
Key Establishment in Large Dynamic GroupsUsing One-Way Function Trees�David A. McGrew and Alan T. ShermanyCryptographic Technologies GroupTIS Labs at Network Associates, Inc.Glenwood, Maryland 21738email: fmcgrew, ashermang@tis.comMay 20, 1998
AbstractWe present and analyze a new algorithm for establishing shared cryptographic keys in large, dynam-ically changing groups. Our algorithm is based on a novel application of one-way function trees. Incomparison with previously published methods, our algorithm achieves a new minimum in the numberof bits that need to be broadcast to members in order to re-key after a member is added or evicted. Thenumber of keys stored by group members, the number of keys broadcast to the group when new membersare added or evicted, and the computational e�orts of group members, are logarithmic in the numberof group members. Our algorithm provides complete forward and backwards security: newly admittedgroup members cannot read previous messages, and evicted members cannot read future messages, evenwith collusion by arbitrarily many evicted members.This algorithm o�ers a new scalable method for establishing group session keys for secure large-groupapplications such as electronic conferences, multicast sessions, and military command and control.Keywords. Conference keying, cryptography, cryptographic protocols, key agreement, key establishments,one-way functions, one-way function trees, secure conferences, secure group applications.�Support for this research was provided by the Defense Advanced Research Projects Agency under contract F30602-97-C-0277.yOn leave from the Department of Computer Science and Electrical Engineering at the University of Maryland, BaltimoreCounty (UMBC). 1

1 IntroductionE�ciently managing cryptographic keys for large, dynamically changing groups is a di�cult problem. Everytime a member is evicted from a group, the group key must change; it may also be required to change whennew members are added. The members of the group must be able to compute a new key e�ciently, whilearbitrary coalitions of evicted members must not be able to obtain it. Communication costs must also beconsidered.Real-time applications, such as secure audio and visual broadcasts, pay TV, secure conferencing, andmilitary command and control, need very fast re-keying so that changes in group membership are notdisruptive. To deal with large group sizes (e.g. 100,000 members), we seek solutions whose re-keyingoperations \scale" well in the sense that time, space, and broadcast requirements of the method grow atmost logarithmically in the group size. Key management for these applications should be able to takeadvantage of e�cient broadcast channels, such as radio broadcast and Internet multicast.We present and analyze a new practical algorithm for establishing shared keys in large, dynamic groups.Our algorithm, which is based on a novel application of one-way function trees, scales logarithmically ingroup size. In comparison with previously published methods, our algorithm achieves a new low in therequired broadcast size.The rest of this paper is organized in seven sections. Section 2 brie
y reviews previous approaches to groupkey establishment. Section 3 describes our proposed method, and Sections 4 and 5 respectively analyze itssecurity and performance. Section 6 discusses extensions of the basic method to manage subgroups. Section7 gives some implementation notes, and Section 8 summarizes our conclusions.2 Previous WorkA variety of solutions have been proposed, including methods based on a simple key distribution center(SKDC), information theoretic approaches, group Di�e-Hellman (GDH), hybrid approaches that trade o�information theoretic security against storage requirements, and the logical key hierarchy (LKH).The simplest solution is SKDC, in which a group manager shares a secret key with each group memberand sequentially uses each member's key to communicate the secret group key to that member [6]. Eachtime that a member is added to (or evicted from) a group with n members, the group manager must performn encryptions and transmit n keys.Information theoretic approaches must satisfy the memory lower bounds of Blundo et al. [1] and usestorage exponential in group size. All of the previously published hybrid approaches that achieve perfectforward secrecy also scale at least linearly in group size [3].GDH approaches, including those by Burmester and Desmedt [2] and Steiner et al. [12, 13], require alinear number of public-key operations, which are slow in software relative to encryption or one-way functionoperations.The LKH method [14, 15] achieves logarithmic broadcast size, storage, and computational cost. Ahierarchy of keys is created, and each group member is secretly given one of the keys at the bottom ofthe hierarchy. Each interior key is encrypted with all of its children keys, and all of these ciphertexts arebroadcast to the group. Each member can decrypt the keys along the path from their leaf to the root; theroot key is used as the group key. The interior keys are associated with logical (rather than physical) securitydomains. This system allows the group to re-key after an addition or eviction with a broadcast of about2 lgn keys.3 One-way Function TreesThe new group keying method uses one-way functions to compute a tree of keys, which we call the One-wayFunction Tree (OFT) algorithm. The keys are computed up the tree, from the leaves to the root; thisapproach reduces re-keying broadcasts to only about lgn keys,2

MFigure 1: An example of a key tree. The member at the leaf labeled M knows only the keys of the blacknodes (including the root key, which is used as the group key) and the blinded keys of the grey nodes.Although we believe our bottom-up use of one-way function trees for group keying is novel, the idea ofusing one-way functions in a tree structure is not new. Merkle [9] proposed an authentication method basedon such trees. Fiat and Naor [3] used a one-way function in a top-down fashion in their group keying methodfor the purpose of reducing the storage requirements of information theoretic group key management.The group manager maintains a binary tree, each node x of which is associated with two cryptographickeys, a node key kx and a blinded node key k0x = g(kx). The blinded node key is computed from the nodekey using a one-way function g; it is blinded in the sense that a computationally limited adversary can knowk0x and yet cannot �nd kx.The manager uses a symmetric encryption function E to communicate securely with subsets of groupmembers.3.1 Structure of an OFTInterior nodes of the tree have exactly two leaves. Every leaf of the tree is associated with a group member.The manager assigns a randomly chosen key to each member, securely communicates this key to the member(using an external secure channel), and sets the node key of the member's leaf to the member's key. Theinterior node keys are de�ned by the rulekx = f(g(kleft(x)); g(kright(x))); (1)where left(x) and right(x) denote the left and right children of the node x. The function g is one-way, andthe function f is a \mixing" function. The properties of f and g will be discussed in detail in Section 4.1.The node key associated with the root of the tree is the group key, which the group can use to communicatewith privacy and/or authentication.The security of the system depends on the fact that each member's knowledge about the current stateof the key tree is limited by the following invariant:System invariant. Each member knows the unblinded node keys on the path from its node to the root,and the blinded node keys that are siblings to its path to the root, and no other blinded or unblinded keys.This fact is maintained by all operations that add members to or delete members from the group. Anexample OFT is shown in Figure 1, which illustrates what a group member knows.Each group member maintains the unblinded key of the leaf with which she is associated, and a list ofblinded node keys for all of the siblings of the nodes along the path from her node to the root. This enablesher to compute the unblinded keys along her path to the root, including the root key, which she also stores.If one of the blinded node keys changes and she is told the new value, then she can recompute the keys onthe path and �nd the new group key. 3

The security of the group key results primarily from the mixing function f . The addition of the one-wayfunction g to blind internal node keys gains an important functionality: each internal node key can be used asa communications subgroup key for the subgroup of all descendent members. This functionality is importantto the e�ciency of the add and evict operations.3.2 Adding or Evicting a MemberThe operations of adding and evicting members both rely on the communication of new blinded key values,from the manager to all of the members, after the node key associated with a leaf has changed. Each blindednode key must only be communicated to the appropriate subset of members to maintain security. If theblinded key k0x changes, then its new value must be communicated to all of the members who store it. Thesemembers are all associated with the descendants of the sibling s of x, and they all know the unblinded nodekey ks. The manager encrypts k0x with ks before broadcasting it to the group, providing the new value ofthe blinded key to the appropriate set of members, while keeping it from other members.When a new member joins the group, an existing leaf node x is split, the member associated with x isnow associated with left(x), and the new member is associated with right(x). Both members are given newkeys. The old member gets a new key because her former sibling member knows her old blinded node keyand could use this information in collusion with another group member to �nd an unblinded key that is noton his path to the root. The new values of the blinded node keys that have changed are broadcast securelyto the appropriate subgroups, as described above. The number of blinded keys that must be broadcast tothe group is equal to the distance from x to the root plus two. In addition, the new member is given herset of blinded node keys, in a unicast transmission, using the external secure channel. In order to keep theheight h of the tree as low as possible, the leaf closest to the root is split when a new member is added.When the member associated with the node y is evicted from the group, the member assigned to thesibling of y is reassigned to the parent p of y and given a new leaf key value. If the sibling s of y is theroot of a subtree, then p becomes s, moving the subtree closer to the root, and one of the leaves of thissubtree is given a new key (so that the evictee no longer knows the blinded key associated with the rootof the subtree). The new values of the blinded node keys that have changed are broadcast securely to theappropriate subgroups, as described above. The number of keys that must be broadcast is equal to thedistance from y to the root.3.3 Multiple Addition and EvictionThe broadcast size and computational e�ort of multiple additions and evictions can be substantially reducedby using an operation that evicts and adds multiple members. This operation relies on the communicationof new blinded node keys to appropriate members after many leaf nodes change. The nodes whose blindedkeys change are on the tree of ancestors of the changed leaves; we call this tree the Common Ancestor Tree(CAT). The size of this tree is the number of blinded node keys that must be recomputed and broadcast tothe group.The algorithm for propagating the changes through the tree and computing the broadcast informationis a post-order traversal of the CAT, from the lowest level to the highest. The CAT can easily be computedduring the traversal.4 Security AnalysisEvicted members have some information about the key tree but not enough to compute directly any unblindednode key. Importantly, arbitrary coalitions of evicted members cannot directly compute any unblinded nodekeys. The unpredictability of OFT group keys also depends on the random selection by the manager of theleaf keys. 4

De�nition 1. (Security) The OFT method is secure if it is computationally infeasible for an adversary tocompute any unblinded node key with non-negligible probability.Note that if an adversary can compute an unblinded node key, she can use it to decrypt other blindednode keys. We therefore require all unblinded node keys to be uncomputable, to protect the group key.After a member is evicted, the keys along the path from her node to the root change. Because of thesystem invariant described in section 3.1, she only knows the blinded keys of the siblings to the path fromher parent to the root. These blinded keys are insu�cient to compute directly any unblinded keys.The most recently evicted member cannot gain any advantage by colluding with any previous evictee:Let k0 be any valid blinded key known by the previous evictee after his eviction. If k0 is a sibling of a validblinded key know by the most recent evictee after his eviction, then k0 changed during the last eviction.If multiple members are evicted simultaneously, all of the keys of the nodes on the CAT change. Thesum total of the evictees' knowledge about the key tree is all of the blinded keys of nodes that are siblingsof nodes in the CAT but are not in the CAT; we call these nodes CAT-siblings. The evicted members donot know any unblinded keys that are on sibling nodes, so they cannot compute any unblinded node keysand cannot compute the group key directly.It is a security advantage of OFT that the manager selects all the leaf keys. Doing so prevents the enemyfrom maliciously trying to create collisions in the one-way function.4.1 The Functions f , g, and EIn this section we de�ne the important properties of the functions f , g, and E. For simplicity, we assumethat f is commutative.Property 1. The encryption function E is secure against ciphertext-only attacks. Given a set of ciphertextsc0; c1; : : : ; cm, where ci = Ek(pi) is the encryption of an unknown plaintext pi with an unknown key k, it iscomputationally infeasible to �nd any information about any plaintext p with non-negligible probability.This property prevents an attacker from discovering blinded keys by decrypting the ciphertexts that arebroadcast to the group. It is necessary for the security of the system.Property 2. The function g is one-way; given g(x), it is computationally infeasible to �nd x with anynon-negligible probability.This property makes it impossible to �nd a node key kx given the blinded key k0x = g(kx). It is necessaryfor the security of the system.Property 3. Given a sequence x0; x1; : : : ; xl�1, it is computationally infeasible to �nd kl with any non-negligible probability, where ki+1 = f(xi; g(ki)), and k0 is chosen at random, for any l less than some valuelmax.This property makes it impossible for an evicted member, whose distance to the root is less than lmax,to �nd any node key. We conjecture that it is su�cient for the security of the system. From the systeminvariant, a member at node y who is evicted knows the blinded keys of the sibling nodes along the pathfrom y to the root (which we can label x0; x1; : : :). This is the only knowledge about the state of the key treeafter her eviction that she has, and because of the second property, it is insu�cient to violate the securityof the system. This property requires that the height of the key tree must be less than lmax.Property 3 prevents the complete set of evictees from �nding any unblinded node keys through collusion,since the most recent evictee gains no useful knowledge from collusion. After the multiple eviction of anarbitrary set of members, the combined knowledge about the state of the key tree is the blinded keys ofthe CAT-siblings. The cryptanalytic problem that a colluding set of multiply-evicted members face is moredi�cult than that of a single evictee, since there is no sequence of blinded keys that extends from a leaf tothe root. 5

4.2 DiscussionThe cryptanalytic challenge of property 3 is similar to the problem of guessing gl(x) (that is, the lth iterateof the function g on x), where x is chosen at random. This construction is used by the one-time passwordsystem [7] and the S/KEY protocol [5] that implements it. Other cryptosystems, such as the group keymanagement method in section 2 of [3], rely on a similar construction. When l is su�ciently large, thisconstruction is weak. If g : 2m ! 2m is iterated l = 2m=2 times, this construction has only about m=2bits of security, since the set of possible outputs includes only about 2m=2 elements (with overwhelmingprobability) [4]. However, this construction appears to be secure when l � 2m=2.The tree construction has half as many random inputs (assuming a balanced tree) as it has functionevaluations, while the iterated construction has only one input. This fact suggests that the tree constructionused in OFT is more secure than the iterated construction mentioned above.The theoretical implications of choosing an appropriate value of lmax is an interesting open question.Nevertheless, we conjecture that if Property 2 holds, then for f(x; y) = x�y, Property 3 holds for lmax = 30.This choice, which is less than the standard number of 100 iterations used in the S/KEY protocol, is su�cientto handle over one billion users.5 Computational, Transmission, and Storage RequirementsIn this section, we analyze and compare the time, space, and communication requirements of our new OFTmethod with those of the SKDC and LKH methods. Tables 1 and 2 summarize our comparisons, focusingon the following measures: broadcast size, unicast size, manager computation, maximum of all membercomputations, manager storage, and member storage. Although the three methods can be objectivelycompared by these quantitative comparison criteria, the decision of what method is best for a particularapplication must depend on the requirements of the application. In the rest of this section, we distill themost important di�erences among the three methods, as revealed by Tables 1 and 2.Tables 1 and 2 give the complexities of the group initialization, key establishment, and re-keying tasks.These tasks are independent of the �nal step of carrying out secure group communications with an establishedkey.5.1 TerminologyOur analysis assumes that the trees used by LKH and OFT are binary; broadcast sizes increase with thebranching ratio of the trees, so binary trees minimize the communication cost, and are a practical choice. Allof the values neglect constant additive factors for readability. We express these values in terms of constantswhich represent basic requirements of f , g, and E. K is the size of a key in bits. CE; Cr, and Cg arerespectively the computational cost of one evaluation of the encryption function E, generating a key from acryptographically secure random source, and of one evaluation of g. The number of members in the groupis n.In the LKH and OFT methods, the member must notify the members about the changes in the topologyof the tree; this requirement is re
ected in our analysis. The number of bits required to specify a node in abinary tree is equal to the height h of the tree.The performance of LKH and OFT depends on the height of the key tree. To minimize h, new memberscan be added as close to the root as possible. If many evictions occur, the resulting tree may be \unbalanced,"that is, its height may be much greater than lgn. A rebalancing operation can be performed to restructurethe tree so that its height is no greater than lgn+ 2.5.2 ResultsThe broadcast size to re-key after an addition or eviction is n keys for SKDC, 2hK + h bits for LKH,and hK + h for OFT. OFT achieves a smaller broadcast than LKH through its bottom-up approach. The6

extra factor of 2 in LKH comes from the fact that in LHK two separate encryptions are needed per internalnode|one for each of the two children. In both LKH and OFT, the \+h" term is to specify which node wasadded or evicted.For OFT, the security and timing analysis
ows from the invariant properties preserved by each OFToperation. In particular, to compute the group key, each member needs to know: her own key, and herblinded ancestral sibling keys (there are h of the later). During eviction, the evicted slot is pruned and aleaf node along the resulting path is changed. These changes propagate up the tree. A broadcast of h keys isrequired to update all the other members who had depended on the blinded node keys which have changed.Nothing else needs to be broadcast or changed (the blinded keys the evicted party knew are useless).During an OFT add, the situation is similar but slightly di�erent. To add a new member, we expanda leaf node, announce the addition, give the new member a key, and then we do two interesting steps: (a)As with evict, since the new member's key propagates up the tree, we need to broadcast to everyone whodepends on that information the new blinded ancestor keys. (b) Unlike evict, we also have to unicast to thenew member the blinded ancestral sibling keys she needs to know. The factor of two savings in broadcast isfor both add and evict, but add and not evict also requires an additional h keys in unicast.The broadcast size to initialize the SKDC is n. The LKH and OFT require about twice that size ofbroadcast, since every key in a binary tree with n leaves must be communicated.The storage requirements of both LKH and OFT members are about lgn keys, while that of SKDCmembers is exactly 2 keys. The storage requirement of LKH and OFT managers is about 2n, while that ofSKDC managers is exactly n + 1.Another advantage of OFT over LKH is that OFT requires signi�cantly fewer random bits. In particular,to add one member, in OFT the manager must generate only one new random key. By contrast, in LKH,the manager must generate h new keys. If key generation is performed in software, this di�erence couldyield OFT a signi�cant time advantage over LKH since in many practical applications entropy is a preciousresource.The LKH and OFT distribute the computational cost of re-keying among the whole group, so that thegroup manager's burden is comparable to that of a group member. This makes these algorithms especiallyappropriate for an on-line system.

7

Initializing GroupSKDC LKH OFTBroadcast size (bits) nK 2nK + h 2nK + hManager comp. n(CE +Cr) 2n(CE +Cr) 2n(CE +Cg) + nCrMax. member comp. CE hCE hCEAdding a memberSKDC LKH OFTBroadcast size (bits) nK + lgn 2hK + h hK + hUnicast size - - hKManager comp. nCE +Cr h(2CE + Cr) h(CE + 2Cg) + CrMax. member comp. CE hCE h(CE + Cg)Adding l membersSKDC LKH OFTBroadcast size (bits) (n+ l)K 2slK + lh slK + lhUnicast size - - lhKManager comp. (n+ l)CE + lCr CE(2sl � l) + Crsl slCE + 2Cg(sl � l)CrlMax. old member comp. CE hCE h(CE + Cg)Evicting a memberSKDC LKH OFTBroadcast size (bits) nK + lgn 2hK + h hK + hManager comp. nCE h(2CE + Cr) Cr + h(CE + 2Cg)Max. member comp. CE hCE h(CE + Cg)Evicting l membersSKDC LKH OFTBroadcast size (bits) (n� l)K (2sl � l)K + lh slK + lhManager comp. (n� l)CE +Cr (2sl � l)(CE +CR) sl(CE + 2Cg) + CRMax. member comp. CE hCE h(CE + Cg)Table 1: Comparison of the maximum computational and transmission requirements of three importantgroup keying methods. These numbers are approximate. n is the number of members in the group, h isthe height of the key tree, and sl is the size of the CAT when l leaves change. K is the size of a key inbits. CE; Cr, and Cg are respectively the computational cost of one evaluation of the encryption function E,generating a key from a cryptographically secure random source, and of one evaluation of g.SKDC LKH OFTManager storage nK 2nK 2nKMember storage 2K hK hKTable 2: Storage requirements of the group manager and group members, for three important group keyingmethods. 8

10

100

1000

1 10 100 1000

K
ey

s
br

oa
dc

as
t

Leaves changed

re-initialize
one at a time

worst case multi-change
average case multi-change

best case multi-changeFigure 2: The number of keys broadcast by the OFT method to re-key after an addition or eviction, as afunction of the number of changing leaves, in a group with 1024 members (and a balanced tree). The graphis drawn on a log-log scale, so that all data are legible. Multi-change refers to multiple eviction or addition.5.3 Multiple Addition and EvictionIn the set eviction and set addition operations, the broadcast size and the computational e�ort depend onthe size of the CAT. Upper and lower bounds on the size sl of a CAT with l leaf nodes can be computed,allowing bounds to be put on the broadcast size and computational e�ort.The minimum value of sl occurs when the CAT is a size 2l�1 subtree at the lowest level, attached to theroot by a length blog2(n=l)c path. The maximum value of sl occurs when the CAT is a size 2l � 1 subtree,with l paths of length blog2(n=l)c from its leaves downward. The size s thus satis�es2l � 1 + blog2(n=l)c < sl < 2l � 1 + lblog2(n=l)c; (2)when n and l are powers of 2; the bounds are slightly less tight in the general case.When l leaves are selected at random from a set of n, it is highly unlikely that they will be clusteredtogether. The minimum value of sl is attained only when the changing leaves are adjacent; for this reason,we expect the average value of sl to be closer to its maximum. Figure 2 shows the maximum, average, andminimum values for sl as a function of l. As expected, the average value is close to the maximum value; itis never more than 15% smaller.The CAT size in the set addition operation can come close to achieving the lower bound, since the groupmanager can choose the locations of the new members to be adjacent.In the set add and set evict operations, the broadcasts must communicate the changes in the topology ofthe CAT. If the members know the current topology of the tree, then this information is completely speci�edby a list of the leaves that are changing. When l leaves change in a group with n members, the identities ofthe leaves can be speci�ed with l(1 + blog2 nc) bits. Alternatively, the broadcast message can identify eachblinded key with a node. 9

6 Composing Groups of GroupsWe have made the unnecessary assumption that the members of a group are individuals; a group may becomposed of both individuals and subgroups. When a subgroup A is added to a group G, a node in the keytree of G is split, and A is assigned to the right child of that node. The group manager of G communicatesthe leaf key of A's node encrypted with the group key kA of A (in other words, OFT is used as the secureexternal channel, mentioned in Section 3.1, to communicate with A).6.1 Unions and IntersectionsNew groups, which are the union or intersections of subgroups, can be created, while the subgroups retaintheir identities as subgroups (and their [sub]group keys).To create a group key for the group G [H, create a new key tree with two leaves x and y; give kx andk0y to G encrypted with the group key kG, and give ky and k0x to H encrypted with the group key kH . Thegroup key kG[H is given by f(k0x; k0y), as above.A set intersection operation assigns a subgroup to a node but does not give it the blinded node key ofthe sibling node. To create a group key for the group G \ H, de�ne the key kG\H as f(k0x; k0y); give kxto G encrypted with the group key kG, and give ky and to H encrypted with the group key kH . Only themembers of G \H have both k0G and k0H , and so only they can compute kG\H .If the membership of G changes, then kG also changes, and kG[H or kG\H must change as well. Impor-tantly, our key management method allows e�cient re-keying of composite groups: if the composite tree isbalanced, then re-keying will require a broadcast which is logarithmic in the size of the total group.With these simple rules, groups can be created out of arbitrary unions and intersections subgroups. Thisfacilitates group management by providing an e�cient means of composing groups in terms of other groups.7 Implementation NotesAlthough the implementation of the OFT method is straightforward, several important engineering decisionsmust be made. Among these decisions are the choice of f and g, the representation of the tree, time-spacetradeo�s by each member involving whether or not to store unblinded ancestor keys, and the format ofbroadcasts by the manager.We believe that the function g can be based on a cryptographic hash function such as MD5 [11] orSHA-1 [10]. It is possible that the root key does not need to be as large as the output size of the underlyingfunction. For example, MD5 has a sixteen byte output, while DES keys are only seven bytes long. In thiscase, the MD5 output can be reduced by discarding data, as is done in by S/KEY, so that the node keys(and thus the broadcasts) are smaller.The function f does not need to be one-way; it only needs to mix its inputs. This fact suggests thatf(x; y) = x� y is a good choice.Since the group key in OFT is computed as a composition of one-way functions (rather than of one-waypermutations), there is some coalescing of e�ective entropy. Therefore, it is important to size the parametersappropriately to achieve the desired e�ective entropy.In a full system, one might like to support a variety of additional operations. For example, one might liketo allow members to leave the group temporarily without losing their security privileges. Also, one mightlike to allow a newly added member to be able to read a limited amount of previous group communications.We suggest that this later functionality be e�ected through a separate key repository mechanism that isindependent of the key establishment algorithm. 10

8 ConclusionsWe have presented and analyzed a new practical hierarchical algorithm for establishing shared cryptographickeys for large, dynamically changing groups. Our algorithm is based on a novel application of One-wayFunction Trees (OFTs).Unlike all previously proposed solutions based on information theory, public-key cryptography, hybridapproaches, or a single key distribution center, our OFT algorithm has communication, computation, andstorage requirements which scale logarithmically with group size, for the add or evict operation. Each of theaforementioned approaches scale linearly or worse.In comparison with the only other proposed hierarchical method|the Logical Key Hierarchy (LKH)[14]| our OFT algorithm reduces by half the number of bits broadcast by the manager per add or evictoperation; the user time and space requirements of OFT and LKH are roughly comparable. For manyapplications, including multicasts, minimizing broadcast size is especially important.Our security analysis of OFT raises some interesting questions about the security of function iterates,and that of bottom-up one-way function trees.Our OFT algorithm o�ers a practical approach with low broadcast size to manage the demanding keyestablishment requirements of secure applications for large, dynamic groups.AcknowledgmentsWe would like to acknowledge contributions by several colleagues at Trusted Information Systems. We arevery grateful to Michael V. Harding for signi�cant contributions to the original algorithm and for discussingimplementation strategies with us. Dennis K. Branstad, Principal Investigator of the Dynamic CryptographicContext Management (DCCM) Project, suggested the problem and provided constructive recommendationsand technical guidance. Thanks to Jay Turner for helpful comments, and to Sharon Osuna and CarolineScace for editorial suggestions.References[1] Blundo, Carlo, Alfred de Santis, Amir Herzberg, Shay Kutten, Ugo Vaccaro, and Moti Yung" in Advances inCryptology: Proceedings of Crypto 92, E. F. Brickell, ed., LNCS 740, Springer-Verlag (1992), 471{486.[2] Burmester, Mike, and Yvo Desmedt, \A secure and e�cient conference key distribution system" in Advances inCryptology: Proceedings of Eurocrypt 94, A. De Santis, ed., LNCS 950, Springer-Verlag (1994), 275{286.[3] Fiat, Amos, and Moni Naor, \Broadcast encryption" in Advances in Cryptology: Proceedings of Crypto 93, D.R. Stinson, ed., LNCS 773, Springer-Verlag (1993), 481{491.[4] Flajolet, Philippe, and Andrew M. Odlyzko, \Random Mapping Statistics," Advances in Cryptology: Eurocrypt'89 Proceedings, J.J. Quisquater and J. Vandewalle, eds., LNCS 434, Springer-Verlag (1989), 330{354.[5] Haller, Neil M., \The S/KEY one-time password system," Proceedings of the Internet Society 1994 Symposiumon Network and Distributed System Security, Internet Society, (1994), 151{157.[6] Harney, Hugh, Carl Muckenhirn, and Thomas Rivers, Group Key Management Protocol Architecture, Requestfor comments (RFC) 2093, Internet Engineering Task Force, (March 1997).[7] Lamport, Leslie, \Password authentication with insecure communication," in Communications of the ACM, vol.24, no. 11 (November 1981), 770{772.[8] Menezes, Alfred J., Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography, CRCPress (Boca Raton, 1997).[9] Merkle, Raph C., \Secrecy, authentication, and public-key cryptosystems," Technical Report No. 1979-1, Infor-mation Systems Laboratory, Stanford University (Palo Alto, CA, 1979).11

[10] FIPS Publication 180-1, Secure hash standard, NIST, U.S. Department of Commerce, Washington, D.C. (April1995).[11] Rivest, Ronald L., \The MD5 Message-Digest Algorithm," Request for Comments (RFC) 1321 (1992).[12] Steiner, Michael, Gene Tsudik, and Michael Waidner, \Di�e-Hellman key distribution extended to group com-munication," Proceedings of the 3rd ACM Conference on Computer and Communications Security (March 14{16,1996). 7 pages.[13] Steiner, M., G. Tsudik, and M. Waidner, \CLIQUES: A new approach to group key agreement," IBM ResearchReport RZ 2984 (# 93030), (December 12, 1997). 17 pages.[14] Wallner, Debby M., Eric J. Harder, and Ryan C. Agee, \Key management for multicast: Issues and architec-tures," Internet Draft (Work in progress), Internet Engineering Task Force (July 1, 1997). 18 pages.[15] Wong, Chung Kei, Mohammed G. Gouda, and Simon S. Lam, \Secure group communications using key graphs,"Technical Report TR-97-23, Dept. of Computer Science, Univ. of Texas at Austin (July 28, 1997). 24 pages.

12

Appendix A: Pseudocode for OFT AlgorithmsAlgorithm 1. Manager-AddMember (T, M)input: an OFT T, and a new member Maction: modify T, and broadcast M's blinded ancestor sibling keys to membersBeginx = SelectAdditionLeaf(T)OldM = Member(x)(a, b) = Split(x)Assign(a, OldM); Assign(b, M);AssignNewKey(OldM); AssignNewKey(M);B = BuildListOfBlindedAncestorKeys(b)Broadcast(\Add", NodeNumber(b), B)L = BuildListOfBlindedAncestorSiblingKeys(b)Unicast(L) to MEndNote: Upon receipt of the broadcast, each member recomputes the shared group key by recomputing andstoring her changed blinded ancestors.Algorithm 2. Manager-EvictMember(T, M)input: an OFT T, and a member Maction: modify T, and broadcast new blinded keys to membersBeginy = Leaf(M)p = Parent(y); s = sibling(y)if leaf?(s) thenAssign(p, Member(s))x = selsep = sx = SelectLeaf(s)endifAssignNewKey(Member(x))B = BuildListOfBlindedAncestorKeys(x)Broadcast(\Evict", NodeNumber(y), B)EndAlgorithm 3. Manager-MultiEvict(T, L)input: an OFT T, and a list of members to evictaction: modify T, and broadcast new blinded keys to membersBeginC = ComputeEvictionCAT(T, L)B = BuildListOfBlindedAncestorKeysForCAT(C)Broadcast(\MultiEvict", NodeNumbersOfMembers(L), B)End 13

