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Abstract 

The spike protein of SARS-CoV-2 binds to ACE2 receptor via its receptor-binding domain (RBD), 
with the RBD-ACE2 complex presenting an essential molecular target for vaccine development to 
stall the virus infection proliferation. The computational analysis at molecular, amino acid (AA) 
and atomic levels have been performed systematically to identify the key interacting AAs in the 
formation of the RBD-ACE2 complex, including the MD simulations with molecular mechanics 
generalized Born surface area (MM-GBSA) method to predict binding free energy (BFE) and to 
determine the actual interacting AAs, as well as two ab initio quantum chemical protocols based 
on the density functional theory (DFT) implementation. Based on MD results, Q493, Y505, Q498, 
N501, T500, N487, Y449, F486, K417, Y489, F456, Y495, and L455 have been identified as hotspots in RBD, 
while those in ACE2 are K353, K31, D30, D355, H34, D38, Q24, T27, Y83, Y41, E35, and E37. Both the 
electrostatic and hydrophobic interactions are the main driving force to form the AA-AA binding 
pairs. We confirm that Q493, N501, F486, K417, and F456 in RBD are the key residues responsible for 
the tight binding of SARS-CoV-2 with ACE2 compared to SARS-CoV. The DFT results reveal 
that N487, Q493, Y449, T500, G496, G446 and G502 in RBD form pairs via specific hydrogen bonding 
with Q24, H34, E35, D38, Y41, Q42 and K353 in ACE2.  

KEYWORDS: SARS-CoV-2 RBD-ACE2 interface complex, Binding free energy, Key amino 
acids, Interatomic bonding, Density functional calculation.  

1. Introduction  

The COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), has infected millions of people world-wide due to its rapid global spread, long 
incubation period, proclivity to evolve new variants, and lack of safe and effective therapies or 
vaccines.1 This pandemic caused unprecedented life disruption, serious threat to public health and 
enormous economic damage. In response, intensive efforts have been undertaken by scientific and 
medical communities to combat this pandemic. Many SARS-CoV-2 vaccine candidates have been 
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developed and tested at various stages of clinical trials.2-5 Three of these vaccines, the Pfizer-
BioNTech, Moderna, Johnson and Johnson, are now authorized for emergency use by Food and 
Drug Administration in the United States.6 The key elements in developing these vaccines are the 
rapid determination of the SARS-CoV-2 genomic sequence,7 the 3D structure of its spike protein,8, 

9 and its mechanism in penetrating human cell receptor.9, 10 

SARS-CoV-2 is an enveloped single-stranded RNA virus with spike-like glycoproteins protruding 
from its exterior membrane surface forming a ‘corona’.1 It has four main structural proteins: spike 
(S), envelope (E), membrane (M), and nucleocapsid (N).11 The S-protein is responsible for viral 
entry into the human host cell during the infection, making it a primary target for vaccine 
development,12-14 repurposing antiviral drugs or discovery of new ones,15, 16 and development of 
therapeutic antibodies.17, 18 S-protein exists in trimeric form with each protomer having two 
functional subunits, S1 and S2. S1 contains the receptor-binding domain (RBD) responsible for 
direct binding to angiotensin-converting enzyme 2 (ACE2) while S2 functions in the host cell 
membrane fusion.19 To engage with ACE2, RBD undergoes hinge-like movements to change from 
down to up states for easier accessibility.8 The nature of interaction between RBD and ACE2 is 
not only important for understanding the initial step of virus infection, but also provides necessary 
information to guide effective development of drugs or vaccine. 

The crucial role of the binding mechanism between RBD and ACE2 is in the infection initiation 
process, triggering a cascade of events and directing the focus of the research to the RBD-ACE2 
interface complex. Its structure has been determined by X-ray diffraction (PDB ID: 6M0J, 
6VW1),20, 21 showing that the overall ACE2-binding mode of the SARS-CoV-2 RBD, apart from 
its more compact form, is similar to that of the SARS-CoV RBD. However, there are no 
quantitative assessments of the energetics of the actual interacting residues between RBD and 
ACE2. While numerous biophysical and simulation studies on this complex have been conducted 
,22-40 more research effort is necessary to resolve still unanswered questions. First, it is not clear 
how the SARS-CoV-2 RBD recognizes and binds to ACE2, and what is the pattern of binding 
interaction. Second, it remains to be established what is the main driving force responsible for the 
RBD-ACE2 complex formation. There is insufficient information on the physical factors that 
govern the complexation process and their functions in the receptor recognition process. Third, the 
role of the aqueous environment and its impact on the RBD-ACE2 interactions remains to be 
highlighted. Aqueous solvent is present at all stages of viral infection, starting with the role of 
droplets and aerosols in the spreading and transmission of the virus,41 and then continuing 
throughout the viral life cycle processes such as replication, transcription, and genome packaging 
occurring in the aqueous bathing environment. Finally, quantitative information on the role of key 
amino acids is important for unraveling the source of the differences between the binding pattern 
of the coronaviruses and the ACE2 receptor. The precise identification of these residues requires 
more rigorous approaches by using efficient MD simulations as well as ab initio calculations based 
on the density functional theory (DFT). Recently, our group has succeeded in the largest ab initio 
quantum chemical computation involving seven structural domains of S-protein,42 as well as in 
formulating a de novo method to evaluate the inter-amino acid interactions in 3-D of these 
subdomains.43, 44  

To address the questions raised above, we undertook a comprehensive and systematic study 
focusing on the understanding of the molecular mechanisms and specific interactions at the 
interface. We used well-known MD simulation methodology for assessment of binding free energy 
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(BFE), and ab initio based DFT methodology to elucidate the binding phenomenology. Two 
replicate MD simulations for all-atom SARS-CoV-2 RBD-ACE2 complex are performed with 
explicit water molecules over a time scale of 100 ns followed by molecular mechanics generalized 
Born surface area (MM-GBSA) method to compute the BFE of the RBD-ACE2. At the same time, 
the per-residue and pairwise BFE decompositions is used to capture the actual interacting AAs 
between the individual residue in RBD and ACE2. Finally, DFT calculations are applied to a 
specially designed restricted interface model for detailed structural elucidation of the binding 
mechanism, based on the structure relaxation using the Vienna ab initio simulation package 
(VASP) and followed by applying orthogonalized linear combination of atomic orbitals (OLCAO) 
method to investigate the atomic-scale resolved interaction, partial charge distribution, and intra- 
and inter-molecular binding of the RBD-ACE2 interface model similar to the one used for the 
spike protein.42 

2. Model Construction  

2.1 Molecular Model for MD simulations  

We explicitly designed and simulated the interface complex model in a bathing solution 
environment, composed of water and ions. This model is labeled as the Interface-MD model which 
contains residues from T333 to G526 of SARS-CoV-2 RBD (194 AAs), and the residues from S19 to 
D615 of the ACE2 N-terminal peptidase domain (PD) (597 AAs). Also, it contains one zinc ion 
(Zn+2), one chloride ion (Cl-1), 25 sodium ions (Na+) and 27000 water molecules (Table 1 and 
Figure 1(a)). The details of creating this model are summarized as follows. The initial structure 
of the interface complex was obtained from the crystal structure PDB (ID: 6M0J).20 This initial 
structure is solvated in a periodic water box using the TIP3P explicit water model implemented in 
AMBER (Assisted Model Building with Energy Refinement) package, after adding H atoms using 
the LEaP module.45, 46 In particular, 27,000 water molecules are added to the initial complex with 
25 Na+ ions to neutralize the total charge of the model because the ACE2 carries a total charge of 
28 e-, zinc with 2 e+, chloride ion with 1 e- and RBD has a net charge of 2 e+. The placing of the 
Na+ ions was performed via a Coulomb 
potential on a grid using the LEaP program in 
the AMBER package. The most recent 
AMBER force field ff14SB is used to represent 
the parameterizations of the inter- and intra-
molecular interactions of this Interface-MD 
model.47  

2.2 Molecular model for DFT calculations  

For gaining deeper insights into the interface 
interactions, the use of ab initio quantum 
chemical methods for accurate atomic positions 
and interatomic interactions is necessary. 
However, exceptionally large-scale ab initio 
all-atoms calculations are obviously impossible 
at present since MD simulation could involve in 
excess of hundred thousand atoms. To this end, 
we have reduced the size of the interface model 

Figure 1. The interface complex models of bound SARS-CoV-
2 RBD to ACE2 receptor. (a) The Interface-MD model of the 
whole RBD-ACE2 complex (in surface representation) solvated 
in a water box (light blue) and neutralized with Na+ ions 
(orange). Light yellow and yellow: RBD, yellow: RBM, gray: 
ACE2, and dark gray: segment of ACE2 used for DFT 
calculation. (b) The Interface-DFT model of RBM and a segment 
of ACE2 in surface representation (c) Ribbon structure of RBM 
and segment of ACE2 with α1, α2, β3, and β4 motifs. 
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to a much smaller and manageable size containing only the most relevant AAs at the interface. 
This model is labelled as the Interface-DFT model derived from the Interface-MD model (with the 
removal of water and some ions). The Interface-DFT model contains all residues of the receptor-
binding motif (RBM) of SARS-CoV-2 (71 AAs from S438 to Y508) and 117 residues from ACE2 
(70 residues of α1 and α2 motifs from the S19 to I88 plus 47 residues from G319 to T365 of β3 and 
β4 motifs and with some other residues of ACE2) as well as 6 Na+ ions to neutralize the system 
(Figure 1 (b)). The SARS-CoV-2 RBM is the main functional motif in RBD that forms the 
interface between the S-protein and ACE2. According to the high-resolution crystal structure 
information,20, 21 the ACE2 segments selected for the Interface-DFT model include all the 
interacting AAs from ACE2. Therefore, this model captures almost all binding properties between 
SARS-CoV-2 RBD and ACE2. It has a total of 2930 atoms as summarized in Table 1. The 
Interface-DFT model is fully optimized using VASP and used as the input for the electronic 
structure and properties calculation using OLCAO methods.  

Table 1. Summary of models for MD simulation and DFT calculation. 

Model 
# of Atoms 

in RBD 

# of Atoms 

in ACE2 

# of water 

molecules 

# of 

Zn+2 ion 

# of Cl- 

ion 

# of Na+ 

ions 

Total # 

of atoms 

Interface-MD 3001 9523 27000 1 1 25 93551 
Interface-DFT 1102 1822 --- --- --- 6 2930 

 

3. Methods   

3.1 Molecular dynamic (MD) simulation  

All-atom MD simulations for the Interface-MD model are carried out using AMBER 18 simulation 
package in explicit solvent with periodic boundaries.48 Prior to MD simulations, the model 
underwent six stages of energy minimization using 5000 cycles of steepest descent followed by 
additional 5000 cycles of a conjugate gradient to eliminate possible steric overlaps and allow the 
system to adapt to the chosen force field. In the first five stages, five different restraint force 
constants of 500, 250, 100, 10, 1 kcal/mol-Å2 are applied to hold the solute (RBD-ACE2 complex) 
in fixed position and optimize the positions of water molecules and ions. In the final stage, the 
whole system is minimized without any constraints. Subsequently, a heating phase is introduced 
by gradually raising the temperature from 0 K to 310 K for 310 picoseconds (ps) using the NVT 
ensemble with a weak restraint of 10 kcal/mol-Å2 on the solute, followed by the system 
equilibration for 5 ns without restraint at a constant pressure of 1 bar and temperature at 310 K 
(NPT ensemble) to reach the required density. Finally, two replicate NPT production MD 
simulations over 100 ns (200 ns in total) are initiated at constant pressure (1 bar) and temperature 
(310 K) using the same equilibrated starting coordinates. During the production runs, the atomic 
coordinates from the trajectory are saved every 2 ps for subsequent BFE analysis. The following 
settings are used in all equilibration and production protocols: Langevin dynamics for temperature 
scaling, 2 ps as the pressure relaxation time, long-range electrostatic interactions with the Particle 
Mesh Ewald (PME) method.49 Both the direct space PME and the Lennard-Jones cut-offs are set 
at 10 Å. The SHAKE algorithm is applied for constraining all bonds involving hydrogen atoms 
with a 2 fs time step.50 All these protocols are conducted using the PMEMD.CUDA module in 
AMBER.51, 52 

 



5 

 

3.2 Binding Free Energy (BFE) calculation  

We have used the most well-known end-point free energy method, the MM-GBSA method to 
calculate the BFE between RBD of S-protein and ACE2 receptor. It combines the molecular MM 
energies with the GBSA continuum solvation approach. The BFEs are calculated by utilizing 
single-trajectory protocol (STP) of MM-GBSA method based on long-timescale MD simulations 
in the context of an explicit solvent TIP3P water model, with a neutralized total charge of the 
system. Subsequently, all solvent molecules and charged ions are removed from each MD 
snapshot, and the implicit GBSA solvent models are used to estimate the solvation free energies 
at 0.15 M ionic concentration. In the STP approach, all ensembles can be extracted from a single 
MD simulation of the bounded RBD-ACE2 complex to obtain the average ensemble of the native 
ACE2 receptor and RBD. BFE is determined as the difference between the free energies of the 
bound RBD–ACE2 complex (GCOM, sol) and the unbound states of ACE2 (GACE2, sol) and RBD 
(GRBD, sol) 53-55 ∆𝐺𝑏𝑖𝑛𝑑 = 𝐺(𝐶𝑂𝑀,𝑠𝑜𝑙) − 𝐺(𝐴𝐶𝐸2,𝑠𝑜𝑙)− 𝐺(𝑅𝐵𝐷,𝑠𝑜𝑙).                  (1)  

Each term in Eq. (1) can be computed from contributions of interactions and expressed as  𝐺 = 𝐸𝑀𝑀 + 𝐺𝑠𝑜𝑙 − 𝑇𝑆.                                                             (2)  

Thus Eq. (1) can be written as ∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐸𝑀𝑀 + ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆 = ∆𝐺𝑣𝑎𝑐 + ∆𝐺𝑠𝑜𝑙           (3)  ∆𝐸𝑀𝑀 = ∆𝐸𝑖𝑛𝑡 + ∆𝐸𝑒𝑙𝑒 + ∆𝐸𝑣𝑑𝑊                                         (4)  ∆𝐺𝑠𝑜𝑙 = ∆𝐺𝐺𝐵 + ∆𝐺𝑆𝐴                                                             (5)  ∆𝐺𝑆𝐴 = 𝛾. 𝑆𝐴𝑆𝐴 + 𝑏                                                                (6)  ∆𝐺𝑣𝑎𝑐 = ∆𝐸𝑀𝑀 − 𝑇∆𝑆                                                             (7)  

Here, ΔEMM, ΔGsol, and –TΔS represent the changes in the gas phase MM energy, solvent-free 
energy, and conformational entropy upon binding, respectively. ΔEMM is the sum of the changes 
in the bonded energy (ΔEint), the non-bonded electrostatic energy (ΔEele) and the van der Waals 
energy (ΔEvdW). ΔGsol is divided into electrostatic or polar solvation energy part (ΔGGB), and a 
non-electrostatic or nonpolar part (ΔGSA) between the solute and the continuum solvent. ΔGGB/PB 

is typically computed using either the generalized Born (GB) model as in this study, or the 
Poisson–Boltzmann (BP) model, whereas ΔGSA follows from a linear dependence on the solvent-
accessible surface area (SASA).56 The total electrostatic contribution to free energy is the sum of 
ΔEele and ΔGGB (ΔGele = ΔEele + ΔGGB). The entropy contribution (-TΔS) is the sum of the change 
in translational, rotational, and vibrational entropies.55 The first two terms are determined from the 
standard statistical mechanical formula, while the vibrational term can be approximated using a 
normal-mode analysis or a quasi-harmonic approximation as in this study.55 Once the MD 
simulations are completed, snapshots are taken for every 10 ps over the whole 100 ns. 5000 
snapshots are extracted for the BFE post-process analysis. This analysis has been carried out using 
the MM-GBSA method via MMPBSA.py module of AMBER.55 The model developed by 
Onufriev et al. (GBOBC which GB = 2) is employed as the GB model and a set of radii mbondi2 is 
prepared.57 A surface tension coefficient (γ) of 0.0072 kcal/mol-Å2 and zero correction constant 
(b = 0) are employed to calculate ΔGSA. The value of the exterior dielectric constant of water was 
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set to 78.3 while the dielectric constant for the solute is set to the vacuum value of 1.58 Only 5 
snapshots along simulations are used to evaluate -TΔS at 310 K. 

Two types of BFE decomposition have been undertaken to dissect the calculated BFE of the RBD-
ACE2 complex in terms of individual residue coined as “per-residue BEF decomposition” and 
residue-residue contributions as “pairwise BFE decomposition”.55 They can provide critical 
information about the local dominant interactions between the AAs in RBD and ACE2 especially 
those located at the interface. These decomposition analyses are carried out using MM-PBSA.py 
module. A key aspect of these analyses is the ability to further break down the decomposition 
energy for each AA or AA-AA pair into backbone, sidechain, and total contributions. It can also 
decompose into interaction components (ΔEvdW, ΔEele, etc.).  

3.3 Structural relaxation for DFT calculation using VASP  

The Interface-DFT model is fully relaxed by using Vienna ab initio simulation package (VASP) 
known for its efficiency in structure optimization.59 We use the projector augmented wave (PAW) 
method with Perdew-Burke-Ernzerhof (PBE) exchange correlation functional60 within the 
generalized gradient approximation (GGA). The input parameters used in VASP are as follows: 
energy cut-off 500 eV, electronic convergence of 10-4 eV, force convergence criteria for ionic steps 
at -10-2 eV/Å and a single k-point sampling. All VASP relaxations were carried out at the National 
Energy Research Scientific Computing (NERSC) facility at the Lawrence Berkeley Laboratory 
with special allocations and at the Research Computing Support Services (RCSS) of the University 
of Missouri System. The computational resources used for the structural relaxation are quite 
substantial because of the high accuracy required in the final structure and the slow convergence 
for the large complex biomolecular systems.  

3.4 Electronic structure and interatomic bonding using OLCAO  

The electronic structure and interatomic interactions of the Interface-DFT model are calculated 
using the all-electron orthogonalized linear combination of atomic orbitals (OLCAO) method,61 
developed in-house. The efficacy of using these two different DFT codes is well documented,62-64 
and is especially beneficial for large complex biomolecular systems such as the SARS-CoV-2 
virus. The key feature of the OLCAO method is the provision for the effective charge (𝑄∗) on each 
atom and the bond order (BO) values ραβ between any pairs of atoms. They are obtained from the 
ab initio wave functions with atomic basis expansion:   
 𝑄𝛼∗ = ∑ ∑ ∑ 𝐶𝑖𝛼∗𝑚𝐶𝑗𝛽𝑚𝑆𝑖𝛼,𝑗𝛽𝑗,𝛽𝑚,𝑜𝑐𝑐  𝑖                                          (8)

 

𝜌𝛼𝛽 = ∑ ∑ 𝐶𝑖𝛼∗𝑚𝐶𝑗𝛽𝑚𝑆𝑖𝛼,𝑗𝛽 .𝑖,𝑗𝑚,𝑜𝑐𝑐                                         (9)  

In the above equations, 𝑆𝑖𝛼,𝑗𝛽 are the overlap integrals between the 𝑖𝑡ℎ orbital in 𝛼𝑡ℎ  atom and the 𝑗𝑡ℎ orbital in the 𝛽𝑡ℎ atom. 𝐶𝑗𝛽𝑚 are the eigenvector coefficients of the 𝑚𝑡ℎoccupied molecular 
orbital level. The partial charge (PC) or (∆𝑄𝛼 = 𝑄𝛼0   −  𝑄𝛼∗  ) is the deviation of the effective charge 𝑄𝛼∗  from the neutral atomic charge 𝑄𝛼0 on the same atom 𝛼. The BO quantifies the strength of the 
bond between two atoms and usually scales with the bond length (BL). The BL should be more 
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accurately interpreted as the distance of separation of the two atoms since the BO value is 
influenced by the surrounding atoms. The calculation of PC and BO are based on the Mulliken 
scheme.65, 66 

The BO ραβ in Eq. (9) is further extended to quantify the bonding strength between a pair of amino 
acids (u,ν) called amino acid -amino acid bond pair (AABP).44

 In many cases, the use of AABP is 
more useful than interatomic bonding between a pair of atoms for biomolecular systems 
 𝐴𝐴𝐵𝑃(𝑢, 𝑣) = ∑ ∑ 𝜌𝛼𝑖,𝛽𝑗.𝛽𝜖𝑣𝛼𝜖𝑢                                         (10)

 

AABP considers all possible bonding between two amino acids including both covalent and 
hydrogen bonding (HB). 

4. Results    

4.1 MD Results    

4.1.1 Binding free energy between RBD and ACE2  

We performed two replicate MD runs for Interface-MD model over the time range of 100 ns. The 
RMSD (root mean square deviation) and RMSF (root mean square fluctuation) of these two 
simulations are presented in Supplementary Information (SI, Figures S1, S2). The STP approach 
of the MM-GBSA method53 was adopted to calculate the BFE at 310 K (37 °C) under a neutral pH 
and 0.15 M univalent NaCl salt concentration. Table 2 lists the net BFE (ΔGbind) with their 
energetic components from both MD runs. Our predicted value of ΔGbind = -12.86 ± 0.1 kcal/mol 
is in excellent agreement with experimentally determined binding affinity of -11.83 kcal/mol using 
surface plasmon resonance (SPR) assay.20 More specifically, the measured value of the 
equilibrium dissociation constant (KD) of the interface complex is 4.7 nM,20 which is equivalent 
to ΔGbind of -11.83 kcal/mol at 37 °C (i.e. ΔG = RTln(KD), where R is the gas constant). A similar 
experimental study showed that the KD of the SARS-CoV RBD and ACE2 is 31 nM (or ΔG is -
10.7 kcal/mol).20 Our calculated value is thus in line with the general trend that the binding affinity 
of RBD-ACE2 in SARS-CoV-2 is higher than that of SARS-CoV. This is the main reason why 
SARS-CoV-2 is much more contagious than SARS-CoV. 

Table 2 lists the various energy components 
contributing to ΔGbind (Method Section). Since 
the STP approach of MM-GBSA method was 
used in our calculations, there is no contribution 
from internal energy, or ΔEint = 0. On the other 
hand, the non-bonded interactions of ΔEvdW = -
90.1 kcal/mol and ΔEele = -700.92 ± 0.59 
kcal/mol both favorably contribute to form a 
stable RBD-ACE2 complex. Such highly 
favored ΔEele behavior can be explained by the 
strong electrostatic attractions between the 
positively charged AAs of RBD and the 
negative charged AAs of ACE2. Thus, strong 
interaction at the interface complex is electrostatic in origin, which agrees with the recent study by 

Table 2. Predicted BFE (kcal.mol-1) and energetic 
components at 0.15 M salt. SE: standard error. 
Energy  Run1 Run2 Aver. SE 

ΔEvdW -90.10 -90.11 -90.10 0 
ΔEele -699.75 -702.10 -700.92 0.59 
ΔEMM -789.84 -792.21 -791.03 0.59 
ΔGGB 747.47 749.51 748.49 0.51 
ΔGSA -13.27 -13.16 -13.21 0.03 
ΔGsol 734.20 736.36 735.28 0.54 
ΔGele 47.72 47.42 47.57 0.08 
-TΔS 42.95 42.83 42.89 0.03 
ΔGvac -746.89 -749.38 -748.14 0.62 
ΔGbind -12.69 -13.02 -12.86 0.08 
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Nguyen et al.35 However, ΔEele is completely overshadowed by ΔGGB of 748.49 ± 0.51 kcal/mol, 
leading to an overall unfavorable contribution of the total ΔGele of 47.57 ± 0.1 kcal/mol. Upon 
binding in the complex, the solvent-solvent and solvent-solute interactions are reorganized as are 
certain polar and/or charged AAs at the interface that become buried in the protein core and thus 
hidden away from the bathing solution, resulting in a largely unfavorable ΔGGB and favorable 
ΔGSA of -13.21 ± 0.03 kcal/mol. The total entropic contribution (−TΔS) is 42.89 kcal/mol 
reflecting the significant entropic cost of confining the RBD with little movement when associated 
with ACE2. Finally, the ΔGbind can be further partitioned in terms of the nature of the interactions 
in vacuum (ΔGvac = -748.14 ± 0.62 kcal/mol) and/or solvent (ΔGsol = 735.28 ± 0.54 kcal/mol). 
This pattern indicates that ΔGvac dominates and stabilizes the dimer association between RBD and 
ACE2 while the aqueous solution opposes to it. However, the unavoidable solvent effect cannot 
be ignored.  

From the above analysis, we conclude that the long-range Coulombic electrostatic interaction 
(ΔEele) is responsible for initiating the recognition process between the RBD and ACE2, while the 
attractive component of the van der Waals interaction (ΔEvdW) is the main factor to stabilize the 
RBD-ACE2 complex. Interestingly, the ΔEvdW is also the main force to stabilize other complexes 
such as drug-DNA,53, 54 ligand-protein,67 and protein-protein.68 The salient feature of this trend can 
provide the guidance on what should be targeted when a new drug is designed. 

4.1.2 BFE decomposition  

Two BFE decompositions have been used to further explore the binding mechanism of the RBD-
ACE2 complex and to identify the essential interacting AAs between them. First, per-residue BFE 

decomposition is performed to capture the energetic contribution from every individual residue. 
This is followed by pairwise BFE decomposition to further investigate the key AAs capable of 
forming AA-AA pairs. Unlike other analyses from structural studies,20, 21 these decompositions, to 
be discussed separately, can quantify the energetic interaction for the key AAs and AA-AA pairs 
in the complex. Note that the entropic contributions are not involved in these analyses.54 

i. Per-residue BFE decomposition     

We divide the interacting AAs in the complex into three groups: “group A” has highly favored 
per-residue binding (ΔG ≤ -1 kcal/mol); “group B” has ΔG of -1 to -0.15 kcal/mol; “group C” has 
ΔG ≥ 0.15 kcal/mol. We ignore the interactions stemming from thermal fluctuation. These three 
groups are summarized in detail as follows: 

(a) Group A. There are 16 (11) AAs in RBD (ACE2) that contribute significantly to the total BFE. 
They are Y505, Q493, Y449, N501, Q498, F486, T500, L455, F456, Y495, G502, N487, Y489, K417, A475, and 
G496 in RBD and D355, K353, Y41, Y83, K31, Q24, T27, H34, F28, M82, and L79 in ACE2 (Figure 2, 

Table S1). All these AAs in RBD are located in RBM except K417 which forms a salt-bridge with 
D30 of ACE2. ΔG of K417 = -1.46 ± 0.13 kcal/mol with a favored ΔGele of -1.18 ± 0.13 kcal/mol. 
Residues Y505, Q493, Y449, N501, Q498, F486, and T500 have the most favored binding with ΔG < -2.5 
kcal/mol. They form interface hotspots with ACE2. A close examination of per-residue BFE 
reveals that ΔEvdW are consistently favorable for all 16 AAs but with different strengths. The ΔGele 
displays more variance in favorability with only eight AAs (Y505, Q493, Y449, Q498, Y495, G502, K417, 
and G496) having a favorable ΔGele. The ΔGSA are favorable (negative) and similar in all 16 AAs 
except G496. These 16 AAs are also reported by crystal structure data except Y495.20 ΔG of Y495 is 
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-1.86 kcal/mol, and differs from other tyrosine residues (Y505, Y449 and Y489) in that its backbone 
participates in the interactions. For the 11 AAs in ACE2, six are in α1 (Q24, T27, F28, K31, H34, and 
Y41) and three in α2 (L79, M82 and Y83) motifs. The loop connecting β3 and β4 motifs contributes 
via two highly interacting AAs (D355 and K353 with ΔG of -3.93 ± 0.13 and -3.38 ± 0.2 kcal/mol 
respectively). Both ΔEvdW and ΔGSA contribute favorably to the total ΔGbind in all 11 AAs of ACE2. 
On other hand, only two AAs (D355 and Y83) have favorable contributions from ΔGele. All these 
residues in ACE2 were also confirmed by crystal structure.20 

 (b) Group B. These are AAs V503, G476, F497, Q446, Y453, and Y473 in RBD and L45, G354, Q42, D30, 
I21, F32, and E37 in ACE2 (Figure 2, Table S2). Interestingly, only three AAs in RBD (Q446, Y453, 
and Y473) and five in ACE2 residues (D30, E37, Q42, L45 and G354) have been reported.20, 29, 30, 35, 36 
The ΔEvdW and ΔGSA are favorable, but there are no contributions to ΔGSA from F497, I21, and F32. 
On the other hand, ΔGele is unfavorable in all AAs in Group B.  

(c) Group C. These are 12 AAs in RBD (N439, R408, G485, D420, S443, K458, R403, Q506, Q474, E406, 
E484, and D405) and 14 in ACE2 (Q325, D350, K68, N33, Q76, R393, E23, E329, E75, E35, R357, K26, D38, 
and S19) (Figure 2, Table S3). Five residues are located outside RBM. Their distinctive sidechains 
are either positively (R403 and R408) or negatively (D405, E406, and D420) charged. They have 
unfavorable ΔGele and ΔGGB. None of these 12 AAs were reported in the X-ray studies and only 
the E35, D38, R357, and R393 of ACE2 were mentioned.20, 21 This can be attributed to the cut-off 
distance of 4 Å used in the experiment while our calculation has no such constraints. Additionally, 
our findings show that the long-range electrostatic interactions, which are not considered in X-ray 
studies, are the main driving force for interaction in group C. Some of these AAs have also been 
identified in other studies.29, 30, 35 

 

ii. Pairwise BFE decomposition  

To gain more details on the interacting AA-AA pairs between RBD and ACE2, we apply the 
pairwise BFE decomposition scheme. The pair interactions map of the RBD-ACE2 is shown in 
Figure 3 and listed in Table S4. Remarkably, 9 AAs in RBD (D405, E406, R408, D420, N439, S443, 
K458, Q474, and Q506) and 9 AAs in ACE2 (S19, I21, F32, N33, K68, Q76, E75, E329, and D350), that have 

Figure 2. Per-residue energy decomposition of the key interacting AAs of RBD-ACE2 complex. Left 
panel is shown the interacting AAs belong to RBD, and right panel for interacting AAs in ACE2.  
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been assigned in the previous subsection, are not engaged in AA-AA pairs. On other hand, seven 
pairs (K417:D30, Y449:D38, Q493:E35, Q498:K353, T500:D355, N501:K353, and Y505:K353) shown as red 
square cells have very strong ΔG ≤ -4 kcal/mol. The first five pairs have favorable ΔGele (Table 

S4) due to formation of HBs (Table S5). Interestingly, K417:D30 is the most attractive pair arising 
from the ionic interactions between a cation of NZ nitrogen atom on K417 sidechain and the anions 
of OD1 and OD2 oxygen atoms on the sidechain of D30 in the presence of HBs (Table S5). In fact, 
the most obvious difference in the RBD–ACE2 complex between SARS-CoV-2 and SARS-CoV 
occurs at this K417 residue. This residue is in fact replaced by a hydrophobic residue of V404 in 
SARS- CoV RBD that does not participate in the ACE2 binding.20, 36 Significantly, the stronger 
binding between SARS-CoV-2 RBD and ACE2 is mainly attributed to the electrostatic interaction 
of K417:D30 pair. Other two pairs (N501:K353 and Y505:K353) have similar favorable contributions 
from ΔEvdW, ΔGele and ΔGSA (Table S4). The N501:K353 pair is stabilized by HBs but have low HB 
occupancy (see Figure 9(a) later). X-ray study20 did not report any of these HBs and only one has 
been mentioned elsewhere.36 The Y505:K353 pair is driven by π-Alkyl interaction between the π-
orbital in phenol ring on Y505 and CG carbon atom on K353.  

There are also nine other strong pairs (F486:M82, N487:Q24, N487:Y83, Q493:K31, Q493:H34, Y495:K353, 
G496:K353, N501:Y41, and Y505:E37, purple cells in Figure 3) with ΔG < -4 but ≥ -2 kcal/mol. Except 
F486:M82, all pairs are held together by HBs 
(Table S5). The attractive components of ΔGele 
are the main force for their interactions, 
especially for N487:Y83, Q493:K31, Y495:K353, 
G496:K353, and Y505:E37 pairs (Table S4). On 
the other hand, the F486:M82 pair is purely 
driven by favorable ΔEvdW and ΔGSA arising 
from π-Alkyl and π-Sulfur interactions 
between the π-orbital in the benzene ring in 
F486 sidechain and the CG carbon atom and SD 
sulfur atom of M82. Other pairs shown in 
Figure 3 and Table S4 have less strong 
interactions. Figure 3 clearly shows that RBD 
has more AAs in forming pairs with α1 than α2 
of ACE2 (45 pairs vs 7 pairs). This suggests 
that focusing on RBD blocker with α1 in ACE2 
may be a promising therapeutic strategy for 
inhibiting S-protein SARS-CoV-2.69-71 
Additionally, RBD forms 15 pairs with K353 to 
D355 connecting β3 and β4 of ACE2.  

In conclusion, the highest interface hotspots of RBD based on total ΔG of pairs with ACE2 are 
Q493, Y505, Q498, N501, T500, N487, Y449, F486, K417, Y489, F456, Y495, and L455. After the sequence 
alignment between interacting AAs of RBD as shown in Figure S3, the most interacting AAs 
enhancing BFE of SARS-CoV-2 compared to SARS-CoV are: Q493, Q498, N501, F486, K417, F456, 
Y495, and L455. Among them, we believe Q493, N501, F486, K417, and F456 are the most critical. 

 

 

Figure 3. The AA-AA interaction pair map between SARS-
CoV-2 RBD and ACE2. Each square cell represents one pair 
for the intersection AA from RBD on the vertical axis and AA 
from ACE2 on the horizontal axis. These pairs have different 
strengths based on ΔGPair.  
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4.2 DFT Results  

4.2.1 Structural optimization  

The structural optimization of Interface-DFT model with high accuracy in atomic coordinates is 
critical for realistic quantum chemical calculations.42 Such high-precision simulation of interface 
model is expected to complement experimental studies to provide a deeper understanding at atomic 
levels of the various aspects of the initial viral infection and at a much lower cost. In the present 
study, the geometrical optimization has been carried out by using VASP package based on the 
DFT methodology (see Method section). 

The Interface-DFT model consists of 2930 atoms. The initial unrelaxed structure has a total energy 
of -18052.021 eV and the final relaxed structure has -18039.025eV respectively. The reduction of 
energy is -12.996 eV or -0.0044354 eV/atom (-0.102 kcal/mol). Such a small energy difference 
accentuates the importance of exact atomic positions in quantum chemical DFT calculations which 
control the details of interatomic bonding including HB and the partial charge (PC) distributions. 
It is also completely off the energy scale used in the Interface-MD model which focuses on the 
statistical fluctuations of atomic positions in the MD steps over the longtime scale but never at the 
real atomic scale. The importance of the accurate structural optimization will be illustrated in the 
following sections when we present the results for PC distribution and interatomic bonding in the 
Interface-DFT model. It should also be emphasized that DFT calculation is a single point 
calculation on a specific model of fixed atomic positions. The fully optimized structure for 
Interface-DFT model requires a large support on top-notch supercomputers which was provided 
by the NERSC of the Lawrence Berkeley National Laboratory managed by US DOE. 

4.2.2 Electronic structure and partial charge distribution 

The electronic structure in the form of density of states (DOS) and partial DOS (PDOS) for the 
Interface-DFT model are calculated and presented in Figure S4. It is noted that the total DOS and 
the PDOS for RBM and ACE2 parts are almost identical in shape and the structures they contain.  

Partial charge (PC) distribution in biomolecules is crucial in understanding the long-range 
electrostatic interactions that play a significant role in many biological processes and are often 
implicated in drug design.72 For the Interface-DFT model, we have determined the PC on every 
atom and on every residue using the OLCAO method (see Method section). The calculated PC in 
unit of electron charge (e) on each of the 2930 atoms are grouped into 194 AAs and 6 Na+ ions. 
Figure 4 (a) and (b) shows the PC of the 194 AAs in the segment of ACE2 (19-88 and 319-365) 
and RBM (438-508). The PC can be positive or negative, with some AAs exhibiting a very large 
PC. They are: E329, E87, E75, E56, D67, G319, E57, E37, D350 with PC values of -2.480 e, -1.061 e, -
0.976 e, -0.939 e, -0.915 e, -0.892 e, -0.849 e, -0.831 e, -0.818 e and K341, T365, R466, I88, K74 with 
PC values of 0.832 e, 0.956 e, 0.999 e, 1.014 e, 1.047 e, respectively. All Na ions have positive 
PC ranging from 0.880 e- to 1.080 e. The complete data for the PC in every AA in the Interface 
DFT mode is listed in Table S6.  
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The PC distribution on the ball and stick sketch for all AAs is displayed in Figure 5 (a), together 
with the solvent excluded surfaces in Figure 5 (b). The black curve in Figure 5 (a) and (b) roughly 
shows the interface boundary separating the RBM and ACE2. Figure 5 (c) shows separated RBM 
and ACE2, which are further rotated in Figure 5 (d) to show the interacting surfaces in the RBM 
and ACE2. In Figure 5 (d), we have marked residues with PC lower and higher than -0.4 e and 
0.4 e, respectively. Note that the AAs at the interface boundary are neither highly positively 
charged nor highly negatively charged, which could have implications for the stability of the 
interface.  
 
 
 

 

 

 

 

 

Figure 4. PC distribution in Interface-DFT model of (a) segment of ACE2 in 
sequence 19-88 and 319-365 and (b) RBM in sequence 438-508. Amino acids 
with positive and negative PCs higher than 0.4 e and lower than -0.4 e, 
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Figure 5. PC distribution in Interface-DFT model in (a) ball and stick and (b) surface, (c) shows separate 
RBM and ACE2, and (d) shows rotated surface of RBM and ACE2 to show the PC distribution in amino 
acids. The curved black line in (a) and (b) roughly shows the partition between RBM and ACE2 in the 
interface. The color bar shows total PC for different amino acids from red (very negative) to blue (very 
positive). The navy blue, light blue, and red amino acids are identified explicitly in (b). In (d) we have 
explicitly marked amino acids lower and higher than -0.4 e and 0.4 e respectively. 
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4.2.3 Interatomic bonding  

The bond order (BO) vs. bond length 
(BL) for Interface-DFT is shown in 
Figure 6(a). There are 17 types of 
different bonds including O⋯H and 
N⋯H hydrogen bonding (HBs). The 
bonds with stronger BO are C-O, and C-
C. The C-C bonds can be partitioned into 
two groups, of which one exhibits a 
higher BO that may be due to double 
bonds. Some other strong bonds are N-
C, C-H, N-H and O-H. Cys and Met are 
the Sulphur containing residues and the 
C-S bonds are associated with them. 
However, there are no disulfide bonds 
which are usually common between Cys 
residues in protein. This may be due to 
the presence of only RBM, a section of 
RBD, in the Interface-DFT model. O-Na 
BL ranges from 2.0 Å to 2.3 Å. C-Na and 
N-Na belong to weaker bonds. There is 
only one C-Na bond with BL 2.5 Å 
(0.018 e) and one N-Na bond with BL of 
2.9 Å (0.028 e). Figure 6(b) separately 
shows the HB (O∙∙∙H and N∙∙∙H) 
distributions in the Interface-DFT 
model. Most of the HBs are from O∙∙∙H and they BL range from 1.5 Å and become very weak after 
2.5 Å and certainly cannot be classified as HBs for distance of separation > than 3.0 Å. The upper 
limit of BO values for the HB calculated using the OLCAO method is around 0.1e but can be 
larger in special cases. Figure 6(b) shows that some so-called HB in O∙∙∙H can have BO values 
close to 0.16 e. More details on the different ways the HBs are analyzed in MD and in OLCAO 
will be discussed in Section 5.3. 

5.  Combining MD and DFT results  

The main motivation for this paper is to combine the detailed classical MD simulation with the 
highly accurate DFT calculations, applying this methodology to the interface between SARS-CoV-
2 RBD and ACE2 receptor. Each of the two methods involved has their own distinct advantages 
but also obvious limitations. By skillfully combining them, most of the drawbacks can be mitigated 
and new, previously absent insights can be explicitly revealed.  

5.1 Nature of interfacial cohesion and interaction between RBD and ACE2 

1) Detailed MD simulation on Interface-MD model using generalized Born surface area (MM-
GBSA) method provided a wealth of information on the BFE and some generalized conclusions 
on the specific AA pairs at the much larger and realistic scale for the RBD-ACE2 interface 
complex. Several pairs are governed by attractive ΔGele since the HB networks or ionic interactions 

Figure 6. Interatomic interactions in the interface-DFT 
model. (a) BO vs BL for every pair of atoms (b) Hydrogen 
bonding. HBs are represented by star sign. 
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can stabilize them (see subsection 4.1.2.ii). Other pairs are identified by the favorably ΔEvdW and 
ΔGSA. For instance, F486:L79, F486:M82, and F486:Y83 pairs are driven by ΔEvdW and ΔGSA (Table 

S4) and form the hydrophobic pockets between SARS-CoV-2 RBD and ACE2, important for 
anchoring the interface complex. 

2) By construct a smaller Interface-DFT model between RBM and α1, α2, β3 and β4 motifs in the 
ACE2 membrane receptor, large-scale ab initio DFT calculations are carried out similar to what 
has been accomplished in our unprecedented large-scale calculation of the structure and properties 
of S-protein in COVID-SARS-2 virus,42-44 and related electronic dielectric constants of small 
proteins.73 Interface-DFT model has a total of 2930 atoms and the highly accurate DFT 
calculations for the interface model in this work again qualify as an unprecedented computational 
accomplishment. Detailed electronic structure and interatomic bonding, partial charge distribution 
on each atom and residues clearly complement what is missing in the MD simulations. For 
example, specific bonding across the interface boundary and 
interactions between residues on two parts of the interface 
become possible as will be described in Section 5.2 below. 

5.2 Interfacial amino acid -amino acid interaction  

 There are 194 AAs in the Interface-DFT model, 71 in RBM 
and 117 in ACE2. Table 3 or Figure 7 shows the calculated 
AABP values for each interacting pair in RBM and ACE2 with 
the strength of the interactions. The strongest binding is 
between two pairs: G496:K353 and Y449:D38 in RBD and ACE2 
with AABP values of (0.100 e, 0.122 e) respectively. 
 
Figure 8 further shows the intricate bonding configurations 
between these two AAs, with HBs playing a key role in the AA-
AA interaction across the interfacial boundary. The AABP for 
the interfacial interaction between a pair of amino acids are 
characterized by having only one hydrogen bonding. However, 
it is interesting to see the relation between these nine pairs. 
Figure 8 (b) shows two pairs with one common AA. Here both 
E35 and H34 have one HB with Q493. Similarly, Figure 8(c) 
shows interaction of Y449 with D38 and Q42, and G446 with Q42. 
The pairs between T500:Y41 and G496:K353 or K353:G502 are shown 
in Figure 8(d) and (e) respectively. This intertwined bonding in 
the interface region shows a complex topology that would be 
difficult to discern with less advanced computational 
methodology. 

Table 3. Amino acid to amino acid 
bond pair between RBM and ACE2 
in the Interface-DFT model. 

Pair in RBM:ACE2 AABP 

N487:Q24 0.034 
Q493:H34 0.015 
Q493:E35 0.053 
Y449:D38 0.122 
T500:Y41 0.038 
G446:Q42 0.028 
Y449:Q42 0.013 
G496:K353 0.100 

G502:K353 0.038 

Figure 7. AA to AA bond pair 
between RBM and ACE2.  
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5.3 Hydrogen Bonding analysis  

Analysis of HB network can provide 
insights into the nature of binding between 
RBD and ACE2. This section emphasizes 
the prominent role of intermolecular HBs in 
the RBD-ACE2 interface complex, using 
MD simulations and DFT calculations, as 
well as comparing them to available 
experimental data.  

It must be pointed out that the ways HBs are 
calculated in these two models are 
fundamentally different. In the DFT, they 
are calculated quantum mechanically as 
demonstrated in the case of our previous 
work on a large water box,74 extending now 
the same bonding criteria to the HBs in 
more complex biomolecules. These entail 
the use of BO value and BL (aka, the 
distance of separation between H in one 
H2O and O in another H2O). In the MD simulation, following the guidelines of IUPAC in 2011 
and applying them to more complex biomolecular systems, the HBs identification is based solely 
on the geometric consideration, with no quantitative definition for the strength of the HB.75  

Both approaches have limitations. The DFT calculation is a single point calculation with all its 
atomic positions fixed, while MD simulations entail dynamic data but cannot offer quantitative 
strength of HBs. This leads to some confusion or apparent differences in the HB analysis from the 
two calculations using very different approaches. We believe both approaches provide insights 
into HBs at the interface and we interpret the results based on both methodologies.  They should 
refer to the same HBs in the biomolecular systems and complete each other for deeper 
understanding on their impact on the stability and conformation of the biomolecules involved.  

Figures 9(a) and 9(b) show the possible HBs from MD simulations and DFT calculations 
respectively. In MD simulations, the CPPTRAJ program in AMBER is utilized to calculate HBs 
based on geometric criteria using a cutoff acceptor and donor (A…D) distance < 4.0 Å and a cutoff 
angle > 130° between the acceptor, hydrogen, and donor atoms.76 The percentage of HB occupancy 
gives an account of how many times a certain HB forms during the MD simulations. The higher 
the frequency, the higher the stability of this HB. In DFT calculation, the HB is determined by its 
BL and BO values as shown in Figure 9(b). We use BO cutoff of 0.01 e to characterize only the 
actual HBs. DFT calculation is a single point calculation providing the exact geometry as well as 
strength of each HB. Figure 9(a) shows that in MD simulation 7 HBs have a very high frequency 
of occupancy of more than 70%, with 4 of them having been also reported in the X-ray study20: 
Y449(HH):D38(OD2), N487(OD1):Y83(HH), T500(HG1):Y41(OH), and G502(H):K353(O). The other 3 
HBs predicted are: Y449(HH):D38(OD1), T500(HG1):D355(OD2), and N501(HD22):Y41(OH). The 
reaming possible HBs have occupancy of less than 70% (Figure 9(a)). On the other hand, the HB 
analysis based on DFT calculation shows that two HBs, Y449(HH):D38(OD2) and 
G496(O):K353(HZ1), have a higher BO of  ≥ 0.1 e-, and  are also observed in MD simulations. Five 

Figure 8. Amino acid-amino acid bond pair (AABP) 
between RBM and ACE2 in ball and stick for participating 
pairs. (a) N487:Q24, (b) Q493:E35and Q493:H34, (c) Y449:D38, 
Y449:Q42, and G446:Q42, (d) T500:Y41, and (e) G496:K353, 
K353:G502. It is interesting that there is only one hydrogen 
bonding in each interacting pairs. 
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other HBs have medium BO values in the range of 0.053 to 0.027 e- (Figure 9(b)), with 4 of them 
observed also experimentally as well as in MD simulations. The remaining two HBs are relatively 
weaker with BO less than 0.02 e- and only one of them is experimentally detected.20 

 

Table S5 summarizes the comparison and reveals that both MD simulations and DFT calculation 
on a single model can predict large number of HBs, far more than that from the experimental X-
ray study.20 Unlike the static single structure of X-ray or the relaxed Interface-DFT model, each 
AA in MD simulation moves dynamically around and thus increases the chance of forming a large 
number of HBs even though the criterion of what qualifies as a bona fide HB is not clear. On the 
other hand, the static DFT calculation on the fully relaxed structure has the benefits of providing 
a precise definition for HB in the presence of real H atoms that are missing in the X-ray 
experiments. Additionally, the separation distances between acceptor and H atom attached to 
donor in DFT calculations are less ambiguous compared to the experimental X-ray crystal 
structure, and certain HBs such as N501(N):Y41(OH) and Y489(OH):Y83(OH) that have been claimed 
experimentally as HBs,20 but were not found in MD simulations or DFT calculations. Those may 
indeed not be actual HBs.  

5.4 Implications for electrostatic interactions of different PCs  

The electrostatic interactions in the protein-protein binding process are well known.72 In general, 
the electrostatic interactions depend on the distribution of atomic PC, the dielectric constant, and 
the presence of a bathing solution (water and ions). In the current study, the PC distribution at the 
atomic and AA levels for the Interface-DFT model has been quantified in detail using ab initio 
quantum calculations (section 4.2.2). Additionally, the electrostatic interactions and solvent effects 
of Interface-MD model have been investigated based on fixed PCs (section 4.1). These 
electrostatic interactions play a significant role in explaining the tight binding of SARS-CoV-2 
RBD with ACE2 than in SARS-CoV as shown earlier in Section 4.1 and in other existing studies.33-

35, 77, 78 However, these interactions should be carefully reexamined not only based on the fixed 
PCs from the force field of MD since we now have accurate PCs from ab initio calculation.  

Figure 9. Histogram diagram of HB network of the interface complex. (a) MD simulation with their percentage HB 
occupancies. (b) HBs from the single Interface-DFT model with their bond orders (BO) represent their strength. The 
orange bars indicate the HB pairs have been experimentally observed while the green bar represents the one predicted 
in the present study. 
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Calculating the free energy of the total electrostatic contribution (ΔGele) is quite sensitive to the 
value of the assumed dielectric constant. Very recently, we have forcefully argued that the 
dielectric constants should be much higher than the values of 1- 4 that have been standardly 
invoked in many continuum approaches used in MD simulation.73 To this end, we separately 
calculated ΔGele of the Interface-DFT model based on the fixed PCs from AMBER force filed 
ff14SB,47 and on the PCs from the ab initio OLCAO method at three different interior dielectric 
constants (1, 5, and 10). To carry out such an investigation, two different atomic PCs are 
implemented in the DelPhi v.8.4.5 program.79, 80 DelPhi calculates the polar solvation energy 
implicitly by solving the non-linear and/or linear variants of the Poisson Boltzmann (PB) equation 
numerically using finite difference methodology.79, 80 It can provide the Coulombic electrostatic 
interaction (ΔEele) and requires four input files: the atomic structure, the atomic PCs, the atomic 
radii, and parameter files. These files are all available from the current study. The following input 
parameters are adopted in DelPhi: linear PB, scale 2 grids/A, 0.0001 kT/e of the convergence 
criterion RMSC (root mean square change of potential) and MAXC (potential maximum change 
threshold of potential), the external dielectric constant 78.3 and ionic concentration was 0.15 M. 
Three values of internal dielectric constants chosen as a test are1, 5 and 10. The energy in unit of 
kT are converted to kcal/mol at temperature T = 310 K.  

Table 4 shows the results of ΔGele and its components using two different sets of atomic PCs with 
different assumed internal dielectric constants which are unknown for the protein.73 The 
favorability pattern of ΔGele and its components are similar for both sets of PCs and exhibits the 
same behavior in MD simulations (Table 2). The computed values of ΔGele, ΔEele and ΔGPB are 
highly sensitive to atomic PCs and are higher i.e. less favorable when using PCs from DFT. 
Importantly, regardless of which atomic PCs are used, our analysis reveals that increasing the 
interior dielectric constant results in less favored ΔEele and more favored ΔGPB and ΔGele. Again, 
the computed values of ΔGele and its components greatly depend on the internal dielectric constant 
which is unknown.73 Many MD simulations chose them a posteriori to justify their result to be in 
line with experiments.  

Table 4. Predicted electrostatic interactions and their energetic components using two different set 
of PC values at a 0.15 M salt concentration and three assumed interior dielectric constants 𝜺𝒊. 

PCs 
𝛆𝐢 = 𝟏 𝛆𝐢 = 𝟓 𝛆𝐢 = 𝟏𝟎 

ΔEele ΔGPB ΔGele ΔEele ΔGPB ΔGele ΔEele ΔGPB ΔGele 

AMBER -200.30 249.10 48.81 -40.06 47.34 7.28 -20.03 22.11 2.08 
OLCAO -132.49 302.45 169.96 -26.50 57.36 30.86 -13.24 26.52 13.27 

 

6. Conclusions  

The methodology and the ensuing analysis of biomolecular interaction presented above has 
broader repercussions in the general context of biomolecular computational physics, and should 
not be seen as specifically delimited only to the case of the SARS-CoV-2 RBD-ACE2 complex 
that was analyzed in detail. Its main advantages can be summarized as follows: 

1. We have combined the MD simulations with DFT calculations to significantly enhance the 
power and utility of comprehensive computational modeling applied to large complex 
biomolecular systems. 
2. From detailed MD simulations we have extracted the binding free energy of SARS-CoV-2 RBD-
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ACE2 complex with complete energetic profile including the main driving force for the interaction 
in the interfacial region of this biomolecular complex. The key interacting AAs between RBD and 
ACE2 have been identified, along with their quantitative energies.  
3. With detailed DFT calculations we have further quantified the interaction between amino acids 
involved in the interface interaction between RBD and ACEs at atomistic level including the 
contribution from hydrogen bonding topology.  
4. The two combined and complementary methodologies provide the missing link that was 
bothering computational scientists for decades, partly due to the different quantification of the HBs 
in molecular interactions. 
5. The combined approach presented in this contribution puts forth a new road map for critical 
evaluation of problems related to drug design and mutation analysis in the SARS-CoV-2 virus and 
in complex biomolecular systems in general. 
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