columns can be accomplished by permuting each row in the
same way (done in one loop through the s-box).

Various important properties are conserved under this operation. In partic-
ular, if a column is bent, it will clearly remain so when moved; if a group of
columns satisfies the bit independence criterion, it will still do so after being
permuted. Finally, since s-box nonlinearity is defined to be the minimum non-
linearity of any function in the set of all non-trivial linear combinations of the
columns (see [4], for example), then s-box nonlinearity is also conserved through
a column permutation.

In carefully designed s-boxes, rearranging the columns in a key-dependent
way does not degrade cryptographic strength. However, such an operation can
make it significantly more difficult to align characteristics in a linear crypt-
analysis attack and so can increase the security of the cipher by raising the
computational complexity of mounting this attack.

3.2 Adding Affine Functions to S-Box Columns

In the extreme case in which the affine functions are simply all-one vectors, the
addition can be done by XORing a constant into all rows (done in one loop
through the s-box). More generally, other techniques (perhaps involving storage
of specific affine vectors) may be necessary to accomplish this addition.

Various important properties are conserved under this operation. Because
the nonlinearity of a Boolean function is unchanged by the addition of an affine
function, s-box column bentness, s-box bit independence criterion, and s-box
nonlinearity are all conserved.

The addition of affine functions, therefore, does nothing to degrade cryp-
tographic security in the s-boxes. However, such an operation, by modifying
the contents of the s-boxes in a key-dependent way, can make it significantly
more difficult to construct characteristics in a differential cryptanalysis attack
(because it cannot be computed in advance when the XOR of two given s-box
outputs will produce one value or another). Hence, this operation can increase
the security of the cipher by raising the computational complexity of mounting
this attack.

3.3 Permuting S-Box Inputs

Permuting the rows of an s-box seems attractive because of its potential for
thwarting linear and differential cryptanalysis. However, it is not always possible
to permute rows without compromising desirable s-box properties. In particular
(e.g., for CAST-128 s-boxes), not all row permutations are permissible if column
bentness is to be preserved.

Biham and Biryukov [2] made only one small change to the s-box row order
in the DES s-boxes: they used one key bit per s-box, controlling whether or not
the first two and the last two rows should be swapped. However, an operation

20 Sandy Harris and Carlisle Adams

that used more key bits and that provably could not weaken strong s-boxes may
be preferable in some environments.

One such operation is to use the subset of row permutations that result from
a permutation on the s-box inputs. We will show that these do not damage the
desirable s-box properties.

Mister and Adams [4] introduce the notion of dynamic distance of order j
for a function f

f:{0,13™ = {0,1}

and define it as

DD, (f) = max 5 |27 = S (@) & @ ©3)

where both d and T are binary vectors of length m, d ranges through all values
with Hamming weight 1 < wt(d) < j and T ranges through all possible values.

It is shown in [4] that cryptographic properties such as Strict Avalanche
Criterion (SAC) and Bit Independence Criterion (BIC), higher-order versions
of these (HOSAC and HOBIC), maximum order versions of these (MOSAC
and MOBIC), and distances from these (DSAC, DBIC, DHOSAC, DHOBIC,
DMOSAC, and DMOBIC) can all be defined in terms of dynamic distance.

In an s-box, all bits are equal. There is no most- or least-significant bit in
either the input or the output. Thus, permuting the bits of = in the formula
above does not change the value of the summation term for a given d, provided
we apply the same permutation to d. Hence it does not change the maximum
(the value of the dynamic distance).

Therefore, column properties defined in terms of dynamic distance (DSAC,
DHOSAC, and DMOSAC) remain unchanged. In particular, if the columns are
bent functions (i.e., DMOSAC = 0) then permuting inputs preserves bentness.

Furthermore, the s-box properties DBIC, DHOBIC, and DMOBIC also re-
main unchanged because these are defined in terms of dynamic distance of a
Boolean function f comprised of the XOR of a subset of s-box columns. (Note
that permuting the inputs of each of the column functions with a fixed permu-
tation P is identical to permuting the inputs of the combined function f using
P.) By a similar line of reasoning, s-box nonlinearity is also unaffected by a
permutation of its input bits.

Permuting inputs, therefore, does nothing to degrade cryptographic security
in the s-boxes. However, such an operation, by rearranging the order of the s-box
rows in a key-dependent way, can make it significantly more difficult to construct
linear or differential characteristics (because specific outputs corresponding to
specific inputs cannot be predicted in advance). Hence, this operation can in-
crease the security of the cipher by raising the computational complexity of
mounting these attacks.

Key-Dependent S-Box Manipulations 21

3.4 Adding Affine Functions to S-Box Inputs

Adding selected affine functions to s-box inputs is another effective way of pro-
ducing a subset of row permutations that does not reduce the cryptographic
security of the s-box.

In the extreme case in which the affine functions are constant values, the
addition simply complements some of the s-box input bits. Inverting some input
bits is equivalent to XORing a constant binary vector into the input, making
the summation in the dynamic distance

Z(f(f@é)@f(f@f@&))

x

Clearly (T @ ¢) goes through the same set of values that T goes through, so
this does not change the sum and, consequently, does not change the dynamic
distance. Therefore, column properties and s-box properties are unchanged.

In the more general case in which the affine functions are not constant val-
ues, the addition conditionally complements some of the s-box inputs (depending
upon the particular values of some subset of input variables). Consider the follow-
ing restriction. Choose any k input variables and leave these unchanged. For the
remaining m-k input variables, augment each with the same randomly-chosen,
but fixed, affine function of the chosen k input variables. For example, in a 4 x n
s-box, we may choose input variables x; and x2 to be unchanged and augment x3
and x4 with the affine function g(z1,z2) = 2 @ 1 so that the Boolean function
fi(x1, xa, k3, 24) defining each s-box column i becomes

fi(z1, 22, 230 9(x1, x2), 14a®g(x1,22)) = fi (1,02, (23 D w2 ® 1), (x4 D 22D 1)).

With the operation restricted in this way it is not difficult to see that as
the chosen k variables go through their values, at each stage the remaining m-k
variables go through all their values (either all simultaneously complemented,
or all simultaneously not complemented, depending upon the binary value of
the affine function). Thus, rewriting the summation in the dynamic distance
equation as

S (@) e /7@ @)
x
where 7' is in accordance with the restriction as specified, we see that T goes
through the full set of values that T goes through, so the sum is unchanged and
the resulting dynamic distance is unchanged.

Adding affine functions (restricted as specified abow]) to s-box inputs, there-
fore, does not degrade cryptographic security in the s-boxes. Like permuting
inputs, this operation, by rearranging the order of the s-box rows in a key-
dependent way, can make it significantly more difficult to construct linear or

! Note that other restrictions on the type and number of affine functions that may be
added to preserve s-box properties may also exist. This area is for further research.

22 Sandy Harris and Carlisle Adams

differential characteristics. The security of the cipher may therefore be increased
by raising the computational complexity of mounting these attacks.

3.5 Other Possible Operations

Other key-dependent operations that preserve s-box properties are also possible.
For example, it is theoretically possible to construct strong s-boxes with more
than 32 columns and select columns for actual use at set-up time, but this would
likely be prohibitively expensive in practice since Mister and Adams [4] report
that s-box generation time doubles for each additional column.

Another possibility is to order the s-boxes in a key-dependent way. This is not
particularly useful with only four s-boxes since only 4! orders are possible, adding
less than five bits of entropy to the key space. However, with the eight s-boxes
in CAST-128, this operation becomes somewhat more attractive. A CAST-143
might be created in a very straightforward way: log,(8!) = 15 bits of key puts
the eight s-boxes into some key-dependent order (cheaply by adjusting pointers),
and then key expansion and encryption proceeds exactly as in CAST-128 except
with the s-boxes in the new order. The overhead (set-up time) is quite low and
the new cipher uses 15 extra bits of unexpanded key.

3.6 Limitations in Key-Dependent Operations

Ciphers With XOR-Only Round Functions A cipher which combines s-
box outputs with XOR, such as the CAST example in Applied Cryptography
[2, page 334]), does not work well with some types of s-box manipulation. For
example, permuting the order of the four round function s-boxes is of no benefit
in such a cipher, since XOR is commutative.

XORing different constants into the four s-boxes in such a cipher has exactly
the same effect as XORing a single constant into each round function output, or
into any one s-box.

Furthermore, if the cipher’s round function combines its input and the round
key with XOR, then XORing a constant into the output of one round is equiva-
lent to XORing that constant into the key of the next round. If the round keys
are already effectively random, unrelated, and unknown to the attacker (as they
should be), then XORing them with a constant does not improve them.

In terms of the difficulty of an attack, then, the net effect of XORing four
constants into the s-boxes is equivalent to XORing a single constant into the
output of the last round, for a cipher which uses XOR both to combine s-box
outputs and to combine round input with the round key.

Ciphers With Mixed Operations Combining S-Box Outputs A cipher
which uses operations other than XOR to combine s-box outputs, such as Blow-
fish or CAST-128, will give different round outputs if the order of the s-boxes is
changed or if a constant is XORed into each row. This makes these operations
more attractive in such ciphers.

Key-Dependent S-Box Manipulations 23

Even in such ciphers, however, the precise cryptographic strength of XORing
a constant into the rows is unclear. Certainly it is an inexpensive way to mix
many key bits (128 if the cipher uses four m x 32 s-boxes) into the encryption,
but it is not clear exactly how much this increases the effective key length.

Ciphers With Mixed Operations Combining Key and Input In Blowfish
and in some CAST ciphers, the round input is XORed with the round key at the
start of a round, then split into four bytes which become inputs to the four s-
boxes. XORing an 8-bit constant into each s-box input is equivalent to XORing a
32-bit constant (the concatenation of the 8-bit constants) into each of the round
keys.

Suppose an attack exists that discovers the round keys when the s-boxes are
known. Then the same attack works against the same cipher with s-boxes that
are known but have had their rows permuted in this way. The attack discovers
a different set of round keys equivalent to the real ones XORed with a 32-bit
constant, but it still breaks the cipher, and with no extra work for the attacker.

However, for ciphers that use other operations to combine the round input
and the round key (CAST-128, for example, which uses addition and subtraction
modulo 232 for input masking in some of its rounds), such an operation seems
to add value.

Options For both inputs and outputs, the addition of affine functions appears
stronger than just XORing with a constant, and performing permutations ap-
pears to be stronger again (but at much higher computational cost). In a practi-
cal cipher, however, there appears to be no disadvantage to using XOR (for both
input and output if mixed operations are used everywhere in the round function)
because it is inexpensive and offers some protection against the construction of
iterated characteristics.

4 Practical Considerations

4.1 Stage One

Since XORing a constant into the s-box rows is the cheapest way to bring many
extra key bits into play; we should do that if we’re going to use this approach at
all. The cipher’s round function should use operations other than XOR to mix
s-box outputs so that this will be effective.

If we are iterating through the s-box rows for that, it makes sense to permute
the columns in the same loop. We suggest simply rotating each row under control
of 5 bits of key. A CAST-128 implementation will have code for this, since the
same rotation is used in the round function, and rotation is reasonably efficient.

At this point, we have used 37 bits per s-box, 148 bits in all. In many appli-
cations, this will be quite sufficient.

Costs of this are minimal: 1024 XOR, and rotation operations. This is much
less than CAST-128’s round key generation overhead, let alone Blowfish’s work
to generate s-boxes and round keys.

24 Sandy Harris and Carlisle Adams

4.2 Stage Two

To go beyond that, you can add affine functions to s-box columns or you can
permute s-box rows in a manner equivalent to permuting the input bits.

The choice would depend upon the relative strength of these two methods,
along with the relation between their overheads and the resources available in a
particular application. In our suggested implementation, using affine functions
requires more storage while permuting the rows involves more computation.
Neither operation looks prohibitively expensive in general, but either might be
problematic in some environments.

For purposes of this paper, we will treat permuting the inputs as the next
thing to add, and then go on to look at adding affine functions.

To permute the rows in a manner equivalent to permuting the input bits we
add the following mechanism. We use a 256-row array, each row composed of an
8-bit index and a 32-bit output. We can rearrange rows as follows:

— put the (256*32)-bit s-box in the output part of the array;

— fill the index part with the 8-bit values in order from hex 00 to FF;

— operate in some way on the index parts (without affecting the 32-bit s-box
rows) so as to give each row a new index;

— sort the 256 rows so that the index parts are again in order (00 to FF),
moving the s-box rows along with the indexes so they are in a new order;

— discard the index portion.

This results in a cryptographically identical s-box with rows in the new order.
The operations permitted in the third step for changing the 8-bit values are
just those which are equivalent to permuting and inverting the s-box inputs. We
can XOR a constant into all index rows or we can permute index columns. Nei-
ther operation alters the XOR difference between index rows, so cryptographic
properties are conserved as shown earlier.

XORing a constant into each index row is of little benefit. This is also true of
rotation, which uses only 3 bits per s-box (hardly enough to justify the overhead
of sorting the s-boxes).

To operate usefully on the inputs, then, we should do a full permutation on
the index columns. In code, this would need a function to permute 8-bit values
under control of a 15-bit key. It would use 15 key bits per s-box.

At this point, we are using 52 bits per s-box, 208 bits in all, and are permuting
both rows and columns or both inputs and outputs. Again, this would be quite
sufficient for many applications.

4.3 Stage Three

We can, however, go further by adding affine functions to the columns.

There are exactly 512 affine Boolean functions of 8 variables. In theory, it
would be possible to add a key-selected affine function to each s-box column,
using 9 bits of key per column, or 1152 bits for a set of four 8 x 32 s-boxes, but
this seems unacceptably expensive in practice.

Key-Dependent S-Box Manipulations 25

Since the inverse of an affine function is also affine, we need only store half of
the 512 possible functions to have them all available. Consider a (256*256)-bit
Boolean array with affine functions in all columns and no two columns either
identical or inverses. From this, create four 256 x 32 arrays. This can be done
using log, (fgg) key bits, but implementing this would also be expensive. As a
more practical alternative, using log, (186) ~ 13 bits of key to select eight of
sixteen “chunks of 16 columns” from the original array may be a reasonable

compromise.

4.4 Putting It All Together

Given four 256 x 32 arrays of affine functions, we add a few operations inside
the loop that runs through each s-box. The inner loop ends up as follows (in
pseudo-C with “<<<” for rotation and “~” for XOR):

unsigned *s, *a ; // pointers to s-box & affine array
unsigned char *p; // pointer into index array

// initialize pointers here...

for(i =0 ; 1 < 266 ; i++, s++, at+, p++)

{
xs = (¥s <<< k1) 7~ (xa <<< k2) " k3; // 5+5+32 key bits
*p = permute8(xp, k4) ; // 15 key bits
}
gsort(.....)

This uses 57 key bits per s-box inside the loop. With the 13 used outside the
loop setting up the A-boxes, and another 15 used in re-arranging the original 8
s-boxes, we have 256 key bits in total exclusively used for s-box manipulations.

5 Further Work

Further work in this area can be done both on the theoretical side and on the
practical side. For example, a formal characterization of the set of affine func-
tions that can be added to an s-box without reducing its cryptographic strength
(beyond the subset specified in this paper) would be of interest. As well, since
factorials do not correspond to powers of 2, more precise practical specifications
need to be given to convert expressions such as “log,(8!)” to bit lengths (i.e.,
it needs to be stated exactly which particular permutation corresponds to each
value of a 15-bit key segment).

6 Conclusions

This paper has proposed the concept of using key-dependent s-box manipula-
tions to strengthen specific block ciphers against attacks which depend upon
knowledge of the s-box contents (such as linear and differential cryptanalysis

26 Sandy Harris and Carlisle Adams

and their variations). The manipulations described include a permutation of the
output bits, a permutation of the input bits, the addition of affine functions to
the s-box columns, and the addition of a restricted set of affine functions to the
s-box inputs. It has been shown (using the concept of dynamic distance [4]) that
such manipulations do not degrade the cryptographic properties of carefully-
constructed s-boxes, and therefore do not degrade the cryptographic strength of
the corresponding ciphers with respect to existing analysis. On the contrary, it
is possible that cryptographic strength may be substantially increased by such
manipulations because the most effective cryptanalytic attacks to date would
appear to require a significant exhaustive search phase in addition to their cur-
rent complexity in order to be mounted against ciphers with such “hidden” s-box
contents.

Some implementation considerations for this proposal were also discussed,
and options were presented with respect to the level of complexity that might
be employed in various environments.

References

1. C. Adams, “Constructing Symmetric Ciphers Using the CAST Design Procedure”,
Designs, Codes and Cryptography, vol.12, no.3, Nov. 1997, pp.71-104.

2. E. Biham and A. Biryukov, “How to Strengthen DES Using Existing Hardware”
Advances in Cryptology - ASTACRYPT 94 Proceedings.

3. W. Diffie and M. Hellman, “New Directions in Cryptography”, IEEE Transactions
on Information Theory, vol.22, 1976, pp.644-654.

4. S. Mister and C. Adams, “Practical s-box Design”, Workshop Record of the Work-
shop on Selected Areas in Cryptography (SAC ’96), Queen’s University, Kingston,
Ontario, Aug. 1996, pp.61-76.

5. R. Rivest, A. Shamir, and L. Adelman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”, Communications of the ACM, v. 21, n. 8, Feb.
1978, page 120.

6. B. Schneier, Applied Cryptography, Second Edition, John Wiley & Sons, 1996.

	Introduction
	Considerations
	The Extra Key Bits
	CAST's Strong S-Boxes
	Blowfish's Key-Dependent S-Boxes
	Resistance to Attack

	The Proposal
	Permuting S-Box Columns
	Adding Affine Functions to S-Box Columns
	Permuting S-Box Inputs
	Adding Affine Functions to S-Box Inputs
	Other Possible Operations
	Limitations in Key-Dependent Operations

	Practical Considerations
	Stage One
	Stage Two
	Stage Three
	Putting It All Together

	Further Work
	Conclusions

