
Key ingredients in an IoT recipe: Fog Computing,

Cloud Computing, and more Fog Computing

M. Yannuzzi∗, R. Milito†, R. Serral-Gracià∗, D. Montero∗, and M. Nemirovsky‡

∗Networking and Information Technology Lab (NetIT Lab), UPC, Barcelona, Spain
†Cisco Systems, San José, CA, USA

‡Senior ICREA Researcher at Barcelona Supercomputer Center (BSC), Barcelona, Spain

Abstract—This paper examines some of the most promising
and challenging scenarios in IoT, and shows why current compute
and storage models confined to data centers will not be able to
meet the requirements of many of the applications foreseen for
those scenarios. Our analysis is particularly centered on three
interrelated requirements: 1) mobility; 2) reliable control and
actuation; and 3) scalability, especially, in IoT scenarios that
span large geographical areas and require real-time decisions
based on data analytics. Based on our analysis, we expose the
reasons why Fog Computing is the natural platform for IoT, and
discuss the unavoidable interplay of the Fog and the Cloud in the
coming years. In the process, we review some of the technologies
that will require considerable advances in order to support the
applications that the IoT market will demand.

Index Terms—IoT, Fog Computing, Cloud Computing, mobil-
ity, data analytics, real-time control, actuation, security.

I. INTRODUCTION

In the next few years, more and more “things” will pro-

duce and consume data in ways that we are just starting to

envision. Many of these “things” will be part of much larger

systems, which will obviously require compute and storage

capacity for processing and storing their data. As a matter of

fact, deciding the location of such resources poses non-trivial

questions to platform designers. In the first place, the majority

of IoT endpoints will be very basic, which means that they will

not embed the compute and storage resources that they need.

In other words, external means will be required in order to

perform a considerable part of the data processing tasks. Sec-

ondly, the strategy for placing those “external resources” is not

self-evident. The demands for compute and storage resources

will probably come from tens of billions of fixed and mobile

endpoints, which will span vast geographical areas and will

be arranged in various different forms, covering a plethora of

different use cases and settings. In turn, many of these settings

will have stringent requirements, such as very low latency, high

throughput during short time periods, prompt decision mak-

ing based on real-time analytics, and different combinations

of these and other requirements as well. As if that were not

enough, many IoT ecosystems will be characterized by other

quite restrictive constraints, such as low power communica-

tions, scarce energy, lossy communications including signal

fading problems, short reach radio, etc.

In summary, IoT will demand significant compute and stor-

age resources, but the question of where should those resources

be placed remains open. The success and growth of Cloud

Computing would probably make an eager respondent say:

“In the Cloud, of course”. Unfortunately, the requirements

and design space of IoT make Cloud Computing unfeasible

in numerous scenarios, especially, when the goal is to build a

general and multipurpose platform that can serve a wide vari-

ety of IoT applications. To illustrate this point let us consider

the following:

Are there applications in the IoT space that would require

offloading some computation tasks onto other devices, but the

mere fact of having the compute and storage resources con-

fined in a centralized data center makes the overall platform

unfeasible?

The answer to this question is “Yes”, and the main reasons

lie on Fig. 1. Observe that the number of potential use cases

foreseen under these sets is huge, and particularly covers ap-

plications where the offloading of computation and data pro-

cessing tasks is essential, but their characteristics make them

particularly problematic to run in “the Cloud”. In this paper we

analyze these sets, their requirements, and based on them de-

rive the reasons that unquestionably support the fact that the

recipe for building scalable IoT platforms is the following:

a) add “Fog Computing” [1], [2]; b) add “Cloud Computing”

A platform for IoT must
support rapid mobility

patterns, even requiring in
some cases high

throughput on demand
for short time periods

A platform for IoT must
support systems requiring
reliable sensing, analysis,
control and actuation, in

scenarios subject to poor or
unreliable connectivity to
the Cloud and/or requiring

very low latency

A platform for IoT must be able
to manage a large amount of

geographically distributed “things”
(either physical or virtual), which may
produce data that require different

levels of real‐time analytics
and data aggregation

Fig. 1. Some of the main requirements for designing and building an adapt-
able and scalable IoT platform.

325

and smartly combine it with the Fog, and c) whenever the

platform needs to scale either to cover more “things” or more

Point-of-Presence (POPs), just add more Fog nodes.

In a nutshell, Fog Computing proposes a model in which

data can be analyzed and processed by applications running in

devices within the network rather than in a centralized Cloud.

Indeed, by smartly orchestrating and managing compute and

storage resources placed at the edge of the network, Fog Com-

puting can deal with the ever-increasing number of connected

devices and the emerging demand in IoT. As we shall show, as

long as the technological requirements and constraints of the

IoT applications are properly fulfilled, it is up to the platform

designer to decide whether an endpoint should be served by

the Cloud, the Fog, or an adequate combination of the two at

any given time during the service lifetime. As the economy

of scale dictates, whenever possible Cloud is the right venue.

Hence, Fog Computing is not devised as a competitor of the

Cloud; quite on the contrary, it is envisioned as the perfect ally

for a broad spectrum of use cases and applications for which

traditional Cloud Computing is not sufficient. These two tech-

nologies are called to interplay and benefit from each other

in a synergistic way, since only a smart combination of com-

munications, orchestrations, and assignment of compute and

storage resources can tackle the requirements of IoT.

The rest of the paper is organized as follows. Section II

examines the challenges posed by mobility in IoT, and partic-

ularly discusses the limitations of Mobile Cloud and other en-

abling technologies, such as LISP and Linux containers. Sec-

tion III examines the issues related to reliable control and ac-

tuation, while section IV analyzes the challenges behind data

aggregation, and the design of scalable models enabling real-

time analytics and decision making. Section V examines the

strengths of Fog Computing under the challenges exposed in

previous sections. Finally, section VI concludes the paper.

II. MOBILITY IN THE COMING AGE OF IOT

The set on the upper left of Fig. 1 covers IoT applications

that need compute and storage support on the move, and more

importantly, such support could be required under rapid mo-

bility patterns. Mobility, and especially fast mobility, is one

of the aspects in which the traditional Cloud paradigm needs

an ally to achieve pervasiveness, while offering the reliability

required by the applications. In particular, under rapid mobil-

ity it makes much more sense that the computing intelligence

required “moves” with the “things” that need it—by “moves”

we mean either physically or virtually. This is because those

moving “things” may traverse large geographical areas in a

few minutes, so the interactions with compute and storage re-

sources will be subject to dynamics that the traditional Cloud

model is not yet ready to offer. Potential scenarios subject

to these requirements could involve applications for sensors

moving with a vehicle, for passengers while commuting in a

metro, a train on the countryside, an aircraft, etc. Clearly, the

deployment of more and more Cloud facilities in the tradi-

tional way, and distributing them among large geographical

areas will not solve the problem.

A. Mobile Cloud Computing

One of the initiatives that is trying to tackle part of these

requirements is Mobile Cloud Computing (MCC) [3]. This

paradigm aims at enabling compute and network services ubiq-

uitously with the help of the Cloud (see Fig. 2). Issues such as

the limited amount of resources of many mobile and M2M de-

vices (e.g., battery duration, processing power, memory, etc.)

are clear drivers for offloading part of the computation and

data processing tasks onto the Cloud. Unfortunately, the MCC

paradigm is especially challenging for applications with the

requirements shown in the set at the upper left of Fig. 1. On

the one hand, MCC suffers from the intrinsic characteristics of

mobility, such as frequent variations of network conditions, in-

cluding signal fading and severe service degradation. Observe

that these issues are clearly amplified under rapid mobility pat-

terns. On the other hand, even if the mobile device remains in

a fixed location, the communication path to reach the Cloud

is often subject to bandwidth limitations and communication

latency, and these issues strongly depend on the radio cover-

age, the interference, and the amount of resources shared with

other mobile devices.

An alternative in this regard is to rethink the way in which

cells and wireless networks are currently deployed, and bet on

Heterogeneous Networks (HetNets) [3], which offer a variety

of radio access nodes and technologies under the umbrella of

the Long Term Evolution (LTE) network. As shown in Fig.

2, a mix of macro, pico and femto cells, as well as other

possible configurations, offer a promising approach to meet

the traffic rates and demands of broadband wireless networks.

Unfortunately, even the combined MCC and HetNet model

cannot deal with rapid mobility patterns. This is because the

macro cells are devised to provide coverage to wide areas, and

therefore avoid frequent handovers. However, this comes at the

cost of the relatively low data rates and signal instability. Pico

and femto cells, on the other hand, provide much higher data

rates and signal stability, but their coverage is restricted to a

Transit	 	

Network	

Cloud	

Macro	 Cell	

Macro	 Cell	

Macro	 Cell	

Pico	 Cell	
Femto	 Cell	

Small	 Cells	

VM	
VM	

VM	

VM	
VM	

VM	

VM	
VM	

Fig. 2. A Mobile Cloud Computing (MCC) scenario. The arrows toward
the Cloud represent computation requests, data uploads, etc., while the ones
in the opposite direction represent computation results, commands or actions,
data downloads, etc.

326

few hundred meters, thus they are not conceived for serving

applications under fast mobility.

Let us now proceed to analyze other potential technology

enablers, and examine some of the existing limitations to truly

unfold the mobility of physical and virtual devices under rapid

mobility patterns in IoT.

B. Mobility of Virtual Containers

One of the challenges that fast mobility imposes on IoT

platforms is the capability to provide and keep the compute

and storage resources close to the “things”, and, in the event

of a sudden change in the location, the platform must be able

to rapidly reconfigure the switching context, and seamlessly

orchestrate the allocation of resources and the migration of the

state to the new location. To address this challenge, resource

virtualization techniques allow the creation of isolated execu-

tion contexts that can be allocated for the processing needs of

the “things”, and migrate them whenever required. Resource

virtualization techniques based on containers offer a promising

approach in the context of IoT, since they have the potential

to enable lightweight migrations, such as just the container

state. LinuX Containers (LXC) [4], Docker [5], or CRIU [6]

are some representative examples, but further advances are

still needed. For instance, at the moment CRIU only supports

process migration—we will assess this in Section II-D.

C. Addressing Considerations

Many of the IoT use cases foreseen thus far require the sur-

vival of ongoing sessions even in the event of switching to

another L2/L3 network (e.g., due to a handover). Indeed, one

of the main challenges is to ensure the same level of secu-

rity irrespectively of the physical location—observe that this

includes the application and maintenance of security policies

and rules on the move. To cope with this challenge, the most

important technologies currently addressing end point mobil-

ity with session continuity are the Locator/Identifier Separa-

tion Protocol (LISP) [7], and Multi-Path TCP (MPTCP) [8].

LISP allows an endpoint to switch between networks while

keeping its Identifier (IP address) intact—by maintaining the

Routing Location (RLOC) of each Identifier in a mapping sys-

tem, which is updated by its control plane. On the other hand,

MPTCP defines TCP sub-flows at the transport layer based

on the IP addresses of all the enabled interfaces on a device.

Under mobility, whether the device changes its IP or switches

radio technologies (e.g., WiFi to 4G), the new IP address is

registered and a new sub-flow is opened. This strategy allows

for seamless mobility of the device across networks and ra-

dio technologies. Clearly, both LISP and MPTCP are solid

technologies for enabling mobility in IoT.

D. Limitations in terms of Handover and Live Migrations

In order to analyze the capabilities and limitations of state-

of-the-art technologies for some of the mobility cases foreseen

in IoT, we have run a set of experiments considering three dif-

ferent mobility scenarios: i) Mobile Node Handover, ii) Pro-

cess Migration using CRIU, and iii) Mobile Node handover

with Process Migration. The first one is a typical scenario

where a device on the move changes Access Points (APs),

forcing a handover at the endpoint. The second case is ori-

ented to process migration from one domain to another (e.g.,

due to scheduled maintenance), and in the last one, we con-

sider the case when both the mobile endpoint and the process

move (e.g., the application requires very low latency and the

endpoint is moving very fast, thus the offloaded computation

process needs to move along with the endpoint).

For each scenario, we consider the case where a connection

between the mobile endpoint and the process needs to be main-

tained, and this applies even during the process migration or

the handover process (in our case, seamless handover/process

migration using LISP). This case actually represents a typical

stateful protocol where both ends of the connection need to

keep state. Furthermore, for the first scenario we also tested

the case where the connections are stateless and self-contained.

This could stand for a typical data harvesting sensor—probably

a proxy of a larger sensor network—that temporarily stores

data that is pushed to a server periodically without real state

between pushes. To implement and test these scenarios, we

have set up a testbed composed by two different APs config-

ured in different networks, and a computing node in each site

providing service (represented as a process) to a mobile node,

i.e., an Android cell-phone in this case using 802.11g.

The purpose of the experiments is to measure the down-

time due to a mobile node handover and/or a process migra-

tion. For each scenario, twenty independent experiments were

made and the results were sorted in ascending order accord-

ing to downtime obtained. Figure 3(a) shows the results for

the first scenario considering both cases, the stateful and state-

less connections including the DHCP overhead at the end-point

side. The results show that for the stateless connections, where

LISP is not required, the connection disruption is around 5.0

seconds—this time encompasses the end-point handover and

the application reconnection. On the other hand, for the state-

ful connection which implies that both end-points implement

LISP, the results show that the connection disruption may vary

between 4.0 and 7.0 seconds approximately. This variation is

due to two main reasons: i) the end point does not drop the

TCP connection stack and hence reduces the downtime; and ii)

the overhead introduced by the LISP control-plane is variable,

and ends up impacting on the overall downtime. Mainly, the

LISP control plane has to notify when the location of one of

the connection ends has changed to the other connection end.

Figure 3(b) presents the results for the second scenario con-

sidering a stateful connection with LISP support at both ends

and no DHCP (i.e., the new location identifier of the process

is statically configured). Observe that the disruption incurred

by a very lightweight process migration is around 300 mil-

liseconds. Finally, Fig. 3(c) reports the results for the third

scenario (i.e., the process moves along with the end-point, and

both ends of the connection are LISP enabled). As it can be

observed, the downtime varies between 5.6 and 7.0 seconds

approximately.

Overall, even a shallow analysis of some of the most natural

327

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

T
im

e
 (

s
e
c
o
n
d
s
)

Test

Mobile Node Handover

without LISP

with LISP

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

T
im

e
 (

s
e
c
o
n
d
s
)

Test

Process Migration

with LISP

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

T
im

e
 (

s
e
c
o
n
d
s
)

Test

Mobile Node Handover with Process Migration

with LISP

(a) (b) (c)

Fig. 3. Service disruption due to: (a) Mobile Node Handover; (b) Process Migration with CRIU; (c) Mobile Node Handover with Process Migration.

technologies for enabling mobility in IoT reveal that, consid-

erable advances will be needed in the field in order to support

rapid mobility of “things” at the edge.

III. RELIABLE CONTROL AND ACTUATION INCLUDING

REAL-TIME OPERATION IN IOT

The set on the upper right of Fig. 1 covers fundamentally

two niches in which the traditional Cloud Computing model

falls short. The first one includes systems that are placed in

locations where the communications with the Cloud are either

too expensive or they are simply unreliable (e.g., due to poor

connectivity). Clearly, we cannot expect to guarantee reliable

control and actuation when the connectivity to the Cloud is

itself unreliable. Some representative examples of such situ-

ations can be found in the following industries: a) sensing

the health of pipeline infrastructures in the oil and gas sec-

tors (e.g., for detecting leaks); b) smart and precision agri-

culture; c) control systems inside certain factories, etc. The

second niche gathers control systems and applications run-

ning in closed-loop form, which typically require very low

latency. For instance, consider applications devoted to control

and actuation in IoT (e.g., supported through M2M commu-

nications). While the actuators could be based on a relatively

simple logic, the input space and data processing tasks could

require considerable storage and computation-intensive oper-

ations before enforcing a control decision; and more impor-

tantly, control processes often demand upper bounds in terms

of latency. In other words, the devices in charge of the sensing

and actuation tasks often lack the computational power to as-

sess the states and enforce the required control, and therefore,

will need to rely on external compute and storage resources.

However, current communications and Cloud infrastructures

are not prepared to guarantee the deterministic latency bounds

required by many control and actuation systems (e.g., in real-

time control). As it can be foreseen, a smart combination of

MCC and Hetnets can probably do the job and guarantee very

low latency—at least for entirely fixed systems within pico or

femto cells. However, as soon as we start considering applica-

tions with input sets that can grow randomly—especially when

they can contain inputs produced by rapid mobility patterns—

the whole idea of computing on the Cloud while ensuring

bounded latency starts vanishing again.

IV. DATA AGGREGATION AND ANALYTICS IN IOT

The set at the bottom of Fig. 1 covers another very impor-

tant group of scenarios that typically involve data management,

data processing, real-time analytics, and making very fast de-

cisions based on the data analyzed. The centralized model of-

fered by traditional Cloud facilities makes it perfectly suitable

for controlling and managing data produced by a large num-

ber of applications. However, when many geographically dis-

tributed “things” produce data demanding analytics along with

prompt decisions (e.g., under closed-loop control), hierarchical

data processing models seem the only realistic alternative. In-

stead of sending “everything” to the Cloud, resources placed

very close to the data producers can be used for local pro-

cessing, data analysis, and fast decision making. In this way,

relevant data can be aggregated and pushed to the next level in

the hierarchy (e.g., to a Cloud facility), only when its content

is important at a system-level for that particular application.

In general, the applications that require external compute

and storage capacity in this group are characterized by com-

binations of the following factors: 1) large geographical foot-

print; 2) large scale (e.g., a large amount of sensors acquir-

ing and sending data).; 3) large amount of data that need to

be processed, aggregated, and exposed to other processes that

consume these data; and based on the data processed offer 4)

real-time analytics.

Observe that, in general terms, Cloud Computing could

handle each of the four items listed above—though non-

simultaneously. In fact, the first barrier for the Cloud becomes

evident when we consider applications that have these four

features and/or requirements together. The most robust and

largely distributed systems that have been conceived thus far

rarely have components that need data from entities that are

far apart for performing their most basic and critical functions.

It is at a system-level when cross-dependencies among entities

that are far apart typically arise. We tend to build systems that

tackle scalability by means of aggregation and hierarchy. This

has very important consequences in terms of real-time analyt-

ics, since the semantics of the analysis will typically depend

on the location (e.g., an event produces data that is very im-

portant for a local process, but it is often irrelevant at a global

level). Note that this is particularly important in the frame-

work of IoT and the deployment of Smart City applications.

328

In this context, and leaving aside rather obvious scalability is-

sues, pushing all data to the Cloud will simply not be needed

since sooner or later some sort of aggregation and localized

analytics will be preferable for handling part of the job.

The second and most important barrier for the Cloud arises

when, in addition to the requirements exposed above, we also

consider fast mobility, and/or latency constraints, and/or poor

or unreliable communications to the Cloud (see Fig. 1).

V. FOG COMPUTING

The main conclusion that can be drawn after our analysis

is that Cloud Computing faces really complex challenges for

supporting the requirements of each of the sets shown in Fig. 1

independently, but the true complexity lies in the intersections

of the sets. A combination of Mobile Cloud Computing (MCC)

and Hetnets will not suffice—at least not as they are conceived

right now. Thus, the most natural and promising way to deal

with these challenges is Fog Computing [1], [2].

The essence of Fog computing is schematically shown in

Fig. 4. A comprehensive IoT platform will need to deal with

six domains, namely: (1) the domain of the “things”, composed

by both fixed and mobile devices, sensors, etc., most of which

can be characterized as either M2M or H2M devices and M2M

gateways; (2) the network domain, covering the edge, the ag-

gregation and the core; (3) the Cloud domain; (4) the service

and application domains; (5) the users domain; and (6) the

Fog nodes (i.e., the Fog-enabled elements providing the com-

pute, storage and network capabilities to the “things”), which,

as shown in the figure, will be scattered from the end devices

right up to the Cloud. Each of these domains poses different

requirements to the IoT platform, and will demand specific ac-

tions and treatment from the control and management layers.

Let us now analyze again the potential scenarios covered

by the three sets shown in Fig. 1, in the context of an IoT

platform capable of managing an infrastructure like the one

depicted in Fig. 4. Clearly, if the “things” remain in a fixed

position, the data processing can be offloaded to the Cloud,

but as soon as the endpoints start moving—especially if they

move fast—the Fog infrastructure will be in a much better

position for processing the data. Indeed, virtual appliances can

be outsourced to the Fog, and they can literally move with

the endpoint through the Fog. For scenarios requiring high

reliability and/or predictable latency, the goal should be to

locate the intelligence where it is needed in the network (i.e.,

the compute and storage resources must be placed very close to

the monitoring and actuation points), or even be embedded on

them, thereby enabling higher reliability and localized closed-

loop control. Finally, Fog enables: 1) data aggregation at the

edge as well as pushing and pulling data selectively from the

Cloud; 2) it can perfectly adapt and scale upon geographical

expansions; 3) and more importantly, it scales much better

than the Cloud for running data analytics and making real-

time decisions on many different IoT domains.

Domain	 of	 “Things”	 (IoT)	
Network	 	

Domain	

Cloud	 	

Domain	

Mul=-‐Service	 	

Edge	 	 Core	 Aggrega=on	

Service/	 	

Applica=on	 	

Domain	

Users	 	

Domain	

Fog	 Domain	

M2M	 	

Gateway	

Fog-‐enabled	 element	 Cloud	 element	

Control	 and	 	

Actua=on	

Fig. 4. The Fog Computing approach.

VI. CONCLUSION

Compute and storage resources are becoming much more

embedded in the network, and its footprint will eventually ex-

tend from the domain of the “things” at the edge of the network

up to the Cloud without glitch. This trend offers remarkable

opportunities, and almost naturally exposes the drivers for de-

veloping Fog Computing. More precisely, while the Cloud of-

fers unprecedented efficiency, scalability, and cost reductions

through virtualized IT infrastructures, these latter remain cen-

tralized in data centers, so the traditional Cloud model falls

short in covering a series of growing needs in the IoT market.

We have shown that a smart combination of Fog and Cloud

Computing is the most plausible bet for building an adapt-

able and scalable platform for IoT. It is also worth noting that

many verticals in IoT require the deployment of proprietary

“boxes”, and this is a serious problem in Smart City envi-

ronments. This issue is another very important driver for Fog

Computing, since the Fog naturally offers “box consolidation”.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Sci-

ence and Innovation under contract TEC2012-34682 (partially

funded by FEDER). The authors would also like to acknowl-

edge the insight and fruitful discussions with J. Balaguer, X.

Freixa, and I. Errando from Cisco Systems Barcelona.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog Computing and its
Role in the Internet of Things”. In Proceedings of the ACM SIGCOMM

2012, SIGCOMM ’12. ACM, 2012.
[2] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu. “Fog Computing: A Plat-

form for Internet of Things and Analytics”. Big Data and Internet of

Things: A Roadmap for Smart Environments, Springer, Studies in Com-

putational Intelligence, 546:169–186, March 2014.
[3] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng. “Challenges on

Wireless Heterogeneous Networks for Mobile Cloud Computing”. In
IEEE Wireless Communications, June 2013.

[4] LXC - Linux Containers: https://linuxcontainers.org/.
[5] DOCKER: https://www.docker.io/.
[6] CRIU: http://criu.org.
[7] D. Farinacci, D. Lewis, D. Meyer, and V. Fuller, The Locator/ID Sepa-

ration Protocol (LISP) IETF, RFC 6830, 2013.
[8] M. Handley, O. Bonaventure, C. Raiciu, and A. Ford, TCP Extensions

for Multipath Operation with Multiple Addresses IETF, RFC 6824, 2013.

329

